mirror of
https://github.com/lua/lua.git
synced 2025-01-28 06:03:00 +08:00
in random/'project', remove the special case for "small" intervals;
it is slower than the general case.
This commit is contained in:
parent
6486762463
commit
c5e3b2f814
39
lmathlib.c
39
lmathlib.c
@ -1,5 +1,5 @@
|
||||
/*
|
||||
** $Id: lmathlib.c,v 1.125 2018/03/12 12:39:03 roberto Exp roberto $
|
||||
** $Id: lmathlib.c,v 1.126 2018/03/16 14:18:18 roberto Exp roberto $
|
||||
** Standard mathematical library
|
||||
** See Copyright Notice in lua.h
|
||||
*/
|
||||
@ -422,27 +422,18 @@ typedef struct {
|
||||
|
||||
/*
|
||||
** Project the random integer 'ran' into the interval [0, n].
|
||||
** Because 'ran' has 2^B possible values, the projection can only
|
||||
** be uniform when the size of the interval [0, n] is a power of 2
|
||||
** (exact division). With the fairest possible projection (e.g.,
|
||||
** '(ran % (n + 1))'), the maximum bias is 1 in 2^B/n.
|
||||
** For a "small" 'n', this bias is acceptable. (Here, we accept
|
||||
** a maximum bias of 0.0001%.) For a larger 'n', we first
|
||||
** compute 'lim', the smallest (2^b - 1) not smaller than 'n',
|
||||
** to get a uniform projection into [0,lim]. If the result is
|
||||
** inside [0, n], we are done. Otherwise, we try we another
|
||||
** 'ran' until we have a result inside the interval.
|
||||
** Because 'ran' has 2^B possible values, the projection can only be
|
||||
** uniform when the size of the interval [0, n] is a power of 2 (exact
|
||||
** division). To get a uniform projection into [0,lim], we first
|
||||
** compute 'lim', the smallest (2^b - 1) not smaller than 'n'. If the
|
||||
** random number is inside [0, n], we are done. Otherwise, we try with
|
||||
** another 'ran' until we have a result inside the interval.
|
||||
*/
|
||||
|
||||
#define MAXBIAS 1000000
|
||||
|
||||
static lua_Unsigned project (lua_Unsigned ran, lua_Unsigned n,
|
||||
RanState *state) {
|
||||
if (n < LUA_MAXUNSIGNED / MAXBIAS)
|
||||
return ran % (n + 1);
|
||||
else {
|
||||
lua_Unsigned lim = n;
|
||||
if ((lim & (lim + 1)) > 0) { /* 'lim + 1' is not a power of 2? */
|
||||
/* compute the smallest (2^b - 1) not smaller than 'n' */
|
||||
lua_Unsigned lim = n;
|
||||
lim |= (lim >> 1);
|
||||
lim |= (lim >> 2);
|
||||
lim |= (lim >> 4);
|
||||
@ -451,13 +442,13 @@ static lua_Unsigned project (lua_Unsigned ran, lua_Unsigned n,
|
||||
#if (LUA_MAXINTEGER >> 30 >> 2) > 0
|
||||
lim |= (lim >> 32); /* integer type has more than 32 bits */
|
||||
#endif
|
||||
lua_assert((lim & (lim + 1)) == 0 /* 'lim + 1' is a power of 2 */
|
||||
&& lim >= n /* not smaller than 'n' */
|
||||
&& (lim >> 1) < n); /* it is the smallest one */
|
||||
while ((ran & lim) > n)
|
||||
ran = I2UInt(xorshift128plus(state->s));
|
||||
return ran & lim;
|
||||
}
|
||||
lua_assert((lim & (lim + 1)) == 0 /* 'lim + 1' is a power of 2 */
|
||||
&& lim >= n /* not smaller than 'n' */
|
||||
&& (lim == 0 || (lim >> 1) < n)); /* it is the smallest one */
|
||||
while ((ran & lim) > n)
|
||||
ran = I2UInt(xorshift128plus(state->s));
|
||||
return ran & lim;
|
||||
}
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user