/* ** $Id: ltable.c $ ** Lua tables (hash) ** See Copyright Notice in lua.h */ #define ltable_c #define LUA_CORE #include "lprefix.h" /* ** Implementation of tables (aka arrays, objects, or hash tables). ** Tables keep its elements in two parts: an array part and a hash part. ** Non-negative integer keys are all candidates to be kept in the array ** part. The actual size of the array is the largest 'n' such that ** more than half the slots between 1 and n are in use. ** Hash uses a mix of chained scatter table with Brent's variation. ** A main invariant of these tables is that, if an element is not ** in its main position (i.e. the 'original' position that its hash gives ** to it), then the colliding element is in its own main position. ** Hence even when the load factor reaches 100%, performance remains good. */ #include #include #include #include "lua.h" #include "ldebug.h" #include "ldo.h" #include "lgc.h" #include "lmem.h" #include "lobject.h" #include "lstate.h" #include "lstring.h" #include "ltable.h" #include "lvm.h" /* ** Only hash parts with at least 2^LIMFORLAST have a 'lastfree' field ** that optimizes finding a free slot. That field is stored just before ** the array of nodes, in the same block. Smaller tables do a complete ** search when looking for a free slot. */ #define LIMFORLAST 3 /* log2 of real limit (8) */ /* ** The union 'Limbox' stores 'lastfree' and ensures that what follows it ** is properly aligned to store a Node. */ typedef struct { Node *dummy; Node follows_pNode; } Limbox_aux; typedef union { Node *lastfree; char padding[offsetof(Limbox_aux, follows_pNode)]; } Limbox; #define haslastfree(t) ((t)->lsizenode >= LIMFORLAST) #define getlastfree(t) ((cast(Limbox *, (t)->node) - 1)->lastfree) /* ** MAXABITS is the largest integer such that 2^MAXABITS fits in an ** unsigned int. */ #define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1) /* ** MAXASIZEB is the maximum number of elements in the array part such ** that the size of the array fits in 'size_t'. */ #define MAXASIZEB (MAX_SIZET/(sizeof(Value) + 1)) /* ** MAXASIZE is the maximum size of the array part. It is the minimum ** between 2^MAXABITS and MAXASIZEB. */ #define MAXASIZE \ (((1u << MAXABITS) < MAXASIZEB) ? (1u << MAXABITS) : cast_uint(MAXASIZEB)) /* ** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a ** signed int. */ #define MAXHBITS (MAXABITS - 1) /* ** MAXHSIZE is the maximum size of the hash part. It is the minimum ** between 2^MAXHBITS and the maximum size such that, measured in bytes, ** it fits in a 'size_t'. */ #define MAXHSIZE luaM_limitN(1u << MAXHBITS, Node) /* ** When the original hash value is good, hashing by a power of 2 ** avoids the cost of '%'. */ #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t)))) /* ** for other types, it is better to avoid modulo by power of 2, as ** they can have many 2 factors. */ #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1u)|1u)))) #define hashstr(t,str) hashpow2(t, (str)->hash) #define hashboolean(t,p) hashpow2(t, p) #define hashpointer(t,p) hashmod(t, point2uint(p)) #define dummynode (&dummynode_) /* ** Common hash part for tables with empty hash parts. That allows all ** tables to have a hash part, avoding an extra check ("is there a hash ** part?") when indexing. Its sole node has an empty value and a key ** (DEADKEY, NULL) that is different from any valid TValue. */ static const Node dummynode_ = { {{NULL}, LUA_VEMPTY, /* value's value and type */ LUA_TDEADKEY, 0, {NULL}} /* key type, next, and key value */ }; static const TValue absentkey = {ABSTKEYCONSTANT}; /* ** Hash for integers. To allow a good hash, use the remainder operator ** ('%'). If integer fits as a non-negative int, compute an int ** remainder, which is faster. Otherwise, use an unsigned-integer ** remainder, which uses all bits and ensures a non-negative result. */ static Node *hashint (const Table *t, lua_Integer i) { lua_Unsigned ui = l_castS2U(i); if (ui <= cast_uint(INT_MAX)) return gnode(t, cast_int(ui) % cast_int((sizenode(t)-1) | 1)); else return hashmod(t, ui); } /* ** Hash for floating-point numbers. ** The main computation should be just ** n = frexp(n, &i); return (n * INT_MAX) + i ** but there are some numerical subtleties. ** In a two-complement representation, INT_MAX does not has an exact ** representation as a float, but INT_MIN does; because the absolute ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with ** INT_MIN. */ #if !defined(l_hashfloat) static unsigned l_hashfloat (lua_Number n) { int i; lua_Integer ni; n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN); if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */ lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL)); return 0; } else { /* normal case */ unsigned int u = cast_uint(i) + cast_uint(ni); return (u <= cast_uint(INT_MAX) ? u : ~u); } } #endif /* ** returns the 'main' position of an element in a table (that is, ** the index of its hash value). */ static Node *mainpositionTV (const Table *t, const TValue *key) { switch (ttypetag(key)) { case LUA_VNUMINT: { lua_Integer i = ivalue(key); return hashint(t, i); } case LUA_VNUMFLT: { lua_Number n = fltvalue(key); return hashmod(t, l_hashfloat(n)); } case LUA_VSHRSTR: { TString *ts = tsvalue(key); return hashstr(t, ts); } case LUA_VLNGSTR: { TString *ts = tsvalue(key); return hashpow2(t, luaS_hashlongstr(ts)); } case LUA_VFALSE: return hashboolean(t, 0); case LUA_VTRUE: return hashboolean(t, 1); case LUA_VLIGHTUSERDATA: { void *p = pvalue(key); return hashpointer(t, p); } case LUA_VLCF: { lua_CFunction f = fvalue(key); return hashpointer(t, f); } default: { GCObject *o = gcvalue(key); return hashpointer(t, o); } } } l_sinline Node *mainpositionfromnode (const Table *t, Node *nd) { TValue key; getnodekey(cast(lua_State *, NULL), &key, nd); return mainpositionTV(t, &key); } /* ** Check whether key 'k1' is equal to the key in node 'n2'. This ** equality is raw, so there are no metamethods. Floats with integer ** values have been normalized, so integers cannot be equal to ** floats. It is assumed that 'eqshrstr' is simply pointer equality, so ** that short strings are handled in the default case. ** A true 'deadok' means to accept dead keys as equal to their original ** values. All dead keys are compared in the default case, by pointer ** identity. (Only collectable objects can produce dead keys.) Note that ** dead long strings are also compared by identity. ** Once a key is dead, its corresponding value may be collected, and ** then another value can be created with the same address. If this ** other value is given to 'next', 'equalkey' will signal a false ** positive. In a regular traversal, this situation should never happen, ** as all keys given to 'next' came from the table itself, and therefore ** could not have been collected. Outside a regular traversal, we ** have garbage in, garbage out. What is relevant is that this false ** positive does not break anything. (In particular, 'next' will return ** some other valid item on the table or nil.) */ static int equalkey (const TValue *k1, const Node *n2, int deadok) { if ((rawtt(k1) != keytt(n2)) && /* not the same variants? */ !(deadok && keyisdead(n2) && iscollectable(k1))) return 0; /* cannot be same key */ switch (keytt(n2)) { case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE: return 1; case LUA_VNUMINT: return (ivalue(k1) == keyival(n2)); case LUA_VNUMFLT: return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2))); case LUA_VLIGHTUSERDATA: return pvalue(k1) == pvalueraw(keyval(n2)); case LUA_VLCF: return fvalue(k1) == fvalueraw(keyval(n2)); case ctb(LUA_VLNGSTR): return luaS_eqlngstr(tsvalue(k1), keystrval(n2)); default: return gcvalue(k1) == gcvalueraw(keyval(n2)); } } /* ** "Generic" get version. (Not that generic: not valid for integers, ** which may be in array part, nor for floats with integral values.) ** See explanation about 'deadok' in function 'equalkey'. */ static const TValue *getgeneric (Table *t, const TValue *key, int deadok) { Node *n = mainpositionTV(t, key); for (;;) { /* check whether 'key' is somewhere in the chain */ if (equalkey(key, n, deadok)) return gval(n); /* that's it */ else { int nx = gnext(n); if (nx == 0) return &absentkey; /* not found */ n += nx; } } } /* ** Return the index 'k' (converted to an unsigned) if it is inside ** the range [1, limit]. */ static unsigned checkrange (lua_Integer k, unsigned limit) { return (l_castS2U(k) - 1u < limit) ? cast_uint(k) : 0; } /* ** Return the index 'k' if 'k' is an appropriate key to live in the ** array part of a table, 0 otherwise. */ #define arrayindex(k) checkrange(k, MAXASIZE) /* ** Check whether an integer key is in the array part of a table and ** return its index there, or zero. */ #define ikeyinarray(t,k) checkrange(k, t->asize) /* ** Check whether a key is in the array part of a table and return its ** index there, or zero. */ static unsigned keyinarray (Table *t, const TValue *key) { return (ttisinteger(key)) ? ikeyinarray(t, ivalue(key)) : 0; } /* ** returns the index of a 'key' for table traversals. First goes all ** elements in the array part, then elements in the hash part. The ** beginning of a traversal is signaled by 0. */ static unsigned findindex (lua_State *L, Table *t, TValue *key, unsigned asize) { unsigned int i; if (ttisnil(key)) return 0; /* first iteration */ i = keyinarray(t, key); if (i != 0) /* is 'key' inside array part? */ return i; /* yes; that's the index */ else { const TValue *n = getgeneric(t, key, 1); if (l_unlikely(isabstkey(n))) luaG_runerror(L, "invalid key to 'next'"); /* key not found */ i = cast_uint(nodefromval(n) - gnode(t, 0)); /* key index in hash table */ /* hash elements are numbered after array ones */ return (i + 1) + asize; } } int luaH_next (lua_State *L, Table *t, StkId key) { unsigned int asize = t->asize; unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */ for (; i < asize; i++) { /* try first array part */ lu_byte tag = *getArrTag(t, i); if (!tagisempty(tag)) { /* a non-empty entry? */ setivalue(s2v(key), cast_int(i) + 1); farr2val(t, i, tag, s2v(key + 1)); return 1; } } for (i -= asize; i < sizenode(t); i++) { /* hash part */ if (!isempty(gval(gnode(t, i)))) { /* a non-empty entry? */ Node *n = gnode(t, i); getnodekey(L, s2v(key), n); setobj2s(L, key + 1, gval(n)); return 1; } } return 0; /* no more elements */ } /* Extra space in Node array if it has a lastfree entry */ #define extraLastfree(t) (haslastfree(t) ? sizeof(Limbox) : 0) /* 'node' size in bytes */ static size_t sizehash (Table *t) { return cast_sizet(sizenode(t)) * sizeof(Node) + extraLastfree(t); } static void freehash (lua_State *L, Table *t) { if (!isdummy(t)) { /* get pointer to the beginning of Node array */ char *arr = cast_charp(t->node) - extraLastfree(t); luaM_freearray(L, arr, sizehash(t)); } } /* ** {============================================================= ** Rehash ** ============================================================== */ /* ** Structure to count the keys in a table. ** 'total' is the total number of keys in the table. ** 'na' is the number of *array indices* in the table (see 'arrayindex'). ** 'deleted' is true if there are deleted nodes in the hash part. ** 'nums' is a "count array" where 'nums[i]' is the number of integer ** keys between 2^(i - 1) + 1 and 2^i. Note that 'na' is the summation ** of 'nums'. */ typedef struct { unsigned total; unsigned na; int deleted; unsigned nums[MAXABITS + 1]; } Counters; /* ** Check whether it is worth to use 'na' array entries instead of 'nh' ** hash nodes. (A hash node uses ~3 times more memory than an array ** entry: Two values plus 'next' versus one value.) Evaluate with size_t ** to avoid overflows. */ #define arrayXhash(na,nh) (cast_sizet(na) <= cast_sizet(nh) * 3) /* ** Compute the optimal size for the array part of table 't'. ** This size maximizes the number of elements going to the array part ** while satisfying the condition 'arrayXhash' with the use of memory if ** all those elements went to the hash part. ** 'ct->na' enters with the total number of array indices in the table ** and leaves with the number of keys that will go to the array part; ** return the optimal size for the array part. */ static unsigned computesizes (Counters *ct) { int i; unsigned int twotoi; /* 2^i (candidate for optimal size) */ unsigned int a = 0; /* number of elements smaller than 2^i */ unsigned int na = 0; /* number of elements to go to array part */ unsigned int optimal = 0; /* optimal size for array part */ /* traverse slices while 'twotoi' does not overflow and total of array indices still can satisfy 'arrayXhash' against the array size */ for (i = 0, twotoi = 1; twotoi > 0 && arrayXhash(twotoi, ct->na); i++, twotoi *= 2) { unsigned nums = ct->nums[i]; a += nums; if (nums > 0 && /* grows array only if it gets more elements... */ arrayXhash(twotoi, a)) { /* ...while using "less memory" */ optimal = twotoi; /* optimal size (till now) */ na = a; /* all elements up to 'optimal' will go to array part */ } } ct->na = na; return optimal; } static void countint (lua_Integer key, Counters *ct) { unsigned int k = arrayindex(key); if (k != 0) { /* is 'key' an array index? */ ct->nums[luaO_ceillog2(k)]++; /* count as such */ ct->na++; } } l_sinline int arraykeyisempty (const Table *t, unsigned key) { int tag = *getArrTag(t, key - 1); return tagisempty(tag); } /* ** Count keys in array part of table 't'. */ static void numusearray (const Table *t, Counters *ct) { int lg; unsigned int ttlg; /* 2^lg */ unsigned int ause = 0; /* summation of 'nums' */ unsigned int i = 1; /* index to traverse all array keys */ unsigned int asize = t->asize; /* traverse each slice */ for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) { unsigned int lc = 0; /* counter */ unsigned int lim = ttlg; if (lim > asize) { lim = asize; /* adjust upper limit */ if (i > lim) break; /* no more elements to count */ } /* count elements in range (2^(lg - 1), 2^lg] */ for (; i <= lim; i++) { if (!arraykeyisempty(t, i)) lc++; } ct->nums[lg] += lc; ause += lc; } ct->total += ause; ct->na += ause; } /* ** Count keys in hash part of table 't'. As this only happens during ** a rehash, all nodes have been used. A node can have a nil value only ** if it was deleted after being created. */ static void numusehash (const Table *t, Counters *ct) { unsigned i = sizenode(t); unsigned total = 0; while (i--) { Node *n = &t->node[i]; if (isempty(gval(n))) { lua_assert(!keyisnil(n)); /* entry was deleted; key cannot be nil */ ct->deleted = 1; } else { total++; if (keyisinteger(n)) countint(keyival(n), ct); } } ct->total += total; } /* ** Convert an "abstract size" (number of slots in an array) to ** "concrete size" (number of bytes in the array). */ static size_t concretesize (unsigned int size) { if (size == 0) return 0; else /* space for the two arrays plus an unsigned in between */ return size * (sizeof(Value) + 1) + sizeof(unsigned); } /* ** Resize the array part of a table. If new size is equal to the old, ** do nothing. Else, if new size is zero, free the old array. (It must ** be present, as the sizes are different.) Otherwise, allocate a new ** array, move the common elements to new proper position, and then ** frees the old array. ** We could reallocate the array, but we still would need to move the ** elements to their new position, so the copy implicit in realloc is a ** waste. Moreover, most allocators will move the array anyway when the ** new size is double the old one (the most common case). */ static Value *resizearray (lua_State *L , Table *t, unsigned oldasize, unsigned newasize) { if (oldasize == newasize) return t->array; /* nothing to be done */ else if (newasize == 0) { /* erasing array? */ Value *op = t->array - oldasize; /* original array's real address */ luaM_freemem(L, op, concretesize(oldasize)); /* free it */ return NULL; } else { size_t newasizeb = concretesize(newasize); Value *np = cast(Value *, luaM_reallocvector(L, NULL, 0, newasizeb, lu_byte)); if (np == NULL) /* allocation error? */ return NULL; np += newasize; /* shift pointer to the end of value segment */ if (oldasize > 0) { /* move common elements to new position */ size_t oldasizeb = concretesize(oldasize); Value *op = t->array; /* original array */ unsigned tomove = (oldasize < newasize) ? oldasize : newasize; size_t tomoveb = (oldasize < newasize) ? oldasizeb : newasizeb; lua_assert(tomoveb > 0); memcpy(np - tomove, op - tomove, tomoveb); luaM_freemem(L, op - oldasize, oldasizeb); /* free old block */ } return np; } } /* ** Creates an array for the hash part of a table with the given ** size, or reuses the dummy node if size is zero. ** The computation for size overflow is in two steps: the first ** comparison ensures that the shift in the second one does not ** overflow. */ static void setnodevector (lua_State *L, Table *t, unsigned size) { if (size == 0) { /* no elements to hash part? */ t->node = cast(Node *, dummynode); /* use common 'dummynode' */ t->lsizenode = 0; setdummy(t); /* signal that it is using dummy node */ } else { int i; int lsize = luaO_ceillog2(size); if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE) luaG_runerror(L, "table overflow"); size = twoto(lsize); if (lsize < LIMFORLAST) /* no 'lastfree' field? */ t->node = luaM_newvector(L, size, Node); else { size_t bsize = size * sizeof(Node) + sizeof(Limbox); char *node = luaM_newblock(L, bsize); t->node = cast(Node *, node + sizeof(Limbox)); getlastfree(t) = gnode(t, size); /* all positions are free */ } t->lsizenode = cast_byte(lsize); setnodummy(t); for (i = 0; i < cast_int(size); i++) { Node *n = gnode(t, i); gnext(n) = 0; setnilkey(n); setempty(gval(n)); } } } /* ** (Re)insert all elements from the hash part of 'ot' into table 't'. */ static void reinsert (lua_State *L, Table *ot, Table *t) { unsigned j; unsigned size = sizenode(ot); for (j = 0; j < size; j++) { Node *old = gnode(ot, j); if (!isempty(gval(old))) { /* doesn't need barrier/invalidate cache, as entry was already present in the table */ TValue k; getnodekey(L, &k, old); luaH_set(L, t, &k, gval(old)); } } } /* ** Exchange the hash part of 't1' and 't2'. (In 'flags', only the ** dummy bit must be exchanged: The 'isrealasize' is not related ** to the hash part, and the metamethod bits do not change during ** a resize, so the "real" table can keep their values.) */ static void exchangehashpart (Table *t1, Table *t2) { lu_byte lsizenode = t1->lsizenode; Node *node = t1->node; int bitdummy1 = t1->flags & BITDUMMY; t1->lsizenode = t2->lsizenode; t1->node = t2->node; t1->flags = cast_byte((t1->flags & NOTBITDUMMY) | (t2->flags & BITDUMMY)); t2->lsizenode = lsizenode; t2->node = node; t2->flags = cast_byte((t2->flags & NOTBITDUMMY) | bitdummy1); } /* ** Re-insert into the new hash part of a table the elements from the ** vanishing slice of the array part. */ static void reinsertOldSlice (lua_State *L, Table *t, unsigned oldasize, unsigned newasize) { unsigned i; t->asize = newasize; /* pretend array has new size... */ for (i = newasize; i < oldasize; i++) { /* traverse vanishing slice */ lu_byte tag = *getArrTag(t, i); if (!tagisempty(tag)) { /* a non-empty entry? */ TValue aux; farr2val(t, i, tag, &aux); /* copy entry into 'aux' */ /* re-insert it into the table */ luaH_setint(L, t, cast_int(i) + 1, &aux); } } t->asize = oldasize; /* restore current size... */ } /* ** Clear new slice of the array. */ static void clearNewSlice (Table *t, unsigned oldasize, unsigned newasize) { for (; oldasize < newasize; oldasize++) *getArrTag(t, oldasize) = LUA_VEMPTY; } /* ** Resize table 't' for the new given sizes. Both allocations (for ** the hash part and for the array part) can fail, which creates some ** subtleties. If the first allocation, for the hash part, fails, an ** error is raised and that is it. Otherwise, it copies the elements from ** the shrinking part of the array (if it is shrinking) into the new ** hash. Then it reallocates the array part. If that fails, the table ** is in its original state; the function frees the new hash part and then ** raises the allocation error. Otherwise, it sets the new hash part ** into the table, initializes the new part of the array (if any) with ** nils and reinserts the elements of the old hash back into the new ** parts of the table. ** Note that if the new size for the arry part ('newasize') is equal to ** the old one ('oldasize'), this function will do nothing with that ** part. */ void luaH_resize (lua_State *L, Table *t, unsigned newasize, unsigned nhsize) { Table newt; /* to keep the new hash part */ unsigned oldasize = t->asize; Value *newarray; if (newasize > MAXASIZE) luaG_runerror(L, "table overflow"); /* create new hash part with appropriate size into 'newt' */ newt.flags = 0; setnodevector(L, &newt, nhsize); if (newasize < oldasize) { /* will array shrink? */ /* re-insert into the new hash the elements from vanishing slice */ exchangehashpart(t, &newt); /* pretend table has new hash */ reinsertOldSlice(L, t, oldasize, newasize); exchangehashpart(t, &newt); /* restore old hash (in case of errors) */ } /* allocate new array */ newarray = resizearray(L, t, oldasize, newasize); if (l_unlikely(newarray == NULL && newasize > 0)) { /* allocation failed? */ freehash(L, &newt); /* release new hash part */ luaM_error(L); /* raise error (with array unchanged) */ } /* allocation ok; initialize new part of the array */ exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */ t->array = newarray; /* set new array part */ t->asize = newasize; if (newarray != NULL) *lenhint(t) = newasize / 2u; /* set an initial hint */ clearNewSlice(t, oldasize, newasize); /* re-insert elements from old hash part into new parts */ reinsert(L, &newt, t); /* 'newt' now has the old hash */ freehash(L, &newt); /* free old hash part */ } void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) { unsigned nsize = allocsizenode(t); luaH_resize(L, t, nasize, nsize); } /* ** Rehash a table. First, count its keys. If there are array indices ** outside the array part, compute the new best size for that part. ** Then, resize the table. */ static void rehash (lua_State *L, Table *t, const TValue *ek) { unsigned asize; /* optimal size for array part */ Counters ct; unsigned i; unsigned nsize; /* size for the hash part */ /* reset counts */ for (i = 0; i <= MAXABITS; i++) ct.nums[i] = 0; ct.na = 0; ct.deleted = 0; ct.total = 1; /* count extra key */ if (ttisinteger(ek)) countint(ivalue(ek), &ct); /* extra key may go to array */ numusehash(t, &ct); /* count keys in hash part */ if (ct.na == 0) { /* no new keys to enter array part; keep it with the same size */ asize = t->asize; } else { /* compute best size for array part */ numusearray(t, &ct); /* count keys in array part */ asize = computesizes(&ct); /* compute new size for array part */ } /* all keys not in the array part go to the hash part */ nsize = ct.total - ct.na; if (ct.deleted) { /* table has deleted entries? */ /* insertion-deletion-insertion: give hash some extra size to avoid constant resizings */ nsize += nsize >> 2; } /* resize the table to new computed sizes */ luaH_resize(L, t, asize, nsize); } /* ** }============================================================= */ Table *luaH_new (lua_State *L) { GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table)); Table *t = gco2t(o); t->metatable = NULL; t->flags = maskflags; /* table has no metamethod fields */ t->array = NULL; t->asize = 0; setnodevector(L, t, 0); return t; } lu_mem luaH_size (Table *t) { lu_mem sz = cast(lu_mem, sizeof(Table)) + concretesize(t->asize); if (!isdummy(t)) sz += sizehash(t); return sz; } /* ** Frees a table. */ void luaH_free (lua_State *L, Table *t) { freehash(L, t); resizearray(L, t, t->asize, 0); luaM_free(L, t); } static Node *getfreepos (Table *t) { if (haslastfree(t)) { /* does it have 'lastfree' information? */ /* look for a spot before 'lastfree', updating 'lastfree' */ while (getlastfree(t) > t->node) { Node *free = --getlastfree(t); if (keyisnil(free)) return free; } } else { /* no 'lastfree' information */ unsigned i = sizenode(t); while (i--) { /* do a linear search */ Node *free = gnode(t, i); if (keyisnil(free)) return free; } } return NULL; /* could not find a free place */ } /* ** Inserts a new key into a hash table; first, check whether key's main ** position is free. If not, check whether colliding node is in its main ** position or not: if it is not, move colliding node to an empty place ** and put new key in its main position; otherwise (colliding node is in ** its main position), new key goes to an empty position. Return 0 if ** could not insert key (could not find a free space). */ static int insertkey (Table *t, const TValue *key, TValue *value) { Node *mp = mainpositionTV(t, key); /* table cannot already contain the key */ lua_assert(isabstkey(getgeneric(t, key, 0))); if (!isempty(gval(mp)) || isdummy(t)) { /* main position is taken? */ Node *othern; Node *f = getfreepos(t); /* get a free place */ if (f == NULL) /* cannot find a free place? */ return 0; lua_assert(!isdummy(t)); othern = mainpositionfromnode(t, mp); if (othern != mp) { /* is colliding node out of its main position? */ /* yes; move colliding node into free position */ while (othern + gnext(othern) != mp) /* find previous */ othern += gnext(othern); gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */ *f = *mp; /* copy colliding node into free pos. (mp->next also goes) */ if (gnext(mp) != 0) { gnext(f) += cast_int(mp - f); /* correct 'next' */ gnext(mp) = 0; /* now 'mp' is free */ } setempty(gval(mp)); } else { /* colliding node is in its own main position */ /* new node will go into free position */ if (gnext(mp) != 0) gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */ else lua_assert(gnext(f) == 0); gnext(mp) = cast_int(f - mp); mp = f; } } setnodekey(mp, key); lua_assert(isempty(gval(mp))); setobj2t(cast(lua_State *, 0), gval(mp), value); return 1; } static void luaH_newkey (lua_State *L, Table *t, const TValue *key, TValue *value) { if (!ttisnil(value)) { /* do not insert nil values */ int done = insertkey(t, key, value); if (done) luaC_barrierback(L, obj2gco(t), key); else { /* could not find a free place? */ rehash(L, t, key); /* grow table */ /* whatever called 'newkey' takes care of TM cache */ luaH_set(L, t, key, value); /* insert key into grown table */ } } } static const TValue *getintfromhash (Table *t, lua_Integer key) { Node *n = hashint(t, key); lua_assert(!ikeyinarray(t, key)); for (;;) { /* check whether 'key' is somewhere in the chain */ if (keyisinteger(n) && keyival(n) == key) return gval(n); /* that's it */ else { int nx = gnext(n); if (nx == 0) break; n += nx; } } return &absentkey; } static int hashkeyisempty (Table *t, lua_Unsigned key) { const TValue *val = getintfromhash(t, l_castU2S(key)); return isempty(val); } static lu_byte finishnodeget (const TValue *val, TValue *res) { if (!ttisnil(val)) { setobj(((lua_State*)NULL), res, val); } return ttypetag(val); } lu_byte luaH_getint (Table *t, lua_Integer key, TValue *res) { unsigned k = ikeyinarray(t, key); if (k > 0) { lu_byte tag = *getArrTag(t, k - 1); if (!tagisempty(tag)) farr2val(t, k - 1, tag, res); return tag; } else return finishnodeget(getintfromhash(t, key), res); } /* ** search function for short strings */ const TValue *luaH_Hgetshortstr (Table *t, TString *key) { Node *n = hashstr(t, key); lua_assert(key->tt == LUA_VSHRSTR); for (;;) { /* check whether 'key' is somewhere in the chain */ if (keyisshrstr(n) && eqshrstr(keystrval(n), key)) return gval(n); /* that's it */ else { int nx = gnext(n); if (nx == 0) return &absentkey; /* not found */ n += nx; } } } lu_byte luaH_getshortstr (Table *t, TString *key, TValue *res) { return finishnodeget(luaH_Hgetshortstr(t, key), res); } static const TValue *Hgetstr (Table *t, TString *key) { if (key->tt == LUA_VSHRSTR) return luaH_Hgetshortstr(t, key); else { /* for long strings, use generic case */ TValue ko; setsvalue(cast(lua_State *, NULL), &ko, key); return getgeneric(t, &ko, 0); } } lu_byte luaH_getstr (Table *t, TString *key, TValue *res) { return finishnodeget(Hgetstr(t, key), res); } TString *luaH_getstrkey (Table *t, TString *key) { const TValue *o = Hgetstr(t, key); if (!isabstkey(o)) /* string already present? */ return keystrval(nodefromval(o)); /* get saved copy */ else return NULL; } /* ** main search function */ lu_byte luaH_get (Table *t, const TValue *key, TValue *res) { const TValue *slot; switch (ttypetag(key)) { case LUA_VSHRSTR: slot = luaH_Hgetshortstr(t, tsvalue(key)); break; case LUA_VNUMINT: return luaH_getint(t, ivalue(key), res); case LUA_VNIL: slot = &absentkey; break; case LUA_VNUMFLT: { lua_Integer k; if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */ return luaH_getint(t, k, res); /* use specialized version */ /* else... */ } /* FALLTHROUGH */ default: slot = getgeneric(t, key, 0); break; } return finishnodeget(slot, res); } static int finishnodeset (Table *t, const TValue *slot, TValue *val) { if (!ttisnil(slot)) { setobj(((lua_State*)NULL), cast(TValue*, slot), val); return HOK; /* success */ } else if (isabstkey(slot)) return HNOTFOUND; /* no slot with that key */ else /* return node encoded */ return cast_int((cast(Node*, slot) - t->node)) + HFIRSTNODE; } static int rawfinishnodeset (const TValue *slot, TValue *val) { if (isabstkey(slot)) return 0; /* no slot with that key */ else { setobj(((lua_State*)NULL), cast(TValue*, slot), val); return 1; /* success */ } } int luaH_psetint (Table *t, lua_Integer key, TValue *val) { lua_assert(!ikeyinarray(t, key)); return finishnodeset(t, getintfromhash(t, key), val); } static int psetint (Table *t, lua_Integer key, TValue *val) { int hres; luaH_fastseti(t, key, val, hres); return hres; } int luaH_psetshortstr (Table *t, TString *key, TValue *val) { return finishnodeset(t, luaH_Hgetshortstr(t, key), val); } int luaH_psetstr (Table *t, TString *key, TValue *val) { return finishnodeset(t, Hgetstr(t, key), val); } int luaH_pset (Table *t, const TValue *key, TValue *val) { switch (ttypetag(key)) { case LUA_VSHRSTR: return luaH_psetshortstr(t, tsvalue(key), val); case LUA_VNUMINT: return psetint(t, ivalue(key), val); case LUA_VNIL: return HNOTFOUND; case LUA_VNUMFLT: { lua_Integer k; if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */ return psetint(t, k, val); /* use specialized version */ /* else... */ } /* FALLTHROUGH */ default: return finishnodeset(t, getgeneric(t, key, 0), val); } } /* ** Finish a raw "set table" operation, where 'slot' is where the value ** should have been (the result of a previous "get table"). ** Beware: when using this function you probably need to check a GC ** barrier and invalidate the TM cache. */ void luaH_finishset (lua_State *L, Table *t, const TValue *key, TValue *value, int hres) { lua_assert(hres != HOK); if (hres == HNOTFOUND) { TValue aux; if (l_unlikely(ttisnil(key))) luaG_runerror(L, "table index is nil"); else if (ttisfloat(key)) { lua_Number f = fltvalue(key); lua_Integer k; if (luaV_flttointeger(f, &k, F2Ieq)) { setivalue(&aux, k); /* key is equal to an integer */ key = &aux; /* insert it as an integer */ } else if (l_unlikely(luai_numisnan(f))) luaG_runerror(L, "table index is NaN"); } luaH_newkey(L, t, key, value); } else if (hres > 0) { /* regular Node? */ setobj2t(L, gval(gnode(t, hres - HFIRSTNODE)), value); } else { /* array entry */ hres = ~hres; /* real index */ obj2arr(t, cast_uint(hres), value); } } /* ** beware: when using this function you probably need to check a GC ** barrier and invalidate the TM cache. */ void luaH_set (lua_State *L, Table *t, const TValue *key, TValue *value) { int hres = luaH_pset(t, key, value); if (hres != HOK) luaH_finishset(L, t, key, value, hres); } /* ** Ditto for a GC barrier. (No need to invalidate the TM cache, as ** integers cannot be keys to metamethods.) */ void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) { unsigned ik = ikeyinarray(t, key); if (ik > 0) obj2arr(t, ik - 1, value); else { int ok = rawfinishnodeset(getintfromhash(t, key), value); if (!ok) { TValue k; setivalue(&k, key); luaH_newkey(L, t, &k, value); } } } /* ** Try to find a boundary in the hash part of table 't'. From the ** caller, we know that 'j' is zero or present and that 'j + 1' is ** present. We want to find a larger key that is absent from the ** table, so that we can do a binary search between the two keys to ** find a boundary. We keep doubling 'j' until we get an absent index. ** If the doubling would overflow, we try LUA_MAXINTEGER. If it is ** absent, we are ready for the binary search. ('j', being max integer, ** is larger or equal to 'i', but it cannot be equal because it is ** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a ** boundary. ('j + 1' cannot be a present integer key because it is ** not a valid integer in Lua.) */ static lua_Unsigned hash_search (Table *t, lua_Unsigned j) { lua_Unsigned i; if (j == 0) j++; /* the caller ensures 'j + 1' is present */ do { i = j; /* 'i' is a present index */ if (j <= l_castS2U(LUA_MAXINTEGER) / 2) j *= 2; else { j = LUA_MAXINTEGER; if (hashkeyisempty(t, j)) /* t[j] not present? */ break; /* 'j' now is an absent index */ else /* weird case */ return j; /* well, max integer is a boundary... */ } } while (!hashkeyisempty(t, j)); /* repeat until an absent t[j] */ /* i < j && t[i] present && t[j] absent */ while (j - i > 1u) { /* do a binary search between them */ lua_Unsigned m = (i + j) / 2; if (hashkeyisempty(t, m)) j = m; else i = m; } return i; } static unsigned int binsearch (Table *array, unsigned int i, unsigned int j) { lua_assert(i <= j); while (j - i > 1u) { /* binary search */ unsigned int m = (i + j) / 2; if (arraykeyisempty(array, m)) j = m; else i = m; } return i; } /* return a border, saving it as a hint for next call */ static lua_Unsigned newhint (Table *t, unsigned hint) { lua_assert(hint <= t->asize); *lenhint(t) = hint; return hint; } /* ** Try to find a border in table 't'. (A 'border' is an integer index ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent, ** or 'maxinteger' if t[maxinteger] is present.) ** If there is an array part, try to find a border there. First try ** to find it in the vicinity of the previous result (hint), to handle ** cases like 't[#t + 1] = val' or 't[#t] = nil', that move the border ** by one entry. Otherwise, do a binary search to find the border. ** If there is no array part, or its last element is non empty, the ** border may be in the hash part. */ lua_Unsigned luaH_getn (Table *t) { unsigned asize = t->asize; if (asize > 0) { /* is there an array part? */ const unsigned maxvicinity = 4; unsigned limit = *lenhint(t); /* start with the hint */ if (limit == 0) limit = 1; /* make limit a valid index in the array */ if (arraykeyisempty(t, limit)) { /* t[limit] empty? */ /* there must be a border before 'limit' */ unsigned i; /* look for a border in the vicinity of the hint */ for (i = 0; i < maxvicinity && limit > 1; i++) { limit--; if (!arraykeyisempty(t, limit)) return newhint(t, limit); /* 'limit' is a border */ } /* t[limit] still empty; search for a border in [0, limit) */ return newhint(t, binsearch(t, 0, limit)); } else { /* 'limit' is present in table; look for a border after it */ unsigned i; /* look for a border in the vicinity of the hint */ for (i = 0; i < maxvicinity && limit < asize; i++) { limit++; if (arraykeyisempty(t, limit)) return newhint(t, limit - 1); /* 'limit - 1' is a border */ } if (arraykeyisempty(t, asize)) { /* last element empty? */ /* t[limit] not empty; search for a border in [limit, asize) */ return newhint(t, binsearch(t, limit, asize)); } } /* last element non empty; set a hint to speed up findind that again */ /* (keys in the hash part cannot be hints) */ *lenhint(t) = asize; } /* no array part or t[asize] is not empty; check the hash part */ lua_assert(asize == 0 || !arraykeyisempty(t, asize)); if (isdummy(t) || hashkeyisempty(t, asize + 1)) return asize; /* 'asize + 1' is empty */ else /* 'asize + 1' is also non empty */ return hash_search(t, asize); } #if defined(LUA_DEBUG) /* export this function for the test library */ Node *luaH_mainposition (const Table *t, const TValue *key) { return mainpositionTV(t, key); } #endif