1
0
mirror of https://github.com/lua/lua.git synced 2025-01-14 05:43:00 +08:00
lua/ltable.c
Roberto Ierusalimschy b4b616bdf2 Rehash reinserts elements with "lighter" functions
When reinserting elements into a table during a rehash, the code does
not need to invoke all the complexity of a full 'luaH_set':

- The table has space for all keys.
- The key cannot exist in the new hash.
- The keys are valid (not NaN nor nil).
- The keys are normalized (1.0 -> 1).
- The values cannot be nil.
- No barrier needed (the table already pointed to the key and value).
2024-12-05 17:34:08 -03:00

1288 lines
39 KiB
C

/*
** $Id: ltable.c $
** Lua tables (hash)
** See Copyright Notice in lua.h
*/
#define ltable_c
#define LUA_CORE
#include "lprefix.h"
/*
** Implementation of tables (aka arrays, objects, or hash tables).
** Tables keep its elements in two parts: an array part and a hash part.
** Non-negative integer keys are all candidates to be kept in the array
** part. The actual size of the array is the largest 'n' such that
** more than half the slots between 1 and n are in use.
** Hash uses a mix of chained scatter table with Brent's variation.
** A main invariant of these tables is that, if an element is not
** in its main position (i.e. the 'original' position that its hash gives
** to it), then the colliding element is in its own main position.
** Hence even when the load factor reaches 100%, performance remains good.
*/
#include <math.h>
#include <limits.h>
#include <string.h>
#include "lua.h"
#include "ldebug.h"
#include "ldo.h"
#include "lgc.h"
#include "lmem.h"
#include "lobject.h"
#include "lstate.h"
#include "lstring.h"
#include "ltable.h"
#include "lvm.h"
/*
** Only hash parts with at least 2^LIMFORLAST have a 'lastfree' field
** that optimizes finding a free slot. That field is stored just before
** the array of nodes, in the same block. Smaller tables do a complete
** search when looking for a free slot.
*/
#define LIMFORLAST 3 /* log2 of real limit (8) */
/*
** The union 'Limbox' stores 'lastfree' and ensures that what follows it
** is properly aligned to store a Node.
*/
typedef struct { Node *dummy; Node follows_pNode; } Limbox_aux;
typedef union {
Node *lastfree;
char padding[offsetof(Limbox_aux, follows_pNode)];
} Limbox;
#define haslastfree(t) ((t)->lsizenode >= LIMFORLAST)
#define getlastfree(t) ((cast(Limbox *, (t)->node) - 1)->lastfree)
/*
** MAXABITS is the largest integer such that 2^MAXABITS fits in an
** unsigned int.
*/
#define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1)
/*
** MAXASIZEB is the maximum number of elements in the array part such
** that the size of the array fits in 'size_t'.
*/
#define MAXASIZEB (MAX_SIZET/(sizeof(Value) + 1))
/*
** MAXASIZE is the maximum size of the array part. It is the minimum
** between 2^MAXABITS and MAXASIZEB.
*/
#define MAXASIZE \
(((1u << MAXABITS) < MAXASIZEB) ? (1u << MAXABITS) : cast_uint(MAXASIZEB))
/*
** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a
** signed int.
*/
#define MAXHBITS (MAXABITS - 1)
/*
** MAXHSIZE is the maximum size of the hash part. It is the minimum
** between 2^MAXHBITS and the maximum size such that, measured in bytes,
** it fits in a 'size_t'.
*/
#define MAXHSIZE luaM_limitN(1u << MAXHBITS, Node)
/*
** When the original hash value is good, hashing by a power of 2
** avoids the cost of '%'.
*/
#define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t))))
/*
** for other types, it is better to avoid modulo by power of 2, as
** they can have many 2 factors.
*/
#define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1u)|1u))))
#define hashstr(t,str) hashpow2(t, (str)->hash)
#define hashboolean(t,p) hashpow2(t, p)
#define hashpointer(t,p) hashmod(t, point2uint(p))
#define dummynode (&dummynode_)
/*
** Common hash part for tables with empty hash parts. That allows all
** tables to have a hash part, avoding an extra check ("is there a hash
** part?") when indexing. Its sole node has an empty value and a key
** (DEADKEY, NULL) that is different from any valid TValue.
*/
static const Node dummynode_ = {
{{NULL}, LUA_VEMPTY, /* value's value and type */
LUA_TDEADKEY, 0, {NULL}} /* key type, next, and key value */
};
static const TValue absentkey = {ABSTKEYCONSTANT};
/*
** Hash for integers. To allow a good hash, use the remainder operator
** ('%'). If integer fits as a non-negative int, compute an int
** remainder, which is faster. Otherwise, use an unsigned-integer
** remainder, which uses all bits and ensures a non-negative result.
*/
static Node *hashint (const Table *t, lua_Integer i) {
lua_Unsigned ui = l_castS2U(i);
if (ui <= cast_uint(INT_MAX))
return gnode(t, cast_int(ui) % cast_int((sizenode(t)-1) | 1));
else
return hashmod(t, ui);
}
/*
** Hash for floating-point numbers.
** The main computation should be just
** n = frexp(n, &i); return (n * INT_MAX) + i
** but there are some numerical subtleties.
** In a two-complement representation, INT_MAX does not has an exact
** representation as a float, but INT_MIN does; because the absolute
** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
** INT_MIN.
*/
#if !defined(l_hashfloat)
static unsigned l_hashfloat (lua_Number n) {
int i;
lua_Integer ni;
n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */
lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
return 0;
}
else { /* normal case */
unsigned int u = cast_uint(i) + cast_uint(ni);
return (u <= cast_uint(INT_MAX) ? u : ~u);
}
}
#endif
/*
** returns the 'main' position of an element in a table (that is,
** the index of its hash value).
*/
static Node *mainpositionTV (const Table *t, const TValue *key) {
switch (ttypetag(key)) {
case LUA_VNUMINT: {
lua_Integer i = ivalue(key);
return hashint(t, i);
}
case LUA_VNUMFLT: {
lua_Number n = fltvalue(key);
return hashmod(t, l_hashfloat(n));
}
case LUA_VSHRSTR: {
TString *ts = tsvalue(key);
return hashstr(t, ts);
}
case LUA_VLNGSTR: {
TString *ts = tsvalue(key);
return hashpow2(t, luaS_hashlongstr(ts));
}
case LUA_VFALSE:
return hashboolean(t, 0);
case LUA_VTRUE:
return hashboolean(t, 1);
case LUA_VLIGHTUSERDATA: {
void *p = pvalue(key);
return hashpointer(t, p);
}
case LUA_VLCF: {
lua_CFunction f = fvalue(key);
return hashpointer(t, f);
}
default: {
GCObject *o = gcvalue(key);
return hashpointer(t, o);
}
}
}
l_sinline Node *mainpositionfromnode (const Table *t, Node *nd) {
TValue key;
getnodekey(cast(lua_State *, NULL), &key, nd);
return mainpositionTV(t, &key);
}
/*
** Check whether key 'k1' is equal to the key in node 'n2'. This
** equality is raw, so there are no metamethods. Floats with integer
** values have been normalized, so integers cannot be equal to
** floats. It is assumed that 'eqshrstr' is simply pointer equality, so
** that short strings are handled in the default case.
** A true 'deadok' means to accept dead keys as equal to their original
** values. All dead keys are compared in the default case, by pointer
** identity. (Only collectable objects can produce dead keys.) Note that
** dead long strings are also compared by identity.
** Once a key is dead, its corresponding value may be collected, and
** then another value can be created with the same address. If this
** other value is given to 'next', 'equalkey' will signal a false
** positive. In a regular traversal, this situation should never happen,
** as all keys given to 'next' came from the table itself, and therefore
** could not have been collected. Outside a regular traversal, we
** have garbage in, garbage out. What is relevant is that this false
** positive does not break anything. (In particular, 'next' will return
** some other valid item on the table or nil.)
*/
static int equalkey (const TValue *k1, const Node *n2, int deadok) {
if ((rawtt(k1) != keytt(n2)) && /* not the same variants? */
!(deadok && keyisdead(n2) && iscollectable(k1)))
return 0; /* cannot be same key */
switch (keytt(n2)) {
case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE:
return 1;
case LUA_VNUMINT:
return (ivalue(k1) == keyival(n2));
case LUA_VNUMFLT:
return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2)));
case LUA_VLIGHTUSERDATA:
return pvalue(k1) == pvalueraw(keyval(n2));
case LUA_VLCF:
return fvalue(k1) == fvalueraw(keyval(n2));
case ctb(LUA_VLNGSTR):
return luaS_eqlngstr(tsvalue(k1), keystrval(n2));
default:
return gcvalue(k1) == gcvalueraw(keyval(n2));
}
}
/*
** "Generic" get version. (Not that generic: not valid for integers,
** which may be in array part, nor for floats with integral values.)
** See explanation about 'deadok' in function 'equalkey'.
*/
static const TValue *getgeneric (Table *t, const TValue *key, int deadok) {
Node *n = mainpositionTV(t, key);
for (;;) { /* check whether 'key' is somewhere in the chain */
if (equalkey(key, n, deadok))
return gval(n); /* that's it */
else {
int nx = gnext(n);
if (nx == 0)
return &absentkey; /* not found */
n += nx;
}
}
}
/*
** Return the index 'k' (converted to an unsigned) if it is inside
** the range [1, limit].
*/
static unsigned checkrange (lua_Integer k, unsigned limit) {
return (l_castS2U(k) - 1u < limit) ? cast_uint(k) : 0;
}
/*
** Return the index 'k' if 'k' is an appropriate key to live in the
** array part of a table, 0 otherwise.
*/
#define arrayindex(k) checkrange(k, MAXASIZE)
/*
** Check whether an integer key is in the array part of a table and
** return its index there, or zero.
*/
#define ikeyinarray(t,k) checkrange(k, t->asize)
/*
** Check whether a key is in the array part of a table and return its
** index there, or zero.
*/
static unsigned keyinarray (Table *t, const TValue *key) {
return (ttisinteger(key)) ? ikeyinarray(t, ivalue(key)) : 0;
}
/*
** returns the index of a 'key' for table traversals. First goes all
** elements in the array part, then elements in the hash part. The
** beginning of a traversal is signaled by 0.
*/
static unsigned findindex (lua_State *L, Table *t, TValue *key,
unsigned asize) {
unsigned int i;
if (ttisnil(key)) return 0; /* first iteration */
i = keyinarray(t, key);
if (i != 0) /* is 'key' inside array part? */
return i; /* yes; that's the index */
else {
const TValue *n = getgeneric(t, key, 1);
if (l_unlikely(isabstkey(n)))
luaG_runerror(L, "invalid key to 'next'"); /* key not found */
i = cast_uint(nodefromval(n) - gnode(t, 0)); /* key index in hash table */
/* hash elements are numbered after array ones */
return (i + 1) + asize;
}
}
int luaH_next (lua_State *L, Table *t, StkId key) {
unsigned int asize = t->asize;
unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */
for (; i < asize; i++) { /* try first array part */
lu_byte tag = *getArrTag(t, i);
if (!tagisempty(tag)) { /* a non-empty entry? */
setivalue(s2v(key), cast_int(i) + 1);
farr2val(t, i, tag, s2v(key + 1));
return 1;
}
}
for (i -= asize; i < sizenode(t); i++) { /* hash part */
if (!isempty(gval(gnode(t, i)))) { /* a non-empty entry? */
Node *n = gnode(t, i);
getnodekey(L, s2v(key), n);
setobj2s(L, key + 1, gval(n));
return 1;
}
}
return 0; /* no more elements */
}
/* Extra space in Node array if it has a lastfree entry */
#define extraLastfree(t) (haslastfree(t) ? sizeof(Limbox) : 0)
/* 'node' size in bytes */
static size_t sizehash (Table *t) {
return cast_sizet(sizenode(t)) * sizeof(Node) + extraLastfree(t);
}
static void freehash (lua_State *L, Table *t) {
if (!isdummy(t)) {
/* get pointer to the beginning of Node array */
char *arr = cast_charp(t->node) - extraLastfree(t);
luaM_freearray(L, arr, sizehash(t));
}
}
/*
** {=============================================================
** Rehash
** ==============================================================
*/
static int insertkey (Table *t, const TValue *key, TValue *value);
static void newcheckedkey (Table *t, const TValue *key, TValue *value);
/*
** Structure to count the keys in a table.
** 'total' is the total number of keys in the table.
** 'na' is the number of *array indices* in the table (see 'arrayindex').
** 'deleted' is true if there are deleted nodes in the hash part.
** 'nums' is a "count array" where 'nums[i]' is the number of integer
** keys between 2^(i - 1) + 1 and 2^i. Note that 'na' is the summation
** of 'nums'.
*/
typedef struct {
unsigned total;
unsigned na;
int deleted;
unsigned nums[MAXABITS + 1];
} Counters;
/*
** Check whether it is worth to use 'na' array entries instead of 'nh'
** hash nodes. (A hash node uses ~3 times more memory than an array
** entry: Two values plus 'next' versus one value.) Evaluate with size_t
** to avoid overflows.
*/
#define arrayXhash(na,nh) (cast_sizet(na) <= cast_sizet(nh) * 3)
/*
** Compute the optimal size for the array part of table 't'.
** This size maximizes the number of elements going to the array part
** while satisfying the condition 'arrayXhash' with the use of memory if
** all those elements went to the hash part.
** 'ct->na' enters with the total number of array indices in the table
** and leaves with the number of keys that will go to the array part;
** return the optimal size for the array part.
*/
static unsigned computesizes (Counters *ct) {
int i;
unsigned int twotoi; /* 2^i (candidate for optimal size) */
unsigned int a = 0; /* number of elements smaller than 2^i */
unsigned int na = 0; /* number of elements to go to array part */
unsigned int optimal = 0; /* optimal size for array part */
/* traverse slices while 'twotoi' does not overflow and total of array
indices still can satisfy 'arrayXhash' against the array size */
for (i = 0, twotoi = 1;
twotoi > 0 && arrayXhash(twotoi, ct->na);
i++, twotoi *= 2) {
unsigned nums = ct->nums[i];
a += nums;
if (nums > 0 && /* grows array only if it gets more elements... */
arrayXhash(twotoi, a)) { /* ...while using "less memory" */
optimal = twotoi; /* optimal size (till now) */
na = a; /* all elements up to 'optimal' will go to array part */
}
}
ct->na = na;
return optimal;
}
static void countint (lua_Integer key, Counters *ct) {
unsigned int k = arrayindex(key);
if (k != 0) { /* is 'key' an array index? */
ct->nums[luaO_ceillog2(k)]++; /* count as such */
ct->na++;
}
}
l_sinline int arraykeyisempty (const Table *t, unsigned key) {
int tag = *getArrTag(t, key - 1);
return tagisempty(tag);
}
/*
** Count keys in array part of table 't'.
*/
static void numusearray (const Table *t, Counters *ct) {
int lg;
unsigned int ttlg; /* 2^lg */
unsigned int ause = 0; /* summation of 'nums' */
unsigned int i = 1; /* index to traverse all array keys */
unsigned int asize = t->asize;
/* traverse each slice */
for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
unsigned int lc = 0; /* counter */
unsigned int lim = ttlg;
if (lim > asize) {
lim = asize; /* adjust upper limit */
if (i > lim)
break; /* no more elements to count */
}
/* count elements in range (2^(lg - 1), 2^lg] */
for (; i <= lim; i++) {
if (!arraykeyisempty(t, i))
lc++;
}
ct->nums[lg] += lc;
ause += lc;
}
ct->total += ause;
ct->na += ause;
}
/*
** Count keys in hash part of table 't'. As this only happens during
** a rehash, all nodes have been used. A node can have a nil value only
** if it was deleted after being created.
*/
static void numusehash (const Table *t, Counters *ct) {
unsigned i = sizenode(t);
unsigned total = 0;
while (i--) {
Node *n = &t->node[i];
if (isempty(gval(n))) {
lua_assert(!keyisnil(n)); /* entry was deleted; key cannot be nil */
ct->deleted = 1;
}
else {
total++;
if (keyisinteger(n))
countint(keyival(n), ct);
}
}
ct->total += total;
}
/*
** Convert an "abstract size" (number of slots in an array) to
** "concrete size" (number of bytes in the array).
*/
static size_t concretesize (unsigned int size) {
if (size == 0)
return 0;
else /* space for the two arrays plus an unsigned in between */
return size * (sizeof(Value) + 1) + sizeof(unsigned);
}
/*
** Resize the array part of a table. If new size is equal to the old,
** do nothing. Else, if new size is zero, free the old array. (It must
** be present, as the sizes are different.) Otherwise, allocate a new
** array, move the common elements to new proper position, and then
** frees the old array.
** We could reallocate the array, but we still would need to move the
** elements to their new position, so the copy implicit in realloc is a
** waste. Moreover, most allocators will move the array anyway when the
** new size is double the old one (the most common case).
*/
static Value *resizearray (lua_State *L , Table *t,
unsigned oldasize,
unsigned newasize) {
if (oldasize == newasize)
return t->array; /* nothing to be done */
else if (newasize == 0) { /* erasing array? */
Value *op = t->array - oldasize; /* original array's real address */
luaM_freemem(L, op, concretesize(oldasize)); /* free it */
return NULL;
}
else {
size_t newasizeb = concretesize(newasize);
Value *np = cast(Value *,
luaM_reallocvector(L, NULL, 0, newasizeb, lu_byte));
if (np == NULL) /* allocation error? */
return NULL;
np += newasize; /* shift pointer to the end of value segment */
if (oldasize > 0) {
/* move common elements to new position */
size_t oldasizeb = concretesize(oldasize);
Value *op = t->array; /* original array */
unsigned tomove = (oldasize < newasize) ? oldasize : newasize;
size_t tomoveb = (oldasize < newasize) ? oldasizeb : newasizeb;
lua_assert(tomoveb > 0);
memcpy(np - tomove, op - tomove, tomoveb);
luaM_freemem(L, op - oldasize, oldasizeb); /* free old block */
}
return np;
}
}
/*
** Creates an array for the hash part of a table with the given
** size, or reuses the dummy node if size is zero.
** The computation for size overflow is in two steps: the first
** comparison ensures that the shift in the second one does not
** overflow.
*/
static void setnodevector (lua_State *L, Table *t, unsigned size) {
if (size == 0) { /* no elements to hash part? */
t->node = cast(Node *, dummynode); /* use common 'dummynode' */
t->lsizenode = 0;
setdummy(t); /* signal that it is using dummy node */
}
else {
int i;
int lsize = luaO_ceillog2(size);
if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE)
luaG_runerror(L, "table overflow");
size = twoto(lsize);
if (lsize < LIMFORLAST) /* no 'lastfree' field? */
t->node = luaM_newvector(L, size, Node);
else {
size_t bsize = size * sizeof(Node) + sizeof(Limbox);
char *node = luaM_newblock(L, bsize);
t->node = cast(Node *, node + sizeof(Limbox));
getlastfree(t) = gnode(t, size); /* all positions are free */
}
t->lsizenode = cast_byte(lsize);
setnodummy(t);
for (i = 0; i < cast_int(size); i++) {
Node *n = gnode(t, i);
gnext(n) = 0;
setnilkey(n);
setempty(gval(n));
}
}
}
/*
** (Re)insert all elements from the hash part of 'ot' into table 't'.
*/
static void reinserthash (lua_State *L, Table *ot, Table *t) {
unsigned j;
unsigned size = sizenode(ot);
for (j = 0; j < size; j++) {
Node *old = gnode(ot, j);
if (!isempty(gval(old))) {
/* doesn't need barrier/invalidate cache, as entry was
already present in the table */
TValue k;
getnodekey(L, &k, old);
newcheckedkey(t, &k, gval(old));
}
}
}
/*
** Exchange the hash part of 't1' and 't2'. (In 'flags', only the
** dummy bit must be exchanged: The 'isrealasize' is not related
** to the hash part, and the metamethod bits do not change during
** a resize, so the "real" table can keep their values.)
*/
static void exchangehashpart (Table *t1, Table *t2) {
lu_byte lsizenode = t1->lsizenode;
Node *node = t1->node;
int bitdummy1 = t1->flags & BITDUMMY;
t1->lsizenode = t2->lsizenode;
t1->node = t2->node;
t1->flags = cast_byte((t1->flags & NOTBITDUMMY) | (t2->flags & BITDUMMY));
t2->lsizenode = lsizenode;
t2->node = node;
t2->flags = cast_byte((t2->flags & NOTBITDUMMY) | bitdummy1);
}
/*
** Re-insert into the new hash part of a table the elements from the
** vanishing slice of the array part.
*/
static void reinsertOldSlice (Table *t, unsigned oldasize,
unsigned newasize) {
unsigned i;
for (i = newasize; i < oldasize; i++) { /* traverse vanishing slice */
lu_byte tag = *getArrTag(t, i);
if (!tagisempty(tag)) { /* a non-empty entry? */
TValue key, aux;
setivalue(&key, l_castU2S(i) + 1); /* make the key */
farr2val(t, i, tag, &aux); /* copy value into 'aux' */
insertkey(t, &key, &aux); /* insert entry into the hash part */
}
}
}
/*
** Clear new slice of the array.
*/
static void clearNewSlice (Table *t, unsigned oldasize, unsigned newasize) {
for (; oldasize < newasize; oldasize++)
*getArrTag(t, oldasize) = LUA_VEMPTY;
}
/*
** Resize table 't' for the new given sizes. Both allocations (for
** the hash part and for the array part) can fail, which creates some
** subtleties. If the first allocation, for the hash part, fails, an
** error is raised and that is it. Otherwise, it copies the elements from
** the shrinking part of the array (if it is shrinking) into the new
** hash. Then it reallocates the array part. If that fails, the table
** is in its original state; the function frees the new hash part and then
** raises the allocation error. Otherwise, it sets the new hash part
** into the table, initializes the new part of the array (if any) with
** nils and reinserts the elements of the old hash back into the new
** parts of the table.
** Note that if the new size for the arry part ('newasize') is equal to
** the old one ('oldasize'), this function will do nothing with that
** part.
*/
void luaH_resize (lua_State *L, Table *t, unsigned newasize,
unsigned nhsize) {
Table newt; /* to keep the new hash part */
unsigned oldasize = t->asize;
Value *newarray;
if (newasize > MAXASIZE)
luaG_runerror(L, "table overflow");
/* create new hash part with appropriate size into 'newt' */
newt.flags = 0;
setnodevector(L, &newt, nhsize);
if (newasize < oldasize) { /* will array shrink? */
/* re-insert into the new hash the elements from vanishing slice */
exchangehashpart(t, &newt); /* pretend table has new hash */
reinsertOldSlice(t, oldasize, newasize);
exchangehashpart(t, &newt); /* restore old hash (in case of errors) */
}
/* allocate new array */
newarray = resizearray(L, t, oldasize, newasize);
if (l_unlikely(newarray == NULL && newasize > 0)) { /* allocation failed? */
freehash(L, &newt); /* release new hash part */
luaM_error(L); /* raise error (with array unchanged) */
}
/* allocation ok; initialize new part of the array */
exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */
t->array = newarray; /* set new array part */
t->asize = newasize;
if (newarray != NULL)
*lenhint(t) = newasize / 2u; /* set an initial hint */
clearNewSlice(t, oldasize, newasize);
/* re-insert elements from old hash part into new parts */
reinserthash(L, &newt, t); /* 'newt' now has the old hash */
freehash(L, &newt); /* free old hash part */
}
void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
unsigned nsize = allocsizenode(t);
luaH_resize(L, t, nasize, nsize);
}
/*
** Rehash a table. First, count its keys. If there are array indices
** outside the array part, compute the new best size for that part.
** Then, resize the table.
*/
static void rehash (lua_State *L, Table *t, const TValue *ek) {
unsigned asize; /* optimal size for array part */
Counters ct;
unsigned i;
unsigned nsize; /* size for the hash part */
/* reset counts */
for (i = 0; i <= MAXABITS; i++) ct.nums[i] = 0;
ct.na = 0;
ct.deleted = 0;
ct.total = 1; /* count extra key */
if (ttisinteger(ek))
countint(ivalue(ek), &ct); /* extra key may go to array */
numusehash(t, &ct); /* count keys in hash part */
if (ct.na == 0) {
/* no new keys to enter array part; keep it with the same size */
asize = t->asize;
}
else { /* compute best size for array part */
numusearray(t, &ct); /* count keys in array part */
asize = computesizes(&ct); /* compute new size for array part */
}
/* all keys not in the array part go to the hash part */
nsize = ct.total - ct.na;
if (ct.deleted) { /* table has deleted entries? */
/* insertion-deletion-insertion: give hash some extra size to
avoid constant resizings */
nsize += nsize >> 2;
}
/* resize the table to new computed sizes */
luaH_resize(L, t, asize, nsize);
}
/*
** }=============================================================
*/
Table *luaH_new (lua_State *L) {
GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table));
Table *t = gco2t(o);
t->metatable = NULL;
t->flags = maskflags; /* table has no metamethod fields */
t->array = NULL;
t->asize = 0;
setnodevector(L, t, 0);
return t;
}
lu_mem luaH_size (Table *t) {
lu_mem sz = cast(lu_mem, sizeof(Table)) + concretesize(t->asize);
if (!isdummy(t))
sz += sizehash(t);
return sz;
}
/*
** Frees a table.
*/
void luaH_free (lua_State *L, Table *t) {
freehash(L, t);
resizearray(L, t, t->asize, 0);
luaM_free(L, t);
}
static Node *getfreepos (Table *t) {
if (haslastfree(t)) { /* does it have 'lastfree' information? */
/* look for a spot before 'lastfree', updating 'lastfree' */
while (getlastfree(t) > t->node) {
Node *free = --getlastfree(t);
if (keyisnil(free))
return free;
}
}
else { /* no 'lastfree' information */
unsigned i = sizenode(t);
while (i--) { /* do a linear search */
Node *free = gnode(t, i);
if (keyisnil(free))
return free;
}
}
return NULL; /* could not find a free place */
}
/*
** Inserts a new key into a hash table; first, check whether key's main
** position is free. If not, check whether colliding node is in its main
** position or not: if it is not, move colliding node to an empty place
** and put new key in its main position; otherwise (colliding node is in
** its main position), new key goes to an empty position. Return 0 if
** could not insert key (could not find a free space).
*/
static int insertkey (Table *t, const TValue *key, TValue *value) {
Node *mp = mainpositionTV(t, key);
/* table cannot already contain the key */
lua_assert(isabstkey(getgeneric(t, key, 0)));
if (!isempty(gval(mp)) || isdummy(t)) { /* main position is taken? */
Node *othern;
Node *f = getfreepos(t); /* get a free place */
if (f == NULL) /* cannot find a free place? */
return 0;
lua_assert(!isdummy(t));
othern = mainpositionfromnode(t, mp);
if (othern != mp) { /* is colliding node out of its main position? */
/* yes; move colliding node into free position */
while (othern + gnext(othern) != mp) /* find previous */
othern += gnext(othern);
gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */
*f = *mp; /* copy colliding node into free pos. (mp->next also goes) */
if (gnext(mp) != 0) {
gnext(f) += cast_int(mp - f); /* correct 'next' */
gnext(mp) = 0; /* now 'mp' is free */
}
setempty(gval(mp));
}
else { /* colliding node is in its own main position */
/* new node will go into free position */
if (gnext(mp) != 0)
gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */
else lua_assert(gnext(f) == 0);
gnext(mp) = cast_int(f - mp);
mp = f;
}
}
setnodekey(mp, key);
lua_assert(isempty(gval(mp)));
setobj2t(cast(lua_State *, 0), gval(mp), value);
return 1;
}
/*
** Insert a key in a table where there is space for that key, the
** key is valid, and the value is not nil.
*/
static void newcheckedkey (Table *t, const TValue *key, TValue *value) {
unsigned i = keyinarray(t, key);
if (i > 0) /* is key in the array part? */
obj2arr(t, i - 1, value); /* set value in the array */
else {
int done = insertkey(t, key, value); /* insert key in the hash part */
lua_assert(done); /* it cannot fail */
cast(void, done); /* to avoid warnings */
}
}
static void luaH_newkey (lua_State *L, Table *t, const TValue *key,
TValue *value) {
if (!ttisnil(value)) { /* do not insert nil values */
int done = insertkey(t, key, value);
if (!done) { /* could not find a free place? */
rehash(L, t, key); /* grow table */
newcheckedkey(t, key, value); /* insert key in grown table */
}
luaC_barrierback(L, obj2gco(t), key);
}
}
static const TValue *getintfromhash (Table *t, lua_Integer key) {
Node *n = hashint(t, key);
lua_assert(!ikeyinarray(t, key));
for (;;) { /* check whether 'key' is somewhere in the chain */
if (keyisinteger(n) && keyival(n) == key)
return gval(n); /* that's it */
else {
int nx = gnext(n);
if (nx == 0) break;
n += nx;
}
}
return &absentkey;
}
static int hashkeyisempty (Table *t, lua_Unsigned key) {
const TValue *val = getintfromhash(t, l_castU2S(key));
return isempty(val);
}
static lu_byte finishnodeget (const TValue *val, TValue *res) {
if (!ttisnil(val)) {
setobj(((lua_State*)NULL), res, val);
}
return ttypetag(val);
}
lu_byte luaH_getint (Table *t, lua_Integer key, TValue *res) {
unsigned k = ikeyinarray(t, key);
if (k > 0) {
lu_byte tag = *getArrTag(t, k - 1);
if (!tagisempty(tag))
farr2val(t, k - 1, tag, res);
return tag;
}
else
return finishnodeget(getintfromhash(t, key), res);
}
/*
** search function for short strings
*/
const TValue *luaH_Hgetshortstr (Table *t, TString *key) {
Node *n = hashstr(t, key);
lua_assert(key->tt == LUA_VSHRSTR);
for (;;) { /* check whether 'key' is somewhere in the chain */
if (keyisshrstr(n) && eqshrstr(keystrval(n), key))
return gval(n); /* that's it */
else {
int nx = gnext(n);
if (nx == 0)
return &absentkey; /* not found */
n += nx;
}
}
}
lu_byte luaH_getshortstr (Table *t, TString *key, TValue *res) {
return finishnodeget(luaH_Hgetshortstr(t, key), res);
}
static const TValue *Hgetstr (Table *t, TString *key) {
if (key->tt == LUA_VSHRSTR)
return luaH_Hgetshortstr(t, key);
else { /* for long strings, use generic case */
TValue ko;
setsvalue(cast(lua_State *, NULL), &ko, key);
return getgeneric(t, &ko, 0);
}
}
lu_byte luaH_getstr (Table *t, TString *key, TValue *res) {
return finishnodeget(Hgetstr(t, key), res);
}
TString *luaH_getstrkey (Table *t, TString *key) {
const TValue *o = Hgetstr(t, key);
if (!isabstkey(o)) /* string already present? */
return keystrval(nodefromval(o)); /* get saved copy */
else
return NULL;
}
/*
** main search function
*/
lu_byte luaH_get (Table *t, const TValue *key, TValue *res) {
const TValue *slot;
switch (ttypetag(key)) {
case LUA_VSHRSTR:
slot = luaH_Hgetshortstr(t, tsvalue(key));
break;
case LUA_VNUMINT:
return luaH_getint(t, ivalue(key), res);
case LUA_VNIL:
slot = &absentkey;
break;
case LUA_VNUMFLT: {
lua_Integer k;
if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */
return luaH_getint(t, k, res); /* use specialized version */
/* else... */
} /* FALLTHROUGH */
default:
slot = getgeneric(t, key, 0);
break;
}
return finishnodeget(slot, res);
}
static int finishnodeset (Table *t, const TValue *slot, TValue *val) {
if (!ttisnil(slot)) {
setobj(((lua_State*)NULL), cast(TValue*, slot), val);
return HOK; /* success */
}
else if (isabstkey(slot))
return HNOTFOUND; /* no slot with that key */
else /* return node encoded */
return cast_int((cast(Node*, slot) - t->node)) + HFIRSTNODE;
}
static int rawfinishnodeset (const TValue *slot, TValue *val) {
if (isabstkey(slot))
return 0; /* no slot with that key */
else {
setobj(((lua_State*)NULL), cast(TValue*, slot), val);
return 1; /* success */
}
}
int luaH_psetint (Table *t, lua_Integer key, TValue *val) {
lua_assert(!ikeyinarray(t, key));
return finishnodeset(t, getintfromhash(t, key), val);
}
static int psetint (Table *t, lua_Integer key, TValue *val) {
int hres;
luaH_fastseti(t, key, val, hres);
return hres;
}
int luaH_psetshortstr (Table *t, TString *key, TValue *val) {
return finishnodeset(t, luaH_Hgetshortstr(t, key), val);
}
int luaH_psetstr (Table *t, TString *key, TValue *val) {
return finishnodeset(t, Hgetstr(t, key), val);
}
int luaH_pset (Table *t, const TValue *key, TValue *val) {
switch (ttypetag(key)) {
case LUA_VSHRSTR: return luaH_psetshortstr(t, tsvalue(key), val);
case LUA_VNUMINT: return psetint(t, ivalue(key), val);
case LUA_VNIL: return HNOTFOUND;
case LUA_VNUMFLT: {
lua_Integer k;
if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */
return psetint(t, k, val); /* use specialized version */
/* else... */
} /* FALLTHROUGH */
default:
return finishnodeset(t, getgeneric(t, key, 0), val);
}
}
/*
** Finish a raw "set table" operation, where 'slot' is where the value
** should have been (the result of a previous "get table").
** Beware: when using this function you probably need to check a GC
** barrier and invalidate the TM cache.
*/
void luaH_finishset (lua_State *L, Table *t, const TValue *key,
TValue *value, int hres) {
lua_assert(hres != HOK);
if (hres == HNOTFOUND) {
TValue aux;
if (l_unlikely(ttisnil(key)))
luaG_runerror(L, "table index is nil");
else if (ttisfloat(key)) {
lua_Number f = fltvalue(key);
lua_Integer k;
if (luaV_flttointeger(f, &k, F2Ieq)) {
setivalue(&aux, k); /* key is equal to an integer */
key = &aux; /* insert it as an integer */
}
else if (l_unlikely(luai_numisnan(f)))
luaG_runerror(L, "table index is NaN");
}
luaH_newkey(L, t, key, value);
}
else if (hres > 0) { /* regular Node? */
setobj2t(L, gval(gnode(t, hres - HFIRSTNODE)), value);
}
else { /* array entry */
hres = ~hres; /* real index */
obj2arr(t, cast_uint(hres), value);
}
}
/*
** beware: when using this function you probably need to check a GC
** barrier and invalidate the TM cache.
*/
void luaH_set (lua_State *L, Table *t, const TValue *key, TValue *value) {
int hres = luaH_pset(t, key, value);
if (hres != HOK)
luaH_finishset(L, t, key, value, hres);
}
/*
** Ditto for a GC barrier. (No need to invalidate the TM cache, as
** integers cannot be keys to metamethods.)
*/
void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
unsigned ik = ikeyinarray(t, key);
if (ik > 0)
obj2arr(t, ik - 1, value);
else {
int ok = rawfinishnodeset(getintfromhash(t, key), value);
if (!ok) {
TValue k;
setivalue(&k, key);
luaH_newkey(L, t, &k, value);
}
}
}
/*
** Try to find a boundary in the hash part of table 't'. From the
** caller, we know that 'j' is zero or present and that 'j + 1' is
** present. We want to find a larger key that is absent from the
** table, so that we can do a binary search between the two keys to
** find a boundary. We keep doubling 'j' until we get an absent index.
** If the doubling would overflow, we try LUA_MAXINTEGER. If it is
** absent, we are ready for the binary search. ('j', being max integer,
** is larger or equal to 'i', but it cannot be equal because it is
** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a
** boundary. ('j + 1' cannot be a present integer key because it is
** not a valid integer in Lua.)
*/
static lua_Unsigned hash_search (Table *t, lua_Unsigned j) {
lua_Unsigned i;
if (j == 0) j++; /* the caller ensures 'j + 1' is present */
do {
i = j; /* 'i' is a present index */
if (j <= l_castS2U(LUA_MAXINTEGER) / 2)
j *= 2;
else {
j = LUA_MAXINTEGER;
if (hashkeyisempty(t, j)) /* t[j] not present? */
break; /* 'j' now is an absent index */
else /* weird case */
return j; /* well, max integer is a boundary... */
}
} while (!hashkeyisempty(t, j)); /* repeat until an absent t[j] */
/* i < j && t[i] present && t[j] absent */
while (j - i > 1u) { /* do a binary search between them */
lua_Unsigned m = (i + j) / 2;
if (hashkeyisempty(t, m)) j = m;
else i = m;
}
return i;
}
static unsigned int binsearch (Table *array, unsigned int i, unsigned int j) {
lua_assert(i <= j);
while (j - i > 1u) { /* binary search */
unsigned int m = (i + j) / 2;
if (arraykeyisempty(array, m)) j = m;
else i = m;
}
return i;
}
/* return a border, saving it as a hint for next call */
static lua_Unsigned newhint (Table *t, unsigned hint) {
lua_assert(hint <= t->asize);
*lenhint(t) = hint;
return hint;
}
/*
** Try to find a border in table 't'. (A 'border' is an integer index
** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent,
** or 'maxinteger' if t[maxinteger] is present.)
** If there is an array part, try to find a border there. First try
** to find it in the vicinity of the previous result (hint), to handle
** cases like 't[#t + 1] = val' or 't[#t] = nil', that move the border
** by one entry. Otherwise, do a binary search to find the border.
** If there is no array part, or its last element is non empty, the
** border may be in the hash part.
*/
lua_Unsigned luaH_getn (Table *t) {
unsigned asize = t->asize;
if (asize > 0) { /* is there an array part? */
const unsigned maxvicinity = 4;
unsigned limit = *lenhint(t); /* start with the hint */
if (limit == 0)
limit = 1; /* make limit a valid index in the array */
if (arraykeyisempty(t, limit)) { /* t[limit] empty? */
/* there must be a border before 'limit' */
unsigned i;
/* look for a border in the vicinity of the hint */
for (i = 0; i < maxvicinity && limit > 1; i++) {
limit--;
if (!arraykeyisempty(t, limit))
return newhint(t, limit); /* 'limit' is a border */
}
/* t[limit] still empty; search for a border in [0, limit) */
return newhint(t, binsearch(t, 0, limit));
}
else { /* 'limit' is present in table; look for a border after it */
unsigned i;
/* look for a border in the vicinity of the hint */
for (i = 0; i < maxvicinity && limit < asize; i++) {
limit++;
if (arraykeyisempty(t, limit))
return newhint(t, limit - 1); /* 'limit - 1' is a border */
}
if (arraykeyisempty(t, asize)) { /* last element empty? */
/* t[limit] not empty; search for a border in [limit, asize) */
return newhint(t, binsearch(t, limit, asize));
}
}
/* last element non empty; set a hint to speed up findind that again */
/* (keys in the hash part cannot be hints) */
*lenhint(t) = asize;
}
/* no array part or t[asize] is not empty; check the hash part */
lua_assert(asize == 0 || !arraykeyisempty(t, asize));
if (isdummy(t) || hashkeyisempty(t, asize + 1))
return asize; /* 'asize + 1' is empty */
else /* 'asize + 1' is also non empty */
return hash_search(t, asize);
}
#if defined(LUA_DEBUG)
/* export this function for the test library */
Node *luaH_mainposition (const Table *t, const TValue *key) {
return mainpositionTV(t, key);
}
#endif