mirror of
https://github.com/lua/lua.git
synced 2025-01-14 05:43:00 +08:00
314745ed84
Test files are more polite regarding the use of globals when locals would do, and when globals are necessary deleting them after use.
1025 lines
29 KiB
Lua
1025 lines
29 KiB
Lua
-- $Id: testes/math.lua $
|
|
-- See Copyright Notice in file all.lua
|
|
|
|
print("testing numbers and math lib")
|
|
|
|
local minint <const> = math.mininteger
|
|
local maxint <const> = math.maxinteger
|
|
|
|
local intbits <const> = math.floor(math.log(maxint, 2) + 0.5) + 1
|
|
assert((1 << intbits) == 0)
|
|
|
|
assert(minint == 1 << (intbits - 1))
|
|
assert(maxint == minint - 1)
|
|
|
|
-- number of bits in the mantissa of a floating-point number
|
|
local floatbits = 24
|
|
do
|
|
local p = 2.0^floatbits
|
|
while p < p + 1.0 do
|
|
p = p * 2.0
|
|
floatbits = floatbits + 1
|
|
end
|
|
end
|
|
|
|
local function isNaN (x)
|
|
return (x ~= x)
|
|
end
|
|
|
|
assert(isNaN(0/0))
|
|
assert(not isNaN(1/0))
|
|
|
|
|
|
do
|
|
local x = 2.0^floatbits
|
|
assert(x > x - 1.0 and x == x + 1.0)
|
|
|
|
print(string.format("%d-bit integers, %d-bit (mantissa) floats",
|
|
intbits, floatbits))
|
|
end
|
|
|
|
assert(math.type(0) == "integer" and math.type(0.0) == "float"
|
|
and not math.type("10"))
|
|
|
|
|
|
local function checkerror (msg, f, ...)
|
|
local s, err = pcall(f, ...)
|
|
assert(not s and string.find(err, msg))
|
|
end
|
|
|
|
local msgf2i = "number.* has no integer representation"
|
|
|
|
-- float equality
|
|
local function eq (a,b,limit)
|
|
if not limit then
|
|
if floatbits >= 50 then limit = 1E-11
|
|
else limit = 1E-5
|
|
end
|
|
end
|
|
-- a == b needed for +inf/-inf
|
|
return a == b or math.abs(a-b) <= limit
|
|
end
|
|
|
|
|
|
-- equality with types
|
|
local function eqT (a,b)
|
|
return a == b and math.type(a) == math.type(b)
|
|
end
|
|
|
|
|
|
-- basic float notation
|
|
assert(0e12 == 0 and .0 == 0 and 0. == 0 and .2e2 == 20 and 2.E-1 == 0.2)
|
|
|
|
do
|
|
local a,b,c = "2", " 3e0 ", " 10 "
|
|
assert(a+b == 5 and -b == -3 and b+"2" == 5 and "10"-c == 0)
|
|
assert(type(a) == 'string' and type(b) == 'string' and type(c) == 'string')
|
|
assert(a == "2" and b == " 3e0 " and c == " 10 " and -c == -" 10 ")
|
|
assert(c%a == 0 and a^b == 08)
|
|
a = 0
|
|
assert(a == -a and 0 == -0)
|
|
end
|
|
|
|
do
|
|
local x = -1
|
|
local mz = 0/x -- minus zero
|
|
local t = {[0] = 10, 20, 30, 40, 50}
|
|
assert(t[mz] == t[0] and t[-0] == t[0])
|
|
end
|
|
|
|
do -- tests for 'modf'
|
|
local a,b = math.modf(3.5)
|
|
assert(a == 3.0 and b == 0.5)
|
|
a,b = math.modf(-2.5)
|
|
assert(a == -2.0 and b == -0.5)
|
|
a,b = math.modf(-3e23)
|
|
assert(a == -3e23 and b == 0.0)
|
|
a,b = math.modf(3e35)
|
|
assert(a == 3e35 and b == 0.0)
|
|
a,b = math.modf(-1/0) -- -inf
|
|
assert(a == -1/0 and b == 0.0)
|
|
a,b = math.modf(1/0) -- inf
|
|
assert(a == 1/0 and b == 0.0)
|
|
a,b = math.modf(0/0) -- NaN
|
|
assert(isNaN(a) and isNaN(b))
|
|
a,b = math.modf(3) -- integer argument
|
|
assert(eqT(a, 3) and eqT(b, 0.0))
|
|
a,b = math.modf(minint)
|
|
assert(eqT(a, minint) and eqT(b, 0.0))
|
|
end
|
|
|
|
assert(math.huge > 10e30)
|
|
assert(-math.huge < -10e30)
|
|
|
|
|
|
-- integer arithmetic
|
|
assert(minint < minint + 1)
|
|
assert(maxint - 1 < maxint)
|
|
assert(0 - minint == minint)
|
|
assert(minint * minint == 0)
|
|
assert(maxint * maxint * maxint == maxint)
|
|
|
|
|
|
-- testing floor division and conversions
|
|
|
|
for _, i in pairs{-16, -15, -3, -2, -1, 0, 1, 2, 3, 15} do
|
|
for _, j in pairs{-16, -15, -3, -2, -1, 1, 2, 3, 15} do
|
|
for _, ti in pairs{0, 0.0} do -- try 'i' as integer and as float
|
|
for _, tj in pairs{0, 0.0} do -- try 'j' as integer and as float
|
|
local x = i + ti
|
|
local y = j + tj
|
|
assert(i//j == math.floor(i/j))
|
|
end
|
|
end
|
|
end
|
|
end
|
|
|
|
assert(1//0.0 == 1/0)
|
|
assert(-1 // 0.0 == -1/0)
|
|
assert(eqT(3.5 // 1.5, 2.0))
|
|
assert(eqT(3.5 // -1.5, -3.0))
|
|
|
|
do -- tests for different kinds of opcodes
|
|
local x, y
|
|
x = 1; assert(x // 0.0 == 1/0)
|
|
x = 1.0; assert(x // 0 == 1/0)
|
|
x = 3.5; assert(eqT(x // 1, 3.0))
|
|
assert(eqT(x // -1, -4.0))
|
|
|
|
x = 3.5; y = 1.5; assert(eqT(x // y, 2.0))
|
|
x = 3.5; y = -1.5; assert(eqT(x // y, -3.0))
|
|
end
|
|
|
|
assert(maxint // maxint == 1)
|
|
assert(maxint // 1 == maxint)
|
|
assert((maxint - 1) // maxint == 0)
|
|
assert(maxint // (maxint - 1) == 1)
|
|
assert(minint // minint == 1)
|
|
assert(minint // minint == 1)
|
|
assert((minint + 1) // minint == 0)
|
|
assert(minint // (minint + 1) == 1)
|
|
assert(minint // 1 == minint)
|
|
|
|
assert(minint // -1 == -minint)
|
|
assert(minint // -2 == 2^(intbits - 2))
|
|
assert(maxint // -1 == -maxint)
|
|
|
|
|
|
-- negative exponents
|
|
do
|
|
assert(2^-3 == 1 / 2^3)
|
|
assert(eq((-3)^-3, 1 / (-3)^3))
|
|
for i = -3, 3 do -- variables avoid constant folding
|
|
for j = -3, 3 do
|
|
-- domain errors (0^(-n)) are not portable
|
|
if not _port or i ~= 0 or j > 0 then
|
|
assert(eq(i^j, 1 / i^(-j)))
|
|
end
|
|
end
|
|
end
|
|
end
|
|
|
|
-- comparison between floats and integers (border cases)
|
|
if floatbits < intbits then
|
|
assert(2.0^floatbits == (1 << floatbits))
|
|
assert(2.0^floatbits - 1.0 == (1 << floatbits) - 1.0)
|
|
assert(2.0^floatbits - 1.0 ~= (1 << floatbits))
|
|
-- float is rounded, int is not
|
|
assert(2.0^floatbits + 1.0 ~= (1 << floatbits) + 1)
|
|
else -- floats can express all integers with full accuracy
|
|
assert(maxint == maxint + 0.0)
|
|
assert(maxint - 1 == maxint - 1.0)
|
|
assert(minint + 1 == minint + 1.0)
|
|
assert(maxint ~= maxint - 1.0)
|
|
end
|
|
assert(maxint + 0.0 == 2.0^(intbits - 1) - 1.0)
|
|
assert(minint + 0.0 == minint)
|
|
assert(minint + 0.0 == -2.0^(intbits - 1))
|
|
|
|
|
|
-- order between floats and integers
|
|
assert(1 < 1.1); assert(not (1 < 0.9))
|
|
assert(1 <= 1.1); assert(not (1 <= 0.9))
|
|
assert(-1 < -0.9); assert(not (-1 < -1.1))
|
|
assert(1 <= 1.1); assert(not (-1 <= -1.1))
|
|
assert(-1 < -0.9); assert(not (-1 < -1.1))
|
|
assert(-1 <= -0.9); assert(not (-1 <= -1.1))
|
|
assert(minint <= minint + 0.0)
|
|
assert(minint + 0.0 <= minint)
|
|
assert(not (minint < minint + 0.0))
|
|
assert(not (minint + 0.0 < minint))
|
|
assert(maxint < minint * -1.0)
|
|
assert(maxint <= minint * -1.0)
|
|
|
|
do
|
|
local fmaxi1 = 2^(intbits - 1)
|
|
assert(maxint < fmaxi1)
|
|
assert(maxint <= fmaxi1)
|
|
assert(not (fmaxi1 <= maxint))
|
|
assert(minint <= -2^(intbits - 1))
|
|
assert(-2^(intbits - 1) <= minint)
|
|
end
|
|
|
|
if floatbits < intbits then
|
|
print("testing order (floats cannot represent all integers)")
|
|
local fmax = 2^floatbits
|
|
local ifmax = fmax | 0
|
|
assert(fmax < ifmax + 1)
|
|
assert(fmax - 1 < ifmax)
|
|
assert(-(fmax - 1) > -ifmax)
|
|
assert(not (fmax <= ifmax - 1))
|
|
assert(-fmax > -(ifmax + 1))
|
|
assert(not (-fmax >= -(ifmax - 1)))
|
|
|
|
assert(fmax/2 - 0.5 < ifmax//2)
|
|
assert(-(fmax/2 - 0.5) > -ifmax//2)
|
|
|
|
assert(maxint < 2^intbits)
|
|
assert(minint > -2^intbits)
|
|
assert(maxint <= 2^intbits)
|
|
assert(minint >= -2^intbits)
|
|
else
|
|
print("testing order (floats can represent all integers)")
|
|
assert(maxint < maxint + 1.0)
|
|
assert(maxint < maxint + 0.5)
|
|
assert(maxint - 1.0 < maxint)
|
|
assert(maxint - 0.5 < maxint)
|
|
assert(not (maxint + 0.0 < maxint))
|
|
assert(maxint + 0.0 <= maxint)
|
|
assert(not (maxint < maxint + 0.0))
|
|
assert(maxint + 0.0 <= maxint)
|
|
assert(maxint <= maxint + 0.0)
|
|
assert(not (maxint + 1.0 <= maxint))
|
|
assert(not (maxint + 0.5 <= maxint))
|
|
assert(not (maxint <= maxint - 1.0))
|
|
assert(not (maxint <= maxint - 0.5))
|
|
|
|
assert(minint < minint + 1.0)
|
|
assert(minint < minint + 0.5)
|
|
assert(minint <= minint + 0.5)
|
|
assert(minint - 1.0 < minint)
|
|
assert(minint - 1.0 <= minint)
|
|
assert(not (minint + 0.0 < minint))
|
|
assert(not (minint + 0.5 < minint))
|
|
assert(not (minint < minint + 0.0))
|
|
assert(minint + 0.0 <= minint)
|
|
assert(minint <= minint + 0.0)
|
|
assert(not (minint + 1.0 <= minint))
|
|
assert(not (minint + 0.5 <= minint))
|
|
assert(not (minint <= minint - 1.0))
|
|
end
|
|
|
|
do
|
|
local NaN <const> = 0/0
|
|
assert(not (NaN < 0))
|
|
assert(not (NaN > minint))
|
|
assert(not (NaN <= -9))
|
|
assert(not (NaN <= maxint))
|
|
assert(not (NaN < maxint))
|
|
assert(not (minint <= NaN))
|
|
assert(not (minint < NaN))
|
|
assert(not (4 <= NaN))
|
|
assert(not (4 < NaN))
|
|
end
|
|
|
|
|
|
-- avoiding errors at compile time
|
|
local function checkcompt (msg, code)
|
|
checkerror(msg, assert(load(code)))
|
|
end
|
|
checkcompt("divide by zero", "return 2 // 0")
|
|
checkcompt(msgf2i, "return 2.3 >> 0")
|
|
checkcompt(msgf2i, ("return 2.0^%d & 1"):format(intbits - 1))
|
|
checkcompt("field 'huge'", "return math.huge << 1")
|
|
checkcompt(msgf2i, ("return 1 | 2.0^%d"):format(intbits - 1))
|
|
checkcompt(msgf2i, "return 2.3 ~ 0.0")
|
|
|
|
|
|
-- testing overflow errors when converting from float to integer (runtime)
|
|
local function f2i (x) return x | x end
|
|
checkerror(msgf2i, f2i, math.huge) -- +inf
|
|
checkerror(msgf2i, f2i, -math.huge) -- -inf
|
|
checkerror(msgf2i, f2i, 0/0) -- NaN
|
|
|
|
if floatbits < intbits then
|
|
-- conversion tests when float cannot represent all integers
|
|
assert(maxint + 1.0 == maxint + 0.0)
|
|
assert(minint - 1.0 == minint + 0.0)
|
|
checkerror(msgf2i, f2i, maxint + 0.0)
|
|
assert(f2i(2.0^(intbits - 2)) == 1 << (intbits - 2))
|
|
assert(f2i(-2.0^(intbits - 2)) == -(1 << (intbits - 2)))
|
|
assert((2.0^(floatbits - 1) + 1.0) // 1 == (1 << (floatbits - 1)) + 1)
|
|
-- maximum integer representable as a float
|
|
local mf = maxint - (1 << (floatbits - intbits)) + 1
|
|
assert(f2i(mf + 0.0) == mf) -- OK up to here
|
|
mf = mf + 1
|
|
assert(f2i(mf + 0.0) ~= mf) -- no more representable
|
|
else
|
|
-- conversion tests when float can represent all integers
|
|
assert(maxint + 1.0 > maxint)
|
|
assert(minint - 1.0 < minint)
|
|
assert(f2i(maxint + 0.0) == maxint)
|
|
checkerror("no integer rep", f2i, maxint + 1.0)
|
|
checkerror("no integer rep", f2i, minint - 1.0)
|
|
end
|
|
|
|
-- 'minint' should be representable as a float no matter the precision
|
|
assert(f2i(minint + 0.0) == minint)
|
|
|
|
|
|
-- testing numeric strings
|
|
|
|
assert("2" + 1 == 3)
|
|
assert("2 " + 1 == 3)
|
|
assert(" -2 " + 1 == -1)
|
|
assert(" -0xa " + 1 == -9)
|
|
|
|
|
|
-- Literal integer Overflows (new behavior in 5.3.3)
|
|
do
|
|
-- no overflows
|
|
assert(eqT(tonumber(tostring(maxint)), maxint))
|
|
assert(eqT(tonumber(tostring(minint)), minint))
|
|
|
|
-- add 1 to last digit as a string (it cannot be 9...)
|
|
local function incd (n)
|
|
local s = string.format("%d", n)
|
|
s = string.gsub(s, "%d$", function (d)
|
|
assert(d ~= '9')
|
|
return string.char(string.byte(d) + 1)
|
|
end)
|
|
return s
|
|
end
|
|
|
|
-- 'tonumber' with overflow by 1
|
|
assert(eqT(tonumber(incd(maxint)), maxint + 1.0))
|
|
assert(eqT(tonumber(incd(minint)), minint - 1.0))
|
|
|
|
-- large numbers
|
|
assert(eqT(tonumber("1"..string.rep("0", 30)), 1e30))
|
|
assert(eqT(tonumber("-1"..string.rep("0", 30)), -1e30))
|
|
|
|
-- hexa format still wraps around
|
|
assert(eqT(tonumber("0x1"..string.rep("0", 30)), 0))
|
|
|
|
-- lexer in the limits
|
|
assert(minint == load("return " .. minint)())
|
|
assert(eqT(maxint, load("return " .. maxint)()))
|
|
|
|
assert(eqT(10000000000000000000000.0, 10000000000000000000000))
|
|
assert(eqT(-10000000000000000000000.0, -10000000000000000000000))
|
|
end
|
|
|
|
|
|
-- testing 'tonumber'
|
|
|
|
-- 'tonumber' with numbers
|
|
assert(tonumber(3.4) == 3.4)
|
|
assert(eqT(tonumber(3), 3))
|
|
assert(eqT(tonumber(maxint), maxint) and eqT(tonumber(minint), minint))
|
|
assert(tonumber(1/0) == 1/0)
|
|
|
|
-- 'tonumber' with strings
|
|
assert(tonumber("0") == 0)
|
|
assert(not tonumber(""))
|
|
assert(not tonumber(" "))
|
|
assert(not tonumber("-"))
|
|
assert(not tonumber(" -0x "))
|
|
assert(not tonumber{})
|
|
assert(tonumber'+0.01' == 1/100 and tonumber'+.01' == 0.01 and
|
|
tonumber'.01' == 0.01 and tonumber'-1.' == -1 and
|
|
tonumber'+1.' == 1)
|
|
assert(not tonumber'+ 0.01' and not tonumber'+.e1' and
|
|
not tonumber'1e' and not tonumber'1.0e+' and
|
|
not tonumber'.')
|
|
assert(tonumber('-012') == -010-2)
|
|
assert(tonumber('-1.2e2') == - - -120)
|
|
|
|
assert(tonumber("0xffffffffffff") == (1 << (4*12)) - 1)
|
|
assert(tonumber("0x"..string.rep("f", (intbits//4))) == -1)
|
|
assert(tonumber("-0x"..string.rep("f", (intbits//4))) == 1)
|
|
|
|
-- testing 'tonumber' with base
|
|
assert(tonumber(' 001010 ', 2) == 10)
|
|
assert(tonumber(' 001010 ', 10) == 001010)
|
|
assert(tonumber(' -1010 ', 2) == -10)
|
|
assert(tonumber('10', 36) == 36)
|
|
assert(tonumber(' -10 ', 36) == -36)
|
|
assert(tonumber(' +1Z ', 36) == 36 + 35)
|
|
assert(tonumber(' -1z ', 36) == -36 + -35)
|
|
assert(tonumber('-fFfa', 16) == -(10+(16*(15+(16*(15+(16*15)))))))
|
|
assert(tonumber(string.rep('1', (intbits - 2)), 2) + 1 == 2^(intbits - 2))
|
|
assert(tonumber('ffffFFFF', 16)+1 == (1 << 32))
|
|
assert(tonumber('0ffffFFFF', 16)+1 == (1 << 32))
|
|
assert(tonumber('-0ffffffFFFF', 16) - 1 == -(1 << 40))
|
|
for i = 2,36 do
|
|
local i2 = i * i
|
|
local i10 = i2 * i2 * i2 * i2 * i2 -- i^10
|
|
assert(tonumber('\t10000000000\t', i) == i10)
|
|
end
|
|
|
|
if not _soft then
|
|
-- tests with very long numerals
|
|
assert(tonumber("0x"..string.rep("f", 13)..".0") == 2.0^(4*13) - 1)
|
|
assert(tonumber("0x"..string.rep("f", 150)..".0") == 2.0^(4*150) - 1)
|
|
assert(tonumber("0x"..string.rep("f", 300)..".0") == 2.0^(4*300) - 1)
|
|
assert(tonumber("0x"..string.rep("f", 500)..".0") == 2.0^(4*500) - 1)
|
|
assert(tonumber('0x3.' .. string.rep('0', 1000)) == 3)
|
|
assert(tonumber('0x' .. string.rep('0', 1000) .. 'a') == 10)
|
|
assert(tonumber('0x0.' .. string.rep('0', 13).."1") == 2.0^(-4*14))
|
|
assert(tonumber('0x0.' .. string.rep('0', 150).."1") == 2.0^(-4*151))
|
|
assert(tonumber('0x0.' .. string.rep('0', 300).."1") == 2.0^(-4*301))
|
|
assert(tonumber('0x0.' .. string.rep('0', 500).."1") == 2.0^(-4*501))
|
|
|
|
assert(tonumber('0xe03' .. string.rep('0', 1000) .. 'p-4000') == 3587.0)
|
|
assert(tonumber('0x.' .. string.rep('0', 1000) .. '74p4004') == 0x7.4)
|
|
end
|
|
|
|
-- testing 'tonumber' for invalid formats
|
|
|
|
local function f (...)
|
|
if select('#', ...) == 1 then
|
|
return (...)
|
|
else
|
|
return "***"
|
|
end
|
|
end
|
|
|
|
assert(not f(tonumber('fFfa', 15)))
|
|
assert(not f(tonumber('099', 8)))
|
|
assert(not f(tonumber('1\0', 2)))
|
|
assert(not f(tonumber('', 8)))
|
|
assert(not f(tonumber(' ', 9)))
|
|
assert(not f(tonumber(' ', 9)))
|
|
assert(not f(tonumber('0xf', 10)))
|
|
|
|
assert(not f(tonumber('inf')))
|
|
assert(not f(tonumber(' INF ')))
|
|
assert(not f(tonumber('Nan')))
|
|
assert(not f(tonumber('nan')))
|
|
|
|
assert(not f(tonumber(' ')))
|
|
assert(not f(tonumber('')))
|
|
assert(not f(tonumber('1 a')))
|
|
assert(not f(tonumber('1 a', 2)))
|
|
assert(not f(tonumber('1\0')))
|
|
assert(not f(tonumber('1 \0')))
|
|
assert(not f(tonumber('1\0 ')))
|
|
assert(not f(tonumber('e1')))
|
|
assert(not f(tonumber('e 1')))
|
|
assert(not f(tonumber(' 3.4.5 ')))
|
|
|
|
|
|
-- testing 'tonumber' for invalid hexadecimal formats
|
|
|
|
assert(not tonumber('0x'))
|
|
assert(not tonumber('x'))
|
|
assert(not tonumber('x3'))
|
|
assert(not tonumber('0x3.3.3')) -- two decimal points
|
|
assert(not tonumber('00x2'))
|
|
assert(not tonumber('0x 2'))
|
|
assert(not tonumber('0 x2'))
|
|
assert(not tonumber('23x'))
|
|
assert(not tonumber('- 0xaa'))
|
|
assert(not tonumber('-0xaaP ')) -- no exponent
|
|
assert(not tonumber('0x0.51p'))
|
|
assert(not tonumber('0x5p+-2'))
|
|
|
|
|
|
-- testing hexadecimal numerals
|
|
|
|
assert(0x10 == 16 and 0xfff == 2^12 - 1 and 0XFB == 251)
|
|
assert(0x0p12 == 0 and 0x.0p-3 == 0)
|
|
assert(0xFFFFFFFF == (1 << 32) - 1)
|
|
assert(tonumber('+0x2') == 2)
|
|
assert(tonumber('-0xaA') == -170)
|
|
assert(tonumber('-0xffFFFfff') == -(1 << 32) + 1)
|
|
|
|
-- possible confusion with decimal exponent
|
|
assert(0E+1 == 0 and 0xE+1 == 15 and 0xe-1 == 13)
|
|
|
|
|
|
-- floating hexas
|
|
|
|
assert(tonumber(' 0x2.5 ') == 0x25/16)
|
|
assert(tonumber(' -0x2.5 ') == -0x25/16)
|
|
assert(tonumber(' +0x0.51p+8 ') == 0x51)
|
|
assert(0x.FfffFFFF == 1 - '0x.00000001')
|
|
assert('0xA.a' + 0 == 10 + 10/16)
|
|
assert(0xa.aP4 == 0XAA)
|
|
assert(0x4P-2 == 1)
|
|
assert(0x1.1 == '0x1.' + '+0x.1')
|
|
assert(0Xabcdef.0 == 0x.ABCDEFp+24)
|
|
|
|
|
|
assert(1.1 == 1.+.1)
|
|
assert(100.0 == 1E2 and .01 == 1e-2)
|
|
assert(1111111111 - 1111111110 == 1000.00e-03)
|
|
assert(1.1 == '1.'+'.1')
|
|
assert(tonumber'1111111111' - tonumber'1111111110' ==
|
|
tonumber" +0.001e+3 \n\t")
|
|
|
|
assert(0.1e-30 > 0.9E-31 and 0.9E30 < 0.1e31)
|
|
|
|
assert(0.123456 > 0.123455)
|
|
|
|
assert(tonumber('+1.23E18') == 1.23*10.0^18)
|
|
|
|
-- testing order operators
|
|
assert(not(1<1) and (1<2) and not(2<1))
|
|
assert(not('a'<'a') and ('a'<'b') and not('b'<'a'))
|
|
assert((1<=1) and (1<=2) and not(2<=1))
|
|
assert(('a'<='a') and ('a'<='b') and not('b'<='a'))
|
|
assert(not(1>1) and not(1>2) and (2>1))
|
|
assert(not('a'>'a') and not('a'>'b') and ('b'>'a'))
|
|
assert((1>=1) and not(1>=2) and (2>=1))
|
|
assert(('a'>='a') and not('a'>='b') and ('b'>='a'))
|
|
assert(1.3 < 1.4 and 1.3 <= 1.4 and not (1.3 < 1.3) and 1.3 <= 1.3)
|
|
|
|
-- testing mod operator
|
|
assert(eqT(-4 % 3, 2))
|
|
assert(eqT(4 % -3, -2))
|
|
assert(eqT(-4.0 % 3, 2.0))
|
|
assert(eqT(4 % -3.0, -2.0))
|
|
assert(eqT(4 % -5, -1))
|
|
assert(eqT(4 % -5.0, -1.0))
|
|
assert(eqT(4 % 5, 4))
|
|
assert(eqT(4 % 5.0, 4.0))
|
|
assert(eqT(-4 % -5, -4))
|
|
assert(eqT(-4 % -5.0, -4.0))
|
|
assert(eqT(-4 % 5, 1))
|
|
assert(eqT(-4 % 5.0, 1.0))
|
|
assert(eqT(4.25 % 4, 0.25))
|
|
assert(eqT(10.0 % 2, 0.0))
|
|
assert(eqT(-10.0 % 2, 0.0))
|
|
assert(eqT(-10.0 % -2, 0.0))
|
|
assert(math.pi - math.pi % 1 == 3)
|
|
assert(math.pi - math.pi % 0.001 == 3.141)
|
|
|
|
do -- very small numbers
|
|
local i, j = 0, 20000
|
|
while i < j do
|
|
local m = (i + j) // 2
|
|
if 10^-m > 0 then
|
|
i = m + 1
|
|
else
|
|
j = m
|
|
end
|
|
end
|
|
-- 'i' is the smallest possible ten-exponent
|
|
local b = 10^-(i - (i // 10)) -- a very small number
|
|
assert(b > 0 and b * b == 0)
|
|
local delta = b / 1000
|
|
assert(eq((2.1 * b) % (2 * b), (0.1 * b), delta))
|
|
assert(eq((-2.1 * b) % (2 * b), (2 * b) - (0.1 * b), delta))
|
|
assert(eq((2.1 * b) % (-2 * b), (0.1 * b) - (2 * b), delta))
|
|
assert(eq((-2.1 * b) % (-2 * b), (-0.1 * b), delta))
|
|
end
|
|
|
|
|
|
-- basic consistency between integer modulo and float modulo
|
|
for i = -10, 10 do
|
|
for j = -10, 10 do
|
|
if j ~= 0 then
|
|
assert((i + 0.0) % j == i % j)
|
|
end
|
|
end
|
|
end
|
|
|
|
for i = 0, 10 do
|
|
for j = -10, 10 do
|
|
if j ~= 0 then
|
|
assert((2^i) % j == (1 << i) % j)
|
|
end
|
|
end
|
|
end
|
|
|
|
do -- precision of module for large numbers
|
|
local i = 10
|
|
while (1 << i) > 0 do
|
|
assert((1 << i) % 3 == i % 2 + 1)
|
|
i = i + 1
|
|
end
|
|
|
|
i = 10
|
|
while 2^i < math.huge do
|
|
assert(2^i % 3 == i % 2 + 1)
|
|
i = i + 1
|
|
end
|
|
end
|
|
|
|
assert(eqT(minint % minint, 0))
|
|
assert(eqT(maxint % maxint, 0))
|
|
assert((minint + 1) % minint == minint + 1)
|
|
assert((maxint - 1) % maxint == maxint - 1)
|
|
assert(minint % maxint == maxint - 1)
|
|
|
|
assert(minint % -1 == 0)
|
|
assert(minint % -2 == 0)
|
|
assert(maxint % -2 == -1)
|
|
|
|
-- non-portable tests because Windows C library cannot compute
|
|
-- fmod(1, huge) correctly
|
|
if not _port then
|
|
local function anan (x) assert(isNaN(x)) end -- assert Not a Number
|
|
anan(0.0 % 0)
|
|
anan(1.3 % 0)
|
|
anan(math.huge % 1)
|
|
anan(math.huge % 1e30)
|
|
anan(-math.huge % 1e30)
|
|
anan(-math.huge % -1e30)
|
|
assert(1 % math.huge == 1)
|
|
assert(1e30 % math.huge == 1e30)
|
|
assert(1e30 % -math.huge == -math.huge)
|
|
assert(-1 % math.huge == math.huge)
|
|
assert(-1 % -math.huge == -1)
|
|
end
|
|
|
|
|
|
-- testing unsigned comparisons
|
|
assert(math.ult(3, 4))
|
|
assert(not math.ult(4, 4))
|
|
assert(math.ult(-2, -1))
|
|
assert(math.ult(2, -1))
|
|
assert(not math.ult(-2, -2))
|
|
assert(math.ult(maxint, minint))
|
|
assert(not math.ult(minint, maxint))
|
|
|
|
|
|
assert(eq(math.sin(-9.8)^2 + math.cos(-9.8)^2, 1))
|
|
assert(eq(math.tan(math.pi/4), 1))
|
|
assert(eq(math.sin(math.pi/2), 1) and eq(math.cos(math.pi/2), 0))
|
|
assert(eq(math.atan(1), math.pi/4) and eq(math.acos(0), math.pi/2) and
|
|
eq(math.asin(1), math.pi/2))
|
|
assert(eq(math.deg(math.pi/2), 90) and eq(math.rad(90), math.pi/2))
|
|
assert(math.abs(-10.43) == 10.43)
|
|
assert(eqT(math.abs(minint), minint))
|
|
assert(eqT(math.abs(maxint), maxint))
|
|
assert(eqT(math.abs(-maxint), maxint))
|
|
assert(eq(math.atan(1,0), math.pi/2))
|
|
assert(math.fmod(10,3) == 1)
|
|
assert(eq(math.sqrt(10)^2, 10))
|
|
assert(eq(math.log(2, 10), math.log(2)/math.log(10)))
|
|
assert(eq(math.log(2, 2), 1))
|
|
assert(eq(math.log(9, 3), 2))
|
|
assert(eq(math.exp(0), 1))
|
|
assert(eq(math.sin(10), math.sin(10%(2*math.pi))))
|
|
|
|
|
|
assert(tonumber(' 1.3e-2 ') == 1.3e-2)
|
|
assert(tonumber(' -1.00000000000001 ') == -1.00000000000001)
|
|
|
|
-- testing constant limits
|
|
-- 2^23 = 8388608
|
|
assert(8388609 + -8388609 == 0)
|
|
assert(8388608 + -8388608 == 0)
|
|
assert(8388607 + -8388607 == 0)
|
|
|
|
|
|
|
|
do -- testing floor & ceil
|
|
assert(eqT(math.floor(3.4), 3))
|
|
assert(eqT(math.ceil(3.4), 4))
|
|
assert(eqT(math.floor(-3.4), -4))
|
|
assert(eqT(math.ceil(-3.4), -3))
|
|
assert(eqT(math.floor(maxint), maxint))
|
|
assert(eqT(math.ceil(maxint), maxint))
|
|
assert(eqT(math.floor(minint), minint))
|
|
assert(eqT(math.floor(minint + 0.0), minint))
|
|
assert(eqT(math.ceil(minint), minint))
|
|
assert(eqT(math.ceil(minint + 0.0), minint))
|
|
assert(math.floor(1e50) == 1e50)
|
|
assert(math.ceil(1e50) == 1e50)
|
|
assert(math.floor(-1e50) == -1e50)
|
|
assert(math.ceil(-1e50) == -1e50)
|
|
for _, p in pairs{31,32,63,64} do
|
|
assert(math.floor(2^p) == 2^p)
|
|
assert(math.floor(2^p + 0.5) == 2^p)
|
|
assert(math.ceil(2^p) == 2^p)
|
|
assert(math.ceil(2^p - 0.5) == 2^p)
|
|
end
|
|
checkerror("number expected", math.floor, {})
|
|
checkerror("number expected", math.ceil, print)
|
|
assert(eqT(math.tointeger(minint), minint))
|
|
assert(eqT(math.tointeger(minint .. ""), minint))
|
|
assert(eqT(math.tointeger(maxint), maxint))
|
|
assert(eqT(math.tointeger(maxint .. ""), maxint))
|
|
assert(eqT(math.tointeger(minint + 0.0), minint))
|
|
assert(not math.tointeger(0.0 - minint))
|
|
assert(not math.tointeger(math.pi))
|
|
assert(not math.tointeger(-math.pi))
|
|
assert(math.floor(math.huge) == math.huge)
|
|
assert(math.ceil(math.huge) == math.huge)
|
|
assert(not math.tointeger(math.huge))
|
|
assert(math.floor(-math.huge) == -math.huge)
|
|
assert(math.ceil(-math.huge) == -math.huge)
|
|
assert(not math.tointeger(-math.huge))
|
|
assert(math.tointeger("34.0") == 34)
|
|
assert(not math.tointeger("34.3"))
|
|
assert(not math.tointeger({}))
|
|
assert(not math.tointeger(0/0)) -- NaN
|
|
end
|
|
|
|
|
|
-- testing fmod for integers
|
|
for i = -6, 6 do
|
|
for j = -6, 6 do
|
|
if j ~= 0 then
|
|
local mi = math.fmod(i, j)
|
|
local mf = math.fmod(i + 0.0, j)
|
|
assert(mi == mf)
|
|
assert(math.type(mi) == 'integer' and math.type(mf) == 'float')
|
|
if (i >= 0 and j >= 0) or (i <= 0 and j <= 0) or mi == 0 then
|
|
assert(eqT(mi, i % j))
|
|
end
|
|
end
|
|
end
|
|
end
|
|
assert(eqT(math.fmod(minint, minint), 0))
|
|
assert(eqT(math.fmod(maxint, maxint), 0))
|
|
assert(eqT(math.fmod(minint + 1, minint), minint + 1))
|
|
assert(eqT(math.fmod(maxint - 1, maxint), maxint - 1))
|
|
|
|
checkerror("zero", math.fmod, 3, 0)
|
|
|
|
|
|
do -- testing max/min
|
|
checkerror("value expected", math.max)
|
|
checkerror("value expected", math.min)
|
|
assert(eqT(math.max(3), 3))
|
|
assert(eqT(math.max(3, 5, 9, 1), 9))
|
|
assert(math.max(maxint, 10e60) == 10e60)
|
|
assert(eqT(math.max(minint, minint + 1), minint + 1))
|
|
assert(eqT(math.min(3), 3))
|
|
assert(eqT(math.min(3, 5, 9, 1), 1))
|
|
assert(math.min(3.2, 5.9, -9.2, 1.1) == -9.2)
|
|
assert(math.min(1.9, 1.7, 1.72) == 1.7)
|
|
assert(math.min(-10e60, minint) == -10e60)
|
|
assert(eqT(math.min(maxint, maxint - 1), maxint - 1))
|
|
assert(eqT(math.min(maxint - 2, maxint, maxint - 1), maxint - 2))
|
|
end
|
|
-- testing implicit conversions
|
|
|
|
local a,b = '10', '20'
|
|
assert(a*b == 200 and a+b == 30 and a-b == -10 and a/b == 0.5 and -b == -20)
|
|
assert(a == '10' and b == '20')
|
|
|
|
|
|
do
|
|
print("testing -0 and NaN")
|
|
local mz <const> = -0.0
|
|
local z <const> = 0.0
|
|
assert(mz == z)
|
|
assert(1/mz < 0 and 0 < 1/z)
|
|
local a = {[mz] = 1}
|
|
assert(a[z] == 1 and a[mz] == 1)
|
|
a[z] = 2
|
|
assert(a[z] == 2 and a[mz] == 2)
|
|
local inf = math.huge * 2 + 1
|
|
local mz <const> = -1/inf
|
|
local z <const> = 1/inf
|
|
assert(mz == z)
|
|
assert(1/mz < 0 and 0 < 1/z)
|
|
local NaN <const> = inf - inf
|
|
assert(NaN ~= NaN)
|
|
assert(not (NaN < NaN))
|
|
assert(not (NaN <= NaN))
|
|
assert(not (NaN > NaN))
|
|
assert(not (NaN >= NaN))
|
|
assert(not (0 < NaN) and not (NaN < 0))
|
|
local NaN1 <const> = 0/0
|
|
assert(NaN ~= NaN1 and not (NaN <= NaN1) and not (NaN1 <= NaN))
|
|
local a = {}
|
|
assert(not pcall(rawset, a, NaN, 1))
|
|
assert(a[NaN] == undef)
|
|
a[1] = 1
|
|
assert(not pcall(rawset, a, NaN, 1))
|
|
assert(a[NaN] == undef)
|
|
-- strings with same binary representation as 0.0 (might create problems
|
|
-- for constant manipulation in the pre-compiler)
|
|
local a1, a2, a3, a4, a5 = 0, 0, "\0\0\0\0\0\0\0\0", 0, "\0\0\0\0\0\0\0\0"
|
|
assert(a1 == a2 and a2 == a4 and a1 ~= a3)
|
|
assert(a3 == a5)
|
|
end
|
|
|
|
|
|
print("testing 'math.random'")
|
|
|
|
local random, max, min = math.random, math.max, math.min
|
|
|
|
local function testnear (val, ref, tol)
|
|
return (math.abs(val - ref) < ref * tol)
|
|
end
|
|
|
|
|
|
-- low-level!! For the current implementation of random in Lua,
|
|
-- the first call after seed 1007 should return 0x7a7040a5a323c9d6
|
|
do
|
|
-- all computations should work with 32-bit integers
|
|
local h <const> = 0x7a7040a5 -- higher half
|
|
local l <const> = 0xa323c9d6 -- lower half
|
|
|
|
math.randomseed(1007)
|
|
-- get the low 'intbits' of the 64-bit expected result
|
|
local res = (h << 32 | l) & ~(~0 << intbits)
|
|
assert(random(0) == res)
|
|
|
|
math.randomseed(1007, 0)
|
|
-- using higher bits to generate random floats; (the '% 2^32' converts
|
|
-- 32-bit integers to floats as unsigned)
|
|
local res
|
|
if floatbits <= 32 then
|
|
-- get all bits from the higher half
|
|
res = (h >> (32 - floatbits)) % 2^32
|
|
else
|
|
-- get 32 bits from the higher half and the rest from the lower half
|
|
res = (h % 2^32) * 2^(floatbits - 32) + ((l >> (64 - floatbits)) % 2^32)
|
|
end
|
|
local rand = random()
|
|
assert(eq(rand, 0x0.7a7040a5a323c9d6, 2^-floatbits))
|
|
assert(rand * 2^floatbits == res)
|
|
end
|
|
|
|
do
|
|
-- testing return of 'randomseed'
|
|
local x, y = math.randomseed()
|
|
local res = math.random(0)
|
|
x, y = math.randomseed(x, y) -- should repeat the state
|
|
assert(math.random(0) == res)
|
|
math.randomseed(x, y) -- again should repeat the state
|
|
assert(math.random(0) == res)
|
|
-- keep the random seed for following tests
|
|
print(string.format("random seeds: %d, %d", x, y))
|
|
end
|
|
|
|
do -- test random for floats
|
|
local randbits = math.min(floatbits, 64) -- at most 64 random bits
|
|
local mult = 2^randbits -- to make random float into an integral
|
|
local counts = {} -- counts for bits
|
|
for i = 1, randbits do counts[i] = 0 end
|
|
local up = -math.huge
|
|
local low = math.huge
|
|
local rounds = 100 * randbits -- 100 times for each bit
|
|
local totalrounds = 0
|
|
::doagain:: -- will repeat test until we get good statistics
|
|
for i = 0, rounds do
|
|
local t = random()
|
|
assert(0 <= t and t < 1)
|
|
up = max(up, t)
|
|
low = min(low, t)
|
|
assert(t * mult % 1 == 0) -- no extra bits
|
|
local bit = i % randbits -- bit to be tested
|
|
if (t * 2^bit) % 1 >= 0.5 then -- is bit set?
|
|
counts[bit + 1] = counts[bit + 1] + 1 -- increment its count
|
|
end
|
|
end
|
|
totalrounds = totalrounds + rounds
|
|
if not (eq(up, 1, 0.001) and eq(low, 0, 0.001)) then
|
|
goto doagain
|
|
end
|
|
-- all bit counts should be near 50%
|
|
local expected = (totalrounds / randbits / 2)
|
|
for i = 1, randbits do
|
|
if not testnear(counts[i], expected, 0.10) then
|
|
goto doagain
|
|
end
|
|
end
|
|
print(string.format("float random range in %d calls: [%f, %f]",
|
|
totalrounds, low, up))
|
|
end
|
|
|
|
|
|
do -- test random for full integers
|
|
local up = 0
|
|
local low = 0
|
|
local counts = {} -- counts for bits
|
|
for i = 1, intbits do counts[i] = 0 end
|
|
local rounds = 100 * intbits -- 100 times for each bit
|
|
local totalrounds = 0
|
|
::doagain:: -- will repeat test until we get good statistics
|
|
for i = 0, rounds do
|
|
local t = random(0)
|
|
up = max(up, t)
|
|
low = min(low, t)
|
|
local bit = i % intbits -- bit to be tested
|
|
-- increment its count if it is set
|
|
counts[bit + 1] = counts[bit + 1] + ((t >> bit) & 1)
|
|
end
|
|
totalrounds = totalrounds + rounds
|
|
local lim = maxint >> 10
|
|
if not (maxint - up < lim and low - minint < lim) then
|
|
goto doagain
|
|
end
|
|
-- all bit counts should be near 50%
|
|
local expected = (totalrounds / intbits / 2)
|
|
for i = 1, intbits do
|
|
if not testnear(counts[i], expected, 0.10) then
|
|
goto doagain
|
|
end
|
|
end
|
|
print(string.format(
|
|
"integer random range in %d calls: [minint + %.0fppm, maxint - %.0fppm]",
|
|
totalrounds, (minint - low) / minint * 1e6,
|
|
(maxint - up) / maxint * 1e6))
|
|
end
|
|
|
|
do
|
|
-- test distribution for a dice
|
|
local count = {0, 0, 0, 0, 0, 0}
|
|
local rep = 200
|
|
local totalrep = 0
|
|
::doagain::
|
|
for i = 1, rep * 6 do
|
|
local r = random(6)
|
|
count[r] = count[r] + 1
|
|
end
|
|
totalrep = totalrep + rep
|
|
for i = 1, 6 do
|
|
if not testnear(count[i], totalrep, 0.05) then
|
|
goto doagain
|
|
end
|
|
end
|
|
end
|
|
|
|
do
|
|
local function aux (x1, x2) -- test random for small intervals
|
|
local mark = {}; local count = 0 -- to check that all values appeared
|
|
while true do
|
|
local t = random(x1, x2)
|
|
assert(x1 <= t and t <= x2)
|
|
if not mark[t] then -- new value
|
|
mark[t] = true
|
|
count = count + 1
|
|
if count == x2 - x1 + 1 then -- all values appeared; OK
|
|
goto ok
|
|
end
|
|
end
|
|
end
|
|
::ok::
|
|
end
|
|
|
|
aux(-10,0)
|
|
aux(1, 6)
|
|
aux(1, 2)
|
|
aux(1, 13)
|
|
aux(1, 31)
|
|
aux(1, 32)
|
|
aux(1, 33)
|
|
aux(-10, 10)
|
|
aux(-10,-10) -- unit set
|
|
aux(minint, minint) -- unit set
|
|
aux(maxint, maxint) -- unit set
|
|
aux(minint, minint + 9)
|
|
aux(maxint - 3, maxint)
|
|
end
|
|
|
|
do
|
|
local function aux(p1, p2) -- test random for large intervals
|
|
local max = minint
|
|
local min = maxint
|
|
local n = 100
|
|
local mark = {}; local count = 0 -- to count how many different values
|
|
::doagain::
|
|
for _ = 1, n do
|
|
local t = random(p1, p2)
|
|
if not mark[t] then -- new value
|
|
assert(p1 <= t and t <= p2)
|
|
max = math.max(max, t)
|
|
min = math.min(min, t)
|
|
mark[t] = true
|
|
count = count + 1
|
|
end
|
|
end
|
|
-- at least 80% of values are different
|
|
if not (count >= n * 0.8) then
|
|
goto doagain
|
|
end
|
|
-- min and max not too far from formal min and max
|
|
local diff = (p2 - p1) >> 4
|
|
if not (min < p1 + diff and max > p2 - diff) then
|
|
goto doagain
|
|
end
|
|
end
|
|
aux(0, maxint)
|
|
aux(1, maxint)
|
|
aux(3, maxint // 3)
|
|
aux(minint, -1)
|
|
aux(minint // 2, maxint // 2)
|
|
aux(minint, maxint)
|
|
aux(minint + 1, maxint)
|
|
aux(minint, maxint - 1)
|
|
aux(0, 1 << (intbits - 5))
|
|
end
|
|
|
|
|
|
assert(not pcall(random, 1, 2, 3)) -- too many arguments
|
|
|
|
-- empty interval
|
|
assert(not pcall(random, minint + 1, minint))
|
|
assert(not pcall(random, maxint, maxint - 1))
|
|
assert(not pcall(random, maxint, minint))
|
|
|
|
|
|
|
|
print('OK')
|