nodemcu-firmware/tools/esptool.py

493 lines
18 KiB
Python
Raw Normal View History

#!/usr/bin/env python
2015-01-09 15:58:39 +08:00
#
# ESP8266 ROM Bootloader Utility
# https://github.com/themadinventor/esptool
#
# Copyright (C) 2014 Fredrik Ahlberg
#
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation; either version 2 of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with
# this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
# Street, Fifth Floor, Boston, MA 02110-1301 USA.
import sys
import struct
import serial
import math
import time
import argparse
import os
import subprocess
class ESPROM:
# These are the currently known commands supported by the ROM
ESP_FLASH_BEGIN = 0x02
ESP_FLASH_DATA = 0x03
ESP_FLASH_END = 0x04
ESP_MEM_BEGIN = 0x05
ESP_MEM_END = 0x06
ESP_MEM_DATA = 0x07
ESP_SYNC = 0x08
ESP_WRITE_REG = 0x09
ESP_READ_REG = 0x0a
# Maximum block sized for RAM and Flash writes, respectively.
ESP_RAM_BLOCK = 0x1800
ESP_FLASH_BLOCK = 0x100
# Default baudrate. The ROM auto-bauds, so we can use more or less whatever we want.
ESP_ROM_BAUD = 115200
# First byte of the application image
ESP_IMAGE_MAGIC = 0xe9
# Initial state for the checksum routine
ESP_CHECKSUM_MAGIC = 0xef
# OTP ROM addresses
ESP_OTP_MAC0 = 0x3ff00050
ESP_OTP_MAC1 = 0x3ff00054
def __init__(self, port = 0, baud = ESP_ROM_BAUD):
self._port = serial.Serial(port, baud)
""" Read bytes from the serial port while performing SLIP unescaping """
def read(self, length = 1):
b = ''
while len(b) < length:
c = self._port.read(1)
if c == '\xdb':
c = self._port.read(1)
if c == '\xdc':
b = b + '\xc0'
elif c == '\xdd':
b = b + '\xdb'
else:
raise Exception('Invalid SLIP escape')
else:
b = b + c
return b
""" Write bytes to the serial port while performing SLIP escaping """
def write(self, packet):
buf = '\xc0'
for b in packet:
if b == '\xc0':
buf += '\xdb\xdc'
elif b == '\xdb':
buf += '\xdb\xdd'
else:
buf += b
buf += '\xc0'
self._port.write(buf)
""" Calculate checksum of a blob, as it is defined by the ROM """
@staticmethod
def checksum(data, state = ESP_CHECKSUM_MAGIC):
for b in data:
state ^= ord(b)
return state
""" Send a request and read the response """
def command(self, op = None, data = None, chk = 0):
if op:
# Construct and send request
pkt = struct.pack('<BBHI', 0x00, op, len(data), chk) + data
self.write(pkt)
# Read header of response and parse
if self._port.read(1) != '\xc0':
raise Exception('Invalid head of packet')
hdr = self.read(8)
(resp, op_ret, len_ret, val) = struct.unpack('<BBHI', hdr)
if resp != 0x01 or (op and op_ret != op):
raise Exception('Invalid response')
# The variable-length body
body = self.read(len_ret)
# Terminating byte
if self._port.read(1) != chr(0xc0):
raise Exception('Invalid end of packet')
return val, body
""" Perform a connection test """
def sync(self):
self.command(ESPROM.ESP_SYNC, '\x07\x07\x12\x20'+32*'\x55')
for i in xrange(7):
self.command()
""" Try connecting repeatedly until successful, or giving up """
def connect(self):
print 'Connecting...'
# RTS = CH_PD (i.e reset)
# DTR = GPIO0
self._port.setRTS(True)
self._port.setDTR(True)
self._port.setRTS(False)
time.sleep(0.1)
self._port.setDTR(False)
self._port.timeout = 0.5
for i in xrange(10):
try:
self._port.flushInput()
self._port.flushOutput()
self.sync()
self._port.timeout = 5
return
except:
time.sleep(0.1)
raise Exception('Failed to connect')
""" Read memory address in target """
def read_reg(self, addr):
res = self.command(ESPROM.ESP_READ_REG, struct.pack('<I', addr))
if res[1] != "\0\0":
raise Exception('Failed to read target memory')
return res[0]
""" Write to memory address in target """
def write_reg(self, addr, value, mask, delay_us = 0):
if self.command(ESPROM.ESP_WRITE_REG,
struct.pack('<IIII', addr, value, mask, delay_us))[1] != "\0\0":
raise Exception('Failed to write target memory')
""" Start downloading an application image to RAM """
def mem_begin(self, size, blocks, blocksize, offset):
if self.command(ESPROM.ESP_MEM_BEGIN,
struct.pack('<IIII', size, blocks, blocksize, offset))[1] != "\0\0":
raise Exception('Failed to enter RAM download mode')
""" Send a block of an image to RAM """
def mem_block(self, data, seq):
if self.command(ESPROM.ESP_MEM_DATA,
struct.pack('<IIII', len(data), seq, 0, 0)+data, ESPROM.checksum(data))[1] != "\0\0":
raise Exception('Failed to write to target RAM')
""" Leave download mode and run the application """
def mem_finish(self, entrypoint = 0):
if self.command(ESPROM.ESP_MEM_END,
struct.pack('<II', int(entrypoint == 0), entrypoint))[1] != "\0\0":
raise Exception('Failed to leave RAM download mode')
""" Start downloading to Flash (performs an erase) """
def flash_begin(self, size, offset):
old_tmo = self._port.timeout
num_blocks = (size + ESPROM.ESP_FLASH_BLOCK - 1) / ESPROM.ESP_FLASH_BLOCK
self._port.timeout = 10
if self.command(ESPROM.ESP_FLASH_BEGIN,
struct.pack('<IIII', size, num_blocks, ESPROM.ESP_FLASH_BLOCK, offset))[1] != "\0\0":
raise Exception('Failed to enter Flash download mode')
self._port.timeout = old_tmo
""" Write block to flash """
def flash_block(self, data, seq):
if self.command(ESPROM.ESP_FLASH_DATA,
struct.pack('<IIII', len(data), seq, 0, 0)+data, ESPROM.checksum(data))[1] != "\0\0":
raise Exception('Failed to write to target Flash')
""" Leave flash mode and run/reboot """
def flash_finish(self, reboot = False):
pkt = struct.pack('<I', int(not reboot))
if self.command(ESPROM.ESP_FLASH_END, pkt)[1] != "\0\0":
raise Exception('Failed to leave Flash mode')
""" Run application code in flash """
def run(self, reboot = False):
# Fake flash begin immediately followed by flash end
self.flash_begin(0, 0)
self.flash_finish(reboot)
class ESPFirmwareImage:
def __init__(self, filename = None):
self.segments = []
self.entrypoint = 0
if filename is not None:
f = file(filename, 'rb')
(magic, segments, _, _, self.entrypoint) = struct.unpack('<BBBBI', f.read(8))
# some sanity check
if magic != ESPROM.ESP_IMAGE_MAGIC or segments > 16:
raise Exception('Invalid firmware image')
for i in xrange(segments):
(offset, size) = struct.unpack('<II', f.read(8))
if offset > 0x40200000 or offset < 0x3ffe0000 or size > 65536:
raise Exception('Suspicious segment %x,%d' % (offset, size))
self.segments.append((offset, size, f.read(size)))
# Skip the padding. The checksum is stored in the last byte so that the
# file is a multiple of 16 bytes.
align = 15-(f.tell() % 16)
f.seek(align, 1)
self.checksum = ord(f.read(1))
def add_segment(self, addr, data):
# Data should be aligned on word boundary
l = len(data)
if l % 4:
data += b"\x00" * (4 - l % 4)
self.segments.append((addr, len(data), data))
def save(self, filename):
f = file(filename, 'wb')
f.write(struct.pack('<BBBBI', ESPROM.ESP_IMAGE_MAGIC, len(self.segments), 0, 0, self.entrypoint))
checksum = ESPROM.ESP_CHECKSUM_MAGIC
for (offset, size, data) in self.segments:
f.write(struct.pack('<II', offset, size))
f.write(data)
checksum = ESPROM.checksum(data, checksum)
align = 15-(f.tell() % 16)
f.seek(align, 1)
f.write(struct.pack('B', checksum))
class ELFFile:
def __init__(self, name):
self.name = name
self.symbols = None
def _fetch_symbols(self):
if self.symbols is not None:
return
self.symbols = {}
try:
tool_nm = "xtensa-lx106-elf-nm"
if os.getenv('XTENSA_CORE')=='lx106':
tool_nm = "xt-nm"
proc = subprocess.Popen([tool_nm, self.name], stdout=subprocess.PIPE)
2015-01-09 15:58:39 +08:00
except OSError:
print "Error calling "+tool_nm+", do you have Xtensa toolchain in PATH?"
2015-01-09 15:58:39 +08:00
sys.exit(1)
for l in proc.stdout:
fields = l.strip().split()
self.symbols[fields[2]] = int(fields[0], 16)
def get_symbol_addr(self, sym):
self._fetch_symbols()
return self.symbols[sym]
def load_section(self, section):
tool_objcopy = "xtensa-lx106-elf-objcopy"
if os.getenv('XTENSA_CORE')=='lx106':
tool_objcopy = "xt-objcopy"
subprocess.check_call([tool_objcopy, "--only-section", section, "-Obinary", self.name, ".tmp.section"])
2015-01-09 15:58:39 +08:00
f = open(".tmp.section", "rb")
data = f.read()
f.close()
os.remove(".tmp.section")
return data
def arg_auto_int(x):
return int(x, 0)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description = 'ESP8266 ROM Bootloader Utility', prog = 'esptool')
parser.add_argument(
'--port', '-p',
help = 'Serial port device',
default = '/dev/ttyUSB0')
parser.add_argument(
'--baud', '-b',
help = 'Serial port baud rate',
type = arg_auto_int,
default = ESPROM.ESP_ROM_BAUD)
subparsers = parser.add_subparsers(
dest = 'operation',
help = 'Run esptool {command} -h for additional help')
parser_load_ram = subparsers.add_parser(
'load_ram',
help = 'Download an image to RAM and execute')
parser_load_ram.add_argument('filename', help = 'Firmware image')
parser_dump_mem = subparsers.add_parser(
'dump_mem',
help = 'Dump arbitrary memory to disk')
parser_dump_mem.add_argument('address', help = 'Base address', type = arg_auto_int)
parser_dump_mem.add_argument('size', help = 'Size of region to dump', type = arg_auto_int)
parser_dump_mem.add_argument('filename', help = 'Name of binary dump')
parser_read_mem = subparsers.add_parser(
'read_mem',
help = 'Read arbitrary memory location')
parser_read_mem.add_argument('address', help = 'Address to read', type = arg_auto_int)
parser_write_mem = subparsers.add_parser(
'write_mem',
help = 'Read-modify-write to arbitrary memory location')
parser_write_mem.add_argument('address', help = 'Address to write', type = arg_auto_int)
parser_write_mem.add_argument('value', help = 'Value', type = arg_auto_int)
parser_write_mem.add_argument('mask', help = 'Mask of bits to write', type = arg_auto_int)
parser_write_flash = subparsers.add_parser(
'write_flash',
help = 'Write a binary blob to flash')
parser_write_flash.add_argument('addr_filename', nargs = '+', help = 'Address and binary file to write there, separated by space')
parser_run = subparsers.add_parser(
'run',
help = 'Run application code in flash')
parser_image_info = subparsers.add_parser(
'image_info',
help = 'Dump headers from an application image')
parser_image_info.add_argument('filename', help = 'Image file to parse')
parser_make_image = subparsers.add_parser(
'make_image',
help = 'Create an application image from binary files')
parser_make_image.add_argument('output', help = 'Output image file')
parser_make_image.add_argument('--segfile', '-f', action = 'append', help = 'Segment input file')
parser_make_image.add_argument('--segaddr', '-a', action = 'append', help = 'Segment base address', type = arg_auto_int)
parser_make_image.add_argument('--entrypoint', '-e', help = 'Address of entry point', type = arg_auto_int, default = 0)
parser_elf2image = subparsers.add_parser(
'elf2image',
help = 'Create an application image from ELF file')
parser_elf2image.add_argument('input', help = 'Input ELF file')
parser_elf2image.add_argument('--output', '-o', help = 'Output filename prefix', type = str)
parser_read_mac = subparsers.add_parser(
'read_mac',
help = 'Read MAC address from OTP ROM')
args = parser.parse_args()
# Create the ESPROM connection object, if needed
esp = None
if args.operation not in ('image_info','make_image','elf2image'):
esp = ESPROM(args.port, args.baud)
esp.connect()
# Do the actual work. Should probably be split into separate functions.
if args.operation == 'load_ram':
image = ESPFirmwareImage(args.filename)
print 'RAM boot...'
for (offset, size, data) in image.segments:
print 'Downloading %d bytes at %08x...' % (size, offset),
sys.stdout.flush()
esp.mem_begin(size, math.ceil(size / float(esp.ESP_RAM_BLOCK)), esp.ESP_RAM_BLOCK, offset)
seq = 0
while len(data) > 0:
esp.mem_block(data[0:esp.ESP_RAM_BLOCK], seq)
data = data[esp.ESP_RAM_BLOCK:]
seq += 1
print 'done!'
print 'All segments done, executing at %08x' % image.entrypoint
esp.mem_finish(image.entrypoint)
elif args.operation == 'read_mem':
print '0x%08x = 0x%08x' % (args.address, esp.read_reg(args.address))
elif args.operation == 'write_mem':
esp.write_reg(args.address, args.value, args.mask, 0)
print 'Wrote %08x, mask %08x to %08x' % (args.value, args.mask, args.address)
elif args.operation == 'dump_mem':
f = file(args.filename, 'wb')
for i in xrange(args.size/4):
d = esp.read_reg(args.address+(i*4))
f.write(struct.pack('<I', d))
if f.tell() % 1024 == 0:
print '\r%d bytes read... (%d %%)' % (f.tell(), f.tell()*100/args.size),
sys.stdout.flush()
print 'Done!'
elif args.operation == 'write_flash':
assert len(args.addr_filename) % 2 == 0
while args.addr_filename:
address = int(args.addr_filename[0], 0)
filename = args.addr_filename[1]
args.addr_filename = args.addr_filename[2:]
image = file(filename, 'rb').read()
print 'Erasing flash...'
blocks = math.ceil(len(image)/float(esp.ESP_FLASH_BLOCK))
esp.flash_begin(blocks*esp.ESP_FLASH_BLOCK, address)
seq = 0
while len(image) > 0:
print '\rWriting at 0x%08x... (%d %%)' % (address + seq*esp.ESP_FLASH_BLOCK, 100*(seq+1)/blocks),
sys.stdout.flush()
block = image[0:esp.ESP_FLASH_BLOCK]
block = block + '\xe0' * (esp.ESP_FLASH_BLOCK-len(block))
esp.flash_block(block, seq)
image = image[esp.ESP_FLASH_BLOCK:]
seq += 1
print
print '\nLeaving...'
esp.flash_finish(False)
elif args.operation == 'run':
esp.run()
elif args.operation == 'image_info':
image = ESPFirmwareImage(args.filename)
print ('Entry point: %08x' % image.entrypoint) if image.entrypoint != 0 else 'Entry point not set'
print '%d segments' % len(image.segments)
print
checksum = ESPROM.ESP_CHECKSUM_MAGIC
for (idx, (offset, size, data)) in enumerate(image.segments):
print 'Segment %d: %5d bytes at %08x' % (idx+1, size, offset)
checksum = ESPROM.checksum(data, checksum)
print
print 'Checksum: %02x (%s)' % (image.checksum, 'valid' if image.checksum == checksum else 'invalid!')
elif args.operation == 'make_image':
image = ESPFirmwareImage()
if len(args.segfile) == 0:
raise Exception('No segments specified')
if len(args.segfile) != len(args.segaddr):
raise Exception('Number of specified files does not match number of specified addresses')
for (seg, addr) in zip(args.segfile, args.segaddr):
data = file(seg, 'rb').read()
image.add_segment(addr, data)
image.entrypoint = args.entrypoint
image.save(args.output)
elif args.operation == 'elf2image':
if args.output is None:
args.output = args.input + '-'
e = ELFFile(args.input)
image = ESPFirmwareImage()
image.entrypoint = e.get_symbol_addr("call_user_start")
for section, start in ((".text", "_text_start"), (".data", "_data_start"), (".rodata", "_rodata_start")):
data = e.load_section(section)
image.add_segment(e.get_symbol_addr(start), data)
image.save(args.output + "0x00000.bin")
data = e.load_section(".irom0.text")
off = e.get_symbol_addr("_irom0_text_start") - 0x40200000
assert off >= 0
f = open(args.output + "0x%05x.bin" % off, "wb")
f.write(data)
f.close()
elif args.operation == 'read_mac':
mac0 = esp.read_reg(esp.ESP_OTP_MAC0)
mac1 = esp.read_reg(esp.ESP_OTP_MAC1)
print 'MAC: 18:fe:34:%02x:%02x:%02x' % ((mac1 >> 8) & 0xff, mac1 & 0xff, (mac0 >> 24) & 0xff)