mirror of
https://github.com/nodemcu/nodemcu-firmware.git
synced 2025-02-06 21:18:25 +08:00
The PR removed the bulk of non-newlib headers from the NodeMCU source base. app/libc has now been cut down to the bare minimum overrides to shadow the corresponding functions in the SDK's libc. The old c_xyz.h headerfiles have been nuked in favour of the standard <xyz.h> headers, with a few exceptions over in sdk-overrides. Again, shipping a libc.a without headers is a terrible thing to do. We're still living on a prayer that libc was configured the same was as a default-configured xtensa gcc toolchain assumes it is. That part I cannot do anything about, unfortunately, but it's no worse than it has been before. This enables our source files to compile successfully using the standard header files, and use the typical malloc()/calloc()/realloc()/free(), the strwhatever()s and memwhatever()s. These end up, through macro and linker magic, mapped to the appropriate SDK or ROM functions.
548 lines
20 KiB
C
548 lines
20 KiB
C
// ***************************************************************************
|
|
// Port of BMP680 module for ESP8266 with nodeMCU
|
|
//
|
|
// Written by Lukas Voborsky, @voborsky
|
|
// ***************************************************************************
|
|
|
|
// #define NODE_DEBUG
|
|
|
|
#include "module.h"
|
|
#include "lauxlib.h"
|
|
#include "platform.h"
|
|
#include <math.h>
|
|
|
|
#include "bme680_defs.h"
|
|
|
|
#define DEFAULT_HEATER_DUR 100
|
|
#define DEFAULT_HEATER_TEMP 300
|
|
#define DEFAULT_AMBIENT_TEMP 23
|
|
|
|
static const uint32_t bme680_i2c_id = BME680_CHIP_ID_ADDR;
|
|
|
|
static uint8_t bme680_i2c_addr = BME680_I2C_ADDR_PRIMARY;
|
|
os_timer_t bme680_timer; // timer for forced mode readout
|
|
int lua_connected_readout_ref; // callback when readout is ready
|
|
|
|
static struct bme680_calib_data bme680_data;
|
|
static uint8_t bme680_mode = 0; // stores oversampling settings
|
|
static uint8 os_temp = 0;
|
|
static uint8 os_pres = 0;
|
|
static uint8 os_hum = 0; // stores humidity oversampling settings
|
|
static uint16_t heatr_dur;
|
|
static int8_t amb_temp = 23; //DEFAULT_AMBIENT_TEMP;
|
|
|
|
static uint32_t bme680_h = 0;
|
|
static double bme680_hc = 1.0;
|
|
|
|
// return 0 if good
|
|
static int r8u_n(uint8_t reg, int n, uint8_t *buff) {
|
|
int i;
|
|
|
|
platform_i2c_send_start(bme680_i2c_id);
|
|
platform_i2c_send_address(bme680_i2c_id, bme680_i2c_addr, PLATFORM_I2C_DIRECTION_TRANSMITTER);
|
|
platform_i2c_send_byte(bme680_i2c_id, reg);
|
|
// platform_i2c_send_stop(bme680_i2c_id); // doco says not needed
|
|
|
|
platform_i2c_send_start(bme680_i2c_id);
|
|
platform_i2c_send_address(bme680_i2c_id, bme680_i2c_addr, PLATFORM_I2C_DIRECTION_RECEIVER);
|
|
|
|
while (n-- > 0)
|
|
*buff++ = platform_i2c_recv_byte(bme680_i2c_id, n > 0);
|
|
platform_i2c_send_stop(bme680_i2c_id);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint8_t w8u(uint8_t reg, uint8_t val) {
|
|
platform_i2c_send_start(bme680_i2c_id);
|
|
platform_i2c_send_address(bme680_i2c_id, bme680_i2c_addr, PLATFORM_I2C_DIRECTION_TRANSMITTER);
|
|
platform_i2c_send_byte(bme680_i2c_id, reg);
|
|
platform_i2c_send_byte(bme680_i2c_id, val);
|
|
platform_i2c_send_stop(bme680_i2c_id);
|
|
}
|
|
|
|
static uint8_t r8u(uint8_t reg) {
|
|
uint8_t ret[1];
|
|
r8u_n(reg, 1, ret);
|
|
return ret[0];
|
|
}
|
|
|
|
/* This part of code is coming from the original bme680.c driver by Bosch.
|
|
* Copyright (C) 2017 - 2018 Bosch Sensortec GmbH
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* Neither the name of the copyright holder nor the names of the
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
|
|
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER
|
|
* OR CONTRIBUTORS BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
|
|
* OR CONSEQUENTIAL DAMAGES(INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
|
|
*
|
|
* The information provided is believed to be accurate and reliable.
|
|
* The copyright holder assumes no responsibility
|
|
* for the consequences of use
|
|
* of such information nor for any infringement of patents or
|
|
* other rights of third parties which may result from its use.
|
|
* No license is granted by implication or otherwise under any patent or
|
|
* patent rights of the copyright holder.
|
|
*/
|
|
|
|
/**static variables */
|
|
/**Look up table for the possible gas range values */
|
|
uint32_t lookupTable1[16] = { UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2147483647),
|
|
UINT32_C(2147483647), UINT32_C(2126008810), UINT32_C(2147483647), UINT32_C(2130303777), UINT32_C(2147483647),
|
|
UINT32_C(2147483647), UINT32_C(2143188679), UINT32_C(2136746228), UINT32_C(2147483647), UINT32_C(2126008810),
|
|
UINT32_C(2147483647), UINT32_C(2147483647) };
|
|
/**Look up table for the possible gas range values */
|
|
uint32_t lookupTable2[16] = { UINT32_C(4096000000), UINT32_C(2048000000), UINT32_C(1024000000), UINT32_C(512000000),
|
|
UINT32_C(255744255), UINT32_C(127110228), UINT32_C(64000000), UINT32_C(32258064), UINT32_C(16016016), UINT32_C(
|
|
8000000), UINT32_C(4000000), UINT32_C(2000000), UINT32_C(1000000), UINT32_C(500000), UINT32_C(250000),
|
|
UINT32_C(125000) };
|
|
|
|
static uint8_t calc_heater_res(uint16_t temp)
|
|
{
|
|
uint8_t heatr_res;
|
|
int32_t var1;
|
|
int32_t var2;
|
|
int32_t var3;
|
|
int32_t var4;
|
|
int32_t var5;
|
|
int32_t heatr_res_x100;
|
|
|
|
if (temp < 200) /* Cap temperature */
|
|
temp = 200;
|
|
else if (temp > 400)
|
|
temp = 400;
|
|
|
|
var1 = (((int32_t) amb_temp * bme680_data.par_gh3) / 1000) * 256;
|
|
var2 = (bme680_data.par_gh1 + 784) * (((((bme680_data.par_gh2 + 154009) * temp * 5) / 100) + 3276800) / 10);
|
|
var3 = var1 + (var2 / 2);
|
|
var4 = (var3 / (bme680_data.res_heat_range + 4));
|
|
var5 = (131 * bme680_data.res_heat_val) + 65536;
|
|
heatr_res_x100 = (int32_t) (((var4 / var5) - 250) * 34);
|
|
heatr_res = (uint8_t) ((heatr_res_x100 + 50) / 100);
|
|
|
|
return heatr_res;
|
|
}
|
|
|
|
static uint8_t calc_heater_dur(uint16_t dur)
|
|
{
|
|
uint8_t factor = 0;
|
|
uint8_t durval;
|
|
|
|
if (dur >= 0xfc0) {
|
|
durval = 0xff; /* Max duration*/
|
|
} else {
|
|
while (dur > 0x3F) {
|
|
dur = dur / 4;
|
|
factor += 1;
|
|
}
|
|
durval = (uint8_t) (dur + (factor * 64));
|
|
}
|
|
|
|
return durval;
|
|
}
|
|
|
|
static int16_t calc_temperature(uint32_t temp_adc)
|
|
{
|
|
int64_t var1;
|
|
int64_t var2;
|
|
int64_t var3;
|
|
int16_t calc_temp;
|
|
|
|
var1 = ((int32_t) temp_adc / 8) - ((int32_t) bme680_data.par_t1 * 2);
|
|
var2 = (var1 * (int32_t) bme680_data.par_t2) / 2048;
|
|
var3 = ((var1 / 2) * (var1 / 2)) / 4096;
|
|
var3 = ((var3) * ((int32_t) bme680_data.par_t3 * 16)) / 16384;
|
|
bme680_data.t_fine = (int32_t) (var2 + var3);
|
|
calc_temp = (int16_t) (((bme680_data.t_fine * 5) + 128) / 256);
|
|
|
|
return calc_temp;
|
|
}
|
|
|
|
static uint32_t calc_pressure(uint32_t pres_adc)
|
|
{
|
|
int32_t var1;
|
|
int32_t var2;
|
|
int32_t var3;
|
|
int32_t calc_pres;
|
|
|
|
var1 = (((int32_t) bme680_data.t_fine) / 2) - 64000;
|
|
var2 = ((var1 / 4) * (var1 / 4)) / 2048;
|
|
var2 = ((var2) * (int32_t) bme680_data.par_p6) / 4;
|
|
var2 = var2 + ((var1 * (int32_t) bme680_data.par_p5) * 2);
|
|
var2 = (var2 / 4) + ((int32_t) bme680_data.par_p4 * 65536);
|
|
var1 = ((var1 / 4) * (var1 / 4)) / 8192;
|
|
var1 = (((var1) * ((int32_t) bme680_data.par_p3 * 32)) / 8) + (((int32_t) bme680_data.par_p2 * var1) / 2);
|
|
var1 = var1 / 262144;
|
|
var1 = ((32768 + var1) * (int32_t) bme680_data.par_p1) / 32768;
|
|
calc_pres = (int32_t) (1048576 - pres_adc);
|
|
calc_pres = (int32_t) ((calc_pres - (var2 / 4096)) * (3125));
|
|
calc_pres = ((calc_pres / var1) * 2);
|
|
var1 = ((int32_t) bme680_data.par_p9 * (int32_t) (((calc_pres / 8) * (calc_pres / 8)) / 8192)) / 4096;
|
|
var2 = ((int32_t) (calc_pres / 4) * (int32_t) bme680_data.par_p8) / 8192;
|
|
var3 = ((int32_t) (calc_pres / 256) * (int32_t) (calc_pres / 256) * (int32_t) (calc_pres / 256)
|
|
* (int32_t) bme680_data.par_p10) / 131072;
|
|
calc_pres = (int32_t) (calc_pres) + ((var1 + var2 + var3 + ((int32_t) bme680_data.par_p7 * 128)) / 16);
|
|
|
|
return (uint32_t) calc_pres;
|
|
}
|
|
|
|
static uint32_t calc_humidity(uint16_t hum_adc)
|
|
{
|
|
int32_t var1;
|
|
int32_t var2;
|
|
int32_t var3;
|
|
int32_t var4;
|
|
int32_t var5;
|
|
int32_t var6;
|
|
int32_t temp_scaled;
|
|
int32_t calc_hum;
|
|
|
|
temp_scaled = (((int32_t) bme680_data.t_fine * 5) + 128) / 256;
|
|
var1 = (int32_t) (hum_adc - ((int32_t) ((int32_t) bme680_data.par_h1 * 16)))
|
|
- (((temp_scaled * (int32_t) bme680_data.par_h3) / ((int32_t) 100)) / 2);
|
|
var2 = ((int32_t) bme680_data.par_h2
|
|
* (((temp_scaled * (int32_t) bme680_data.par_h4) / ((int32_t) 100))
|
|
+ (((temp_scaled * ((temp_scaled * (int32_t) bme680_data.par_h5) / ((int32_t) 100))) / 64)
|
|
/ ((int32_t) 100)) + (int32_t) (1 * 16384))) / 1024;
|
|
var3 = var1 * var2;
|
|
var4 = (int32_t) bme680_data.par_h6 * 128;
|
|
var4 = ((var4) + ((temp_scaled * (int32_t) bme680_data.par_h7) / ((int32_t) 100))) / 16;
|
|
var5 = ((var3 / 16384) * (var3 / 16384)) / 1024;
|
|
var6 = (var4 * var5) / 2;
|
|
calc_hum = (((var3 + var6) / 1024) * ((int32_t) 1000)) / 4096;
|
|
|
|
if (calc_hum > 100000) /* Cap at 100%rH */
|
|
calc_hum = 100000;
|
|
else if (calc_hum < 0)
|
|
calc_hum = 0;
|
|
|
|
return (uint32_t) calc_hum;
|
|
}
|
|
|
|
static uint32_t calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range)
|
|
{
|
|
int64_t var1;
|
|
uint64_t var2;
|
|
int64_t var3;
|
|
uint32_t calc_gas_res;
|
|
|
|
var1 = (int64_t) ((1340 + (5 * (int64_t) bme680_data.range_sw_err)) * ((int64_t) lookupTable1[gas_range])) / 65536;
|
|
var2 = (((int64_t) ((int64_t) gas_res_adc * 32768) - (int64_t) (16777216)) + var1);
|
|
var3 = (((int64_t) lookupTable2[gas_range] * (int64_t) var1) / 512);
|
|
calc_gas_res = (uint32_t) ((var3 + ((int64_t) var2 / 2)) / (int64_t) var2);
|
|
|
|
return calc_gas_res;
|
|
}
|
|
|
|
uint16_t calc_dur()
|
|
{
|
|
uint32_t tph_dur; /* Calculate in us */
|
|
|
|
/* TPH measurement duration */
|
|
|
|
tph_dur = ((uint32_t) (os_temp + os_pres + os_hum) * UINT32_C(1963));
|
|
tph_dur += UINT32_C(477 * 4); /* TPH switching duration */
|
|
tph_dur += UINT32_C(477 * 5); /* Gas measurement duration */
|
|
tph_dur += UINT32_C(500); /* Get it to the closest whole number.*/
|
|
tph_dur /= UINT32_C(1000); /* Convert to ms */
|
|
|
|
tph_dur += UINT32_C(1); /* Wake up duration of 1ms */
|
|
NODE_DBG("tpc_dur: %d\n", tph_dur);
|
|
/* The remaining time should be used for heating */
|
|
return heatr_dur + (uint16_t) tph_dur;
|
|
}
|
|
/* This part of code is coming from the original bme680.c driver by Bosch.
|
|
* END */
|
|
|
|
|
|
static double ln(double x) {
|
|
double y = (x-1)/(x+1);
|
|
double y2 = y*y;
|
|
double r = 0;
|
|
for (int8_t i=33; i>0; i-=2) { //we've got the power
|
|
r = 1.0/(double)i + y2 * r;
|
|
}
|
|
return 2*y*r;
|
|
}
|
|
|
|
static double bme280_qfe2qnh(int32_t qfe, int32_t h) {
|
|
double hc;
|
|
if (bme680_h == h) {
|
|
hc = bme680_hc;
|
|
} else {
|
|
hc = pow((double)(1.0 - 2.25577e-5 * h), (double)(-5.25588));
|
|
bme680_hc = hc; bme680_h = h;
|
|
}
|
|
double qnh = (double)qfe * hc;
|
|
return qnh;
|
|
}
|
|
|
|
static int bme680_lua_setup(lua_State* L) {
|
|
uint8_t ack;
|
|
|
|
bme680_i2c_addr = BME680_I2C_ADDR_PRIMARY;
|
|
platform_i2c_send_start(bme680_i2c_id);
|
|
ack = platform_i2c_send_address(bme680_i2c_id, bme680_i2c_addr, PLATFORM_I2C_DIRECTION_TRANSMITTER);
|
|
platform_i2c_send_stop(bme680_i2c_id);
|
|
if (!ack) {
|
|
NODE_DBG("No ACK on address: %x\n", bme680_i2c_addr);
|
|
bme680_i2c_addr = BME680_I2C_ADDR_SECONDARY;
|
|
platform_i2c_send_start(bme680_i2c_id);
|
|
ack = platform_i2c_send_address(bme680_i2c_id, bme680_i2c_addr, PLATFORM_I2C_DIRECTION_TRANSMITTER);
|
|
platform_i2c_send_stop(bme680_i2c_id);
|
|
if (!ack) {
|
|
NODE_DBG("No ACK on address: %x\n", bme680_i2c_addr);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
uint8_t chipid = r8u(BME680_CHIP_ID_ADDR);
|
|
NODE_DBG("chip_id: %x\n", chipid);
|
|
|
|
#define r16uLE_buf(reg) (uint16_t)(((uint16_t)reg[1] << 8) | (uint16_t)reg[0])
|
|
#define r16sLE_buf(reg) (int16_t)(r16uLE_buf(reg))
|
|
uint8_t buff[BME680_COEFF_SIZE], *reg;
|
|
r8u_n(BME680_COEFF_ADDR1, BME680_COEFF_ADDR1_LEN, buff);
|
|
r8u_n(BME680_COEFF_ADDR2, BME680_COEFF_ADDR2_LEN, &buff[BME680_COEFF_ADDR1_LEN]);
|
|
|
|
reg = buff + 1;
|
|
bme680_data.par_t2 = r16sLE_buf(reg); reg+=2; // #define BME680_T3_REG (3)
|
|
bme680_data.par_t3 = (int8_t) reg[0]; reg+=2; // #define BME680_P1_LSB_REG (5)
|
|
bme680_data.par_p1 = r16uLE_buf(reg); reg+=2; // #define BME680_P2_LSB_REG (7)
|
|
bme680_data.par_p2 = r16sLE_buf(reg); reg+=2; // #define BME680_P3_REG (9)
|
|
bme680_data.par_p3 = (int8_t) reg[0]; reg+=2; // #define BME680_P4_LSB_REG (11)
|
|
bme680_data.par_p4 = r16sLE_buf(reg); reg+=2; // #define BME680_P5_LSB_REG (13)
|
|
bme680_data.par_p5 = r16sLE_buf(reg); reg+=2; // #define BME680_P7_REG (15)
|
|
bme680_data.par_p7 = (int8_t) reg[0]; reg++; // #define BME680_P6_REG (16)
|
|
bme680_data.par_p6 = (int8_t) reg[0]; reg+=3; // #define BME680_P8_LSB_REG (19)
|
|
bme680_data.par_p8 = r16sLE_buf(reg); reg+=2; // #define BME680_P9_LSB_REG (21)
|
|
bme680_data.par_p9 = r16sLE_buf(reg); reg+=2; // #define BME680_P10_REG (23)
|
|
bme680_data.par_p10 = (int8_t) reg[0]; reg+=2; // #define BME680_H2_MSB_REG (25)
|
|
bme680_data.par_h2 = (uint16_t) (((uint16_t) reg[0] << BME680_HUM_REG_SHIFT_VAL)
|
|
| ((reg[1]) >> BME680_HUM_REG_SHIFT_VAL)); reg++; // #define BME680_H1_LSB_REG (26)
|
|
bme680_data.par_h1 = (uint16_t) (((uint16_t) reg[1] << BME680_HUM_REG_SHIFT_VAL)
|
|
| (reg[0] & BME680_BIT_H1_DATA_MSK)); reg+=2; // #define BME680_H3_REG (28)
|
|
bme680_data.par_h3 = (int8_t) reg[0]; reg++; // #define BME680_H4_REG (29)
|
|
bme680_data.par_h4 = (int8_t) reg[0]; reg++; // #define BME680_H5_REG (30)
|
|
bme680_data.par_h5 = (int8_t) reg[0]; reg++; // #define BME680_H6_REG (31)
|
|
bme680_data.par_h6 = (uint8_t) reg[0]; reg++; // #define BME680_H7_REG (32)
|
|
bme680_data.par_h7 = (int8_t) reg[0]; reg++; // #define BME680_T1_LSB_REG (33)
|
|
bme680_data.par_t1 = r16uLE_buf(reg); reg+=2; // #define BME680_GH2_LSB_REG (35)
|
|
bme680_data.par_gh2 = r16sLE_buf(reg); reg+=2; // #define BME680_GH1_REG (37)
|
|
bme680_data.par_gh1 = reg[0]; reg++; // #define BME680_GH3_REG (38)
|
|
bme680_data.par_gh3 = reg[0];
|
|
#undef r16uLE_buf
|
|
#undef r16sLE_buf
|
|
|
|
/* Other coefficients */
|
|
bme680_data.res_heat_range = ((r8u(BME680_ADDR_RES_HEAT_RANGE_ADDR) & BME680_RHRANGE_MSK) / 16);
|
|
bme680_data.res_heat_val = (int8_t) r8u(BME680_ADDR_RES_HEAT_VAL_ADDR);
|
|
bme680_data.range_sw_err = ((int8_t) r8u(BME680_ADDR_RANGE_SW_ERR_ADDR) & (int8_t) BME680_RSERROR_MSK) / 16;
|
|
|
|
NODE_DBG("par_T: %d\t%d\t%d\n", bme680_data.par_t1, bme680_data.par_t2, bme680_data.par_t3);
|
|
NODE_DBG("par_P: %d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\n", bme680_data.par_p1, bme680_data.par_p2, bme680_data.par_p3, bme680_data.par_p4, bme680_data.par_p5, bme680_data.par_p6, bme680_data.par_p7, bme680_data.par_p8, bme680_data.par_p9, bme680_data.par_p10);
|
|
NODE_DBG("par_H: %d\t%d\t%d\t%d\t%d\t%d\t%d\n", bme680_data.par_h1, bme680_data.par_h2, bme680_data.par_h3, bme680_data.par_h4, bme680_data.par_h5, bme680_data.par_h6, bme680_data.par_h7);
|
|
NODE_DBG("par_GH: %d\t%d\t%d\n", bme680_data.par_gh1, bme680_data.par_gh2, bme680_data.par_gh3);
|
|
NODE_DBG("res_heat_range, res_heat_val, range_sw_err: %d\t%d\t%d\n", bme680_data.res_heat_range, bme680_data.res_heat_val, bme680_data.range_sw_err);
|
|
|
|
uint8_t full_init = !lua_isnumber(L, 7)?1:lua_tointeger(L, 7); // 7-th parameter: init the chip too
|
|
if (full_init) {
|
|
uint8_t filter;
|
|
uint8_t const bit3 = 0b111;
|
|
uint8_t const bit2 = 0b11;
|
|
|
|
//bme680.setup([temp_oss, press_oss, humi_oss, heater_temp, heater_duration, IIR_filter])
|
|
|
|
os_temp = (!lua_isnumber(L, 1)?BME680_OS_2X:(luaL_checkinteger(L, 1)&bit3)); // 1-st parameter: temperature oversampling
|
|
os_pres = (!lua_isnumber(L, 2)?BME680_OS_16X:(luaL_checkinteger(L, 2)&bit3)); // 2-nd parameter: pressure oversampling
|
|
os_hum = (!lua_isnumber(L, 3))?BME680_OS_1X:(luaL_checkinteger(L, 3)&bit3);
|
|
bme680_mode = BME680_SLEEP_MODE | (os_pres << 2) | (os_temp << 5);
|
|
os_hum = os_hum; // 3-rd parameter: humidity oversampling
|
|
|
|
filter = ((!lua_isnumber(L, 6)?BME680_FILTER_SIZE_31:(luaL_checkinteger(L, 6)&bit3)) << 2); // 6-th parameter: IIR filter
|
|
|
|
NODE_DBG("mode: %x\nhumidity oss: %x\nconfig: %x\n", bme680_mode, os_hum, filter);
|
|
|
|
heatr_dur = (!lua_isnumber(L, 5)?DEFAULT_HEATER_DUR:(luaL_checkinteger(L, 5))); // 5-th parameter: heater duration
|
|
w8u(BME680_GAS_WAIT0_ADDR, calc_heater_dur(heatr_dur));
|
|
w8u(BME680_RES_HEAT0_ADDR, calc_heater_res((!lua_isnumber(L, 4)?DEFAULT_HEATER_TEMP:(luaL_checkinteger(L, 4))))); // 4-th parameter: heater temperature
|
|
|
|
w8u(BME680_CONF_ODR_FILT_ADDR, BME680_SET_BITS_POS_0(r8u(BME680_CONF_ODR_FILT_ADDR), BME680_FILTER, filter)); // #define BME680_CONF_ODR_FILT_ADDR UINT8_C(0x75)
|
|
|
|
// set heater on
|
|
w8u(BME680_CONF_HEAT_CTRL_ADDR, BME680_SET_BITS_POS_0(r8u(BME680_CONF_HEAT_CTRL_ADDR), BME680_HCTRL, 1));
|
|
|
|
w8u(BME680_CONF_T_P_MODE_ADDR, bme680_mode);
|
|
w8u(BME680_CONF_OS_H_ADDR, BME680_SET_BITS_POS_0(r8u(BME680_CONF_OS_H_ADDR), BME680_OSH, os_hum));
|
|
w8u(BME680_CONF_ODR_RUN_GAS_NBC_ADDR, 1 << 4 | 0 & bit3);
|
|
}
|
|
lua_pushinteger(L, 1);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void bme280_readoutdone (void *arg)
|
|
{
|
|
NODE_DBG("timer out\n");
|
|
lua_State *L = lua_getstate();
|
|
lua_rawgeti (L, LUA_REGISTRYINDEX, lua_connected_readout_ref);
|
|
lua_call (L, 0, 0);
|
|
luaL_unref (L, LUA_REGISTRYINDEX, lua_connected_readout_ref);
|
|
os_timer_disarm (&bme680_timer);
|
|
}
|
|
|
|
static int bme680_lua_startreadout(lua_State* L) {
|
|
uint32_t delay;
|
|
|
|
if (lua_isnumber(L, 1)) {
|
|
delay = luaL_checkinteger(L, 1);
|
|
if (!delay) {delay = calc_dur();} // if delay is 0 then set the default delay
|
|
}
|
|
|
|
if (!lua_isnoneornil(L, 2)) {
|
|
lua_pushvalue(L, 2);
|
|
lua_connected_readout_ref = luaL_ref(L, LUA_REGISTRYINDEX);
|
|
} else {
|
|
lua_connected_readout_ref = LUA_NOREF;
|
|
}
|
|
|
|
w8u(BME680_CONF_OS_H_ADDR, os_hum);
|
|
w8u(BME680_CONF_T_P_MODE_ADDR, (bme680_mode & 0xFC) | BME680_FORCED_MODE);
|
|
|
|
NODE_DBG("control old: %x, control: %x, delay: %d\n", bme680_mode, (bme680_mode & 0xFC) | BME680_FORCED_MODE, delay);
|
|
|
|
if (lua_connected_readout_ref != LUA_NOREF) {
|
|
NODE_DBG("timer armed\n");
|
|
os_timer_disarm (&bme680_timer);
|
|
os_timer_setfn (&bme680_timer, (os_timer_func_t *)bme280_readoutdone, L);
|
|
os_timer_arm (&bme680_timer, delay, 0); // trigger callback when readout is ready
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Return nothing on failure
|
|
// Return T, QFE, H if no altitude given
|
|
// Return T, QFE, H, QNH if altitude given
|
|
static int bme680_lua_read(lua_State* L) {
|
|
uint8_t buff[BME680_FIELD_LENGTH] = { 0 };
|
|
uint8_t gas_range;
|
|
uint32_t adc_temp;
|
|
uint32_t adc_pres;
|
|
uint16_t adc_hum;
|
|
uint16_t adc_gas_res;
|
|
uint8_t status;
|
|
|
|
uint32_t qfe;
|
|
uint8_t calc_qnh = lua_isnumber(L, 1);
|
|
|
|
r8u_n(BME680_FIELD0_ADDR, BME680_FIELD_LENGTH, buff);
|
|
|
|
status = buff[0] & BME680_NEW_DATA_MSK;
|
|
|
|
/* read the raw data from the sensor */
|
|
adc_pres = (uint32_t) (((uint32_t) buff[2] * 4096) | ((uint32_t) buff[3] * 16) | ((uint32_t) buff[4] / 16));
|
|
adc_temp = (uint32_t) (((uint32_t) buff[5] * 4096) | ((uint32_t) buff[6] * 16) | ((uint32_t) buff[7] / 16));
|
|
adc_hum = (uint16_t) (((uint32_t) buff[8] * 256) | (uint32_t) buff[9]);
|
|
adc_gas_res = (uint16_t) ((uint32_t) buff[13] * 4 | (((uint32_t) buff[14]) / 64));
|
|
|
|
gas_range = buff[14] & BME680_GAS_RANGE_MSK;
|
|
|
|
status |= buff[14] & BME680_GASM_VALID_MSK;
|
|
status |= buff[14] & BME680_HEAT_STAB_MSK;
|
|
NODE_DBG("status, new_data, gas_range, gasm_valid: 0x%x, 0x%x, 0x%x, 0x%x\n", status, status & BME680_NEW_DATA_MSK, buff[14] & BME680_GAS_RANGE_MSK, buff[14] & BME680_GASM_VALID_MSK);
|
|
if (!(status & BME680_NEW_DATA_MSK)) {
|
|
return 0;
|
|
}
|
|
|
|
int16_t temp = calc_temperature(adc_temp);
|
|
amb_temp = temp / 100;
|
|
lua_pushinteger(L, temp);
|
|
qfe = calc_pressure(adc_pres);
|
|
lua_pushinteger(L, qfe);
|
|
lua_pushinteger(L, calc_humidity(adc_hum));
|
|
lua_pushinteger(L, calc_gas_resistance(adc_gas_res, gas_range));
|
|
|
|
if (calc_qnh) { // have altitude
|
|
int32_t h = luaL_checkinteger(L, 1);
|
|
double qnh = bme280_qfe2qnh(qfe, h);
|
|
lua_pushinteger(L, (int32_t)(qnh + 0.5));
|
|
return 5;
|
|
}
|
|
return 4;
|
|
}
|
|
|
|
static int bme680_lua_qfe2qnh(lua_State* L) {
|
|
if (!lua_isnumber(L, 2)) {
|
|
return luaL_error(L, "wrong arg range");
|
|
}
|
|
int32_t qfe = luaL_checkinteger(L, 1);
|
|
int32_t h = luaL_checkinteger(L, 2);
|
|
double qnh = bme280_qfe2qnh(qfe, h);
|
|
lua_pushinteger(L, (int32_t)(qnh + 0.5));
|
|
return 1;
|
|
}
|
|
|
|
static int bme680_lua_altitude(lua_State* L) {
|
|
if (!lua_isnumber(L, 2)) {
|
|
return luaL_error(L, "wrong arg range");
|
|
}
|
|
int32_t P = luaL_checkinteger(L, 1);
|
|
int32_t qnh = luaL_checkinteger(L, 2);
|
|
double h = (1.0 - pow((double)P/(double)qnh, 1.0/5.25588)) / 2.25577e-5 * 100.0;
|
|
|
|
lua_pushinteger(L, (int32_t)(h + (((h<0)?-1:(h>0)) * 0.5)));
|
|
return 1;
|
|
}
|
|
|
|
static int bme680_lua_dewpoint(lua_State* L) {
|
|
if (!lua_isnumber(L, 2)) {
|
|
return luaL_error(L, "wrong arg range");
|
|
}
|
|
double H = luaL_checkinteger(L, 1)/100000.0;
|
|
double T = luaL_checkinteger(L, 2)/100.0;
|
|
|
|
const double c243 = 243.5;
|
|
const double c17 = 17.67;
|
|
double c = ln(H) + ((c17 * T) / (c243 + T));
|
|
double d = (c243 * c)/(c17 - c) * 100.0;
|
|
|
|
lua_pushinteger(L, (int32_t)(d + (((d<0)?-1:(d>0)) * 0.5)));
|
|
return 1;
|
|
}
|
|
|
|
LROT_BEGIN(bme680)
|
|
LROT_FUNCENTRY( setup, bme680_lua_setup )
|
|
LROT_FUNCENTRY( startreadout, bme680_lua_startreadout )
|
|
LROT_FUNCENTRY( qfe2qnh, bme680_lua_qfe2qnh )
|
|
LROT_FUNCENTRY( altitude, bme680_lua_altitude )
|
|
LROT_FUNCENTRY( dewpoint, bme680_lua_dewpoint )
|
|
LROT_FUNCENTRY( read, bme680_lua_read )
|
|
LROT_END( bme680, NULL, 0 )
|
|
|
|
|
|
NODEMCU_MODULE(BME680, "bme680", bme680, NULL);
|