Johny Mattsson 526d21dab4 Major cleanup - c_whatever is finally history. (#2838)
The PR removed the bulk of non-newlib headers from the NodeMCU source base.  
app/libc has now been cut down to the bare minimum overrides to shadow the 
corresponding functions in the SDK's libc. The old c_xyz.h headerfiles have been 
nuked in favour of the standard <xyz.h> headers, with a few exceptions over in 
sdk-overrides. Again, shipping a libc.a without headers is a terrible thing to do. We're 
still living on a prayer that libc was configured the same was as a default-configured
xtensa gcc toolchain assumes it is. That part I cannot do anything about, unfortunately, 
but it's no worse than it has been before.

This enables our source files to compile successfully using the standard header files, 
and use the typical malloc()/calloc()/realloc()/free(), the strwhatever()s and 
memwhatever()s. These end up, through macro and linker magic, mapped to the 
appropriate SDK or ROM functions.
2019-07-22 00:58:21 +03:00

187 lines
4.8 KiB
C

/******************************************************************************
* Flash api for NodeMCU
* NodeMCU Team
* 2014-12-31
*******************************************************************************/
#include "user_config.h"
#include "flash_api.h"
#include "spi_flash.h"
#include <stdio.h>
#include <string.h>
uint32_t flash_detect_size_byte(void)
{
// enable operations on whole physical flash, SDK might have restricted
// the flash size already
extern SpiFlashChip * flashchip;
uint32 orig_chip_size = flashchip->chip_size;
flashchip->chip_size = FLASH_SIZE_16MBYTE;
#define FLASH_BUFFER_SIZE_DETECT 32
uint32_t dummy_size = FLASH_SIZE_256KBYTE;
uint8_t data_orig[FLASH_BUFFER_SIZE_DETECT] ICACHE_STORE_ATTR = {0};
uint8_t data_new[FLASH_BUFFER_SIZE_DETECT] ICACHE_STORE_ATTR = {0};
if (SPI_FLASH_RESULT_OK == flash_read(0, (uint32 *)data_orig, FLASH_BUFFER_SIZE_DETECT))
{
dummy_size = FLASH_SIZE_256KBYTE;
while ((dummy_size < FLASH_SIZE_16MBYTE) &&
(SPI_FLASH_RESULT_OK == flash_read(dummy_size, (uint32 *)data_new, FLASH_BUFFER_SIZE_DETECT)) &&
(0 != memcmp(data_orig, data_new, FLASH_BUFFER_SIZE_DETECT))
)
{
dummy_size *= 2;
}
};
// revert temporary setting
flashchip->chip_size = orig_chip_size;
return dummy_size;
#undef FLASH_BUFFER_SIZE_DETECT
}
static SPIFlashInfo spi_flash_info = {0};
SPIFlashInfo *flash_rom_getinfo(void)
{
if (spi_flash_info.entry_point == 0) {
spi_flash_read(0, (uint32 *)(& spi_flash_info), sizeof(spi_flash_info));
}
return &spi_flash_info;
}
uint8_t flash_rom_get_size_type(void)
{
return flash_rom_getinfo()->size;
}
uint32_t flash_rom_get_size_byte(void)
{
static uint32_t flash_size = 0;
if (flash_size == 0)
{
switch (flash_rom_getinfo()->size)
{
case SIZE_2MBIT:
// 2Mbit, 256kByte
flash_size = 256 * 1024;
break;
case SIZE_4MBIT:
// 4Mbit, 512kByte
flash_size = 512 * 1024;
break;
case SIZE_8MBIT:
// 8Mbit, 1MByte
flash_size = 1 * 1024 * 1024;
break;
case SIZE_16MBIT:
// 16Mbit, 2MByte
flash_size = 2 * 1024 * 1024;
break;
case SIZE_32MBIT:
// 32Mbit, 4MByte
flash_size = 4 * 1024 * 1024;
break;
case SIZE_16MBIT_8M_8M:
// 16Mbit, 2MByte
flash_size = 2 * 1024 * 1024;
break;
case SIZE_32MBIT_8M_8M:
// 32Mbit, 4MByte
flash_size = 4 * 1024 * 1024;
break;
case SIZE_32MBIT_16M_16M:
// 32Mbit, 4MByte
flash_size = 4 * 1024 * 1024;
break;
case SIZE_64MBIT:
// 64Mbit, 8MByte
flash_size = 8 * 1024 * 1024;
break;
case SIZE_128MBIT:
// 128Mbit, 16MByte
flash_size = 16 * 1024 * 1024;
break;
default:
// Unknown flash size, fall back mode.
flash_size = 512 * 1024;
break;
}
}
return flash_size;
}
uint16_t flash_rom_get_sec_num(void)
{
return ( flash_rom_get_size_byte() / (SPI_FLASH_SEC_SIZE) );
}
uint8_t flash_rom_get_mode(void)
{
uint8_t mode = flash_rom_getinfo()->mode;
switch (mode)
{
// Reserved for future use
case MODE_QIO:
break;
case MODE_QOUT:
break;
case MODE_DIO:
break;
case MODE_DOUT:
break;
}
return mode;
}
uint32_t flash_rom_get_speed(void)
{
uint32_t speed = 0;
uint8_t spi_speed = flash_rom_getinfo()->speed;
switch (spi_speed)
{
case SPEED_40MHZ:
// 40MHz
speed = 40000000;
break;
case SPEED_26MHZ:
//26.7MHz
speed = 26700000;
break;
case SPEED_20MHZ:
// 20MHz
speed = 20000000;
break;
case SPEED_80MHZ:
//80MHz
speed = 80000000;
break;
}
return speed;
}
uint8_t byte_of_aligned_array(const uint8_t *aligned_array, uint32_t index)
{
if ( (((uint32_t)aligned_array) % 4) != 0 )
{
NODE_DBG("aligned_array is not 4-byte aligned.\n");
return 0;
}
volatile uint32_t v = ((uint32_t *)aligned_array)[ index / 4 ];
uint8_t *p = (uint8_t *) (&v);
return p[ (index % 4) ];
}
uint16_t word_of_aligned_array(const uint16_t *aligned_array, uint32_t index)
{
if ( (((uint32_t)aligned_array) % 4) != 0 )
{
NODE_DBG("aligned_array is not 4-byte aligned.\n");
return 0;
}
volatile uint32_t v = ((uint32_t *)aligned_array)[ index / 2 ];
uint16_t *p = (uint16_t *) (&v);
return (index % 2 == 0) ? p[ 0 ] : p[ 1 ];
}