439 lines
17 KiB
C
Raw Normal View History

2012-08-14 18:07:04 -04:00
/*****************************************************************************
* Product: "Fly 'n' Shoot" game example, cooperative Vanilla kernel
* Last Updated for Version: 4.5.02
* Date of the Last Update: Jul 21, 2012
*
* Q u a n t u m L e a P s
* ---------------------------
* innovating embedded systems
*
* Copyright (C) 2002-2012 Quantum Leaps, LLC. All rights reserved.
*
* This program is open source software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published
* by the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* Alternatively, this program may be distributed and modified under the
* terms of Quantum Leaps commercial licenses, which expressly supersede
* the GNU General Public License and are specifically designed for
* licensees interested in retaining the proprietary status of their code.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Contact information:
* Quantum Leaps Web sites: http://www.quantum-leaps.com
* http://www.state-machine.com
* e-mail: info@quantum-leaps.com
*****************************************************************************/
#include "qp_port.h"
#include "game.h"
#include "bsp.h"
#include "lm3s_cmsis.h"
#include "display96x16x1.h"
Q_DEFINE_THIS_FILE
enum ISR_Priorities { /* ISR priorities starting from the highest urgency */
GPIOPORTA_PRIO,
ADCSEQ3_PRIO,
SYSTICK_PRIO,
/* ... */
};
#define ADC_TRIGGER_TIMER 0x00000005U
#define ADC_CTL_IE 0x00000040U
#define ADC_CTL_END 0x00000020U
#define ADC_CTL_CH0 0x00000000U
#define ADC_SSFSTAT0_EMPTY 0x00000100U
#define UART_FR_TXFE 0x00000080U
/* Local-scope objects -----------------------------------------------------*/
#define PUSH_BUTTON (1U << 4)
#define USER_LED (1U << 5)
#ifdef Q_SPY
QSTimeCtr QS_tickTime_;
QSTimeCtr QS_tickPeriod_;
uint8_t l_SysTick_Handler;
uint8_t l_ADCSeq3_IRQHandler;
#define UART_BAUD_RATE 115200U
#define UART_TXFIFO_DEPTH 16U
#endif
/* prototypes of ISRs defined in the BSP....................................*/
void SysTick_Handler(void);
void ADCSeq3_IRQHandler(void);
void assert_failed(char const *file, int line);
/*..........................................................................*/
void SysTick_Handler(void) {
static QEvt const tickEvt = { TIME_TICK_SIG, 00U, 0U };
#ifdef Q_SPY
{
uint32_t dummy = SysTick->CTRL; /* clear SysTick_CTRL_COUNTFLAG */
QS_tickTime_ += QS_tickPeriod_; /* account for the clock rollover */
}
#endif
QF_TICK(&l_SysTick_Handler); /* process all armed time events */
QF_PUBLISH(&tickEvt, &l_SysTick_Handler); /* publish to all subscribers */
}
/*..........................................................................*/
void ADCSeq3_IRQHandler(void) {
static uint32_t adcLPS = 0U; /* Low-Pass-Filtered ADC reading */
static uint32_t wheel = 0U; /* the last wheel position */
static uint32_t btn_debounced = 0U;
static uint8_t debounce_state = 0U;
uint32_t tmp;
ADC->ISC = (1U << 3); /* clear the ADCSeq3 interrupt */
/* the ADC Sequence 3 FIFO must have a sample */
Q_ASSERT((ADC->SSFSTAT3 & ADC_SSFSTAT0_EMPTY) == 0);
tmp = ADC->SSFIFO3; /* read the data from the ADC */
/* 1st order low-pass filter: time constant ~= 2^n samples
* TF = (1/2^n)/(z-((2^n - 1)/2^n)),
* eg, n=3, y(k+1) = y(k) - y(k)/8 + x(k)/8 => y += (x - y)/8
*/
adcLPS += (((int)tmp - (int)adcLPS + 4) >> 3);
/* compute the next position of the wheel */
tmp = (((1 << 10) - adcLPS)*(BSP_SCREEN_HEIGHT - 2)) >> 10;
if (tmp != wheel) { /* did the wheel position change? */
ObjectPosEvt *ope = Q_NEW(ObjectPosEvt, PLAYER_SHIP_MOVE_SIG);
ope->x = (uint8_t)GAME_SHIP_X; /* x-position is fixed */
ope->y = (uint8_t)tmp;
QACTIVE_POST(AO_Ship, (QEvt *)ope, &l_ADCSeq3_IRQHandler);
wheel = tmp; /* save the last position of the wheel */
}
tmp = GPIOC->DATA_Bits[PUSH_BUTTON]; /* read the push btn */
switch (debounce_state) {
case 0:
if (tmp != btn_debounced) {
debounce_state = 1U; /* transition to the next state */
}
break;
case 1:
if (tmp != btn_debounced) {
debounce_state = 2U; /* transition to the next state */
}
else {
debounce_state = 0U; /* transition back to state 0 */
}
break;
case 2:
if (tmp != btn_debounced) {
debounce_state = 3U; /* transition to the next state */
}
else {
debounce_state = 0U; /* transition back to state 0 */
}
break;
case 3:
if (tmp != btn_debounced) {
btn_debounced = tmp; /* save the debounced button value */
if (tmp == 0U) { /* is the button depressed? */
static QEvt const fireEvt = { PLAYER_TRIGGER_SIG, 0 };
QF_PUBLISH(&fireEvt, &l_ADCSeq3_IRQHandler);
}
}
debounce_state = 0U; /* transition back to state 0 */
break;
}
}
/*..........................................................................*/
void BSP_init(void) {
/* set the system clock as specified in lm3s_config.h (20MHz from PLL) */
SystemInit();
/* enable clock to the peripherals used by the application */
SYSCTL->RCGC0 |= (1 << 16); /* enable clock to ADC */
SYSCTL->RCGC1 |= (1 << 16) | (1 << 17); /* enable clock to TIMER0 & 1 */
SYSCTL->RCGC2 |= (1 << 0) | (1 << 2); /* enable clock to GPIOA & C */
__NOP(); /* wait after enabling clocks */
__NOP();
__NOP();
/* Configure the ADC Sequence 3 to sample the potentiometer when the
* timer expires. Set the sequence priority to 0 (highest).
*/
ADC->EMUX = (ADC->EMUX & ~(0xF << (3*4)))
| (ADC_TRIGGER_TIMER << (3*4));
ADC->SSPRI = (ADC->SSPRI & ~(0xF << (3*4)))
| (0 << (3*4));
/* set ADC Sequence 3 step to 0 */
ADC->SSMUX3 = (ADC->SSMUX3 & ~(0xF << (0*4)))
| ((ADC_CTL_CH0 | ADC_CTL_IE | ADC_CTL_END) << (0*4));
ADC->SSCTL3 = (ADC->SSCTL3 & ~(0xF << (0*4)))
| (((ADC_CTL_CH0 | ADC_CTL_IE | ADC_CTL_END) >> 4) <<(0*4));
ADC->ACTSS |= (1 << 3);
/* configure TIMER1 to trigger the ADC to sample the potentiometer. */
TIMER1->CTL &= ~((1 << 0) | (1 << 16));
TIMER1->CFG = 0;
TIMER1->TAMR = 0x02;
TIMER1->TAILR = SystemFrequency / 120;
TIMER1->CTL |= 0x02;
TIMER1->CTL |= 0x20;
/* configure the LED and push button */
GPIOC->DIR |= USER_LED; /* set direction: output */
GPIOC->DEN |= USER_LED; /* digital enable */
GPIOC->DATA_Bits[USER_LED] = 0; /* turn the User LED off */
GPIOC->DIR &= ~PUSH_BUTTON; /* set direction: input */
GPIOC->DEN |= PUSH_BUTTON; /* digital enable */
Display96x16x1Init(1); /* initialize the OLED display */
if (QS_INIT((void *)0) == 0) { /* initialize the QS software tracing */
Q_ERROR();
}
QS_OBJ_DICTIONARY(&l_SysTick_Handler);
QS_OBJ_DICTIONARY(&l_ADCSeq3_IRQHandler);
}
/*..........................................................................*/
void BSP_drawBitmap(uint8_t const *bitmap) {
Display96x16x1ImageDraw(bitmap, 0, 0,
BSP_SCREEN_WIDTH, (BSP_SCREEN_HEIGHT >> 3));
}
/*..........................................................................*/
void BSP_drawNString(uint8_t x, uint8_t y, char const *str) {
Display96x16x1StringDraw(str, x, y);
}
/*..........................................................................*/
void BSP_updateScore(uint16_t score) {
/* no room on the OLED display of the EV-LM3S811 board for the score */
}
/*..........................................................................*/
void BSP_displayOn(void) {
Display96x16x1DisplayOn();
}
/*..........................................................................*/
void BSP_displayOff(void) {
Display96x16x1DisplayOff();
}
/*..........................................................................*/
void QF_onStartup(void) {
/* set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate */
SysTick_Config(SystemFrequency / BSP_TICKS_PER_SEC);
/* set priorities of all interrupts in the system... */
NVIC_SetPriority(SysTick_IRQn, SYSTICK_PRIO);
NVIC_SetPriority(ADCSeq3_IRQn, ADCSEQ3_PRIO);
NVIC_SetPriority(GPIOPortA_IRQn, GPIOPORTA_PRIO);
NVIC_EnableIRQ(ADCSeq3_IRQn);
NVIC_EnableIRQ(GPIOPortA_IRQn);
ADC->ISC = (1 << 3);
ADC->IM |= (1 << 3);
TIMER1->CTL |= ((1 << 0) | (1 << 16)); /* enable TIMER1 */
}
/*..........................................................................*/
void QF_onCleanup(void) {
}
/*..........................................................................*/
void QF_onIdle(void) { /* called with interrupts disabled, see NOTE01 */
/* toggle the User LED on and then off, see NOTE02 */
GPIOC->DATA_Bits[USER_LED] = USER_LED; /* turn the User LED on */
GPIOC->DATA_Bits[USER_LED] = 0; /* turn the User LED off */
#ifdef Q_SPY
QF_INT_ENABLE();
if ((UART0->FR & UART_FR_TXFE) != 0) { /* TX done? */
uint16_t fifo = UART_TXFIFO_DEPTH; /* max bytes we can accept */
uint8_t const *block;
QF_INT_DISABLE();
block = QS_getBlock(&fifo); /* try to get next block to transmit */
QF_INT_ENABLE();
while (fifo-- != 0) { /* any bytes in the block? */
UART0->DR = *block++; /* put into the FIFO */
}
}
#elif defined NDEBUG
/* Put the CPU and peripherals to the low-power mode.
* you might need to customize the clock management for your application,
* see the datasheet for your particular Cortex-M3 MCU.
*/
__WFI(); /* Wait-For-Interrupt */
QF_INT_ENABLE();
#else
QF_INT_ENABLE();
#endif
}
/*..........................................................................*/
void Q_onAssert(char const Q_ROM * const Q_ROM_VAR file, int line) {
(void)file; /* avoid compiler warning */
(void)line; /* avoid compiler warning */
QF_INT_DISABLE(); /* make sure that all interrupts are disabled */
QS_ASSERTION(file, line);
for (;;) { /* NOTE: replace the loop with reset for final version */
}
}
/*..........................................................................*/
/* error routine that is called if the CMSIS library encounters an error */
void assert_failed(char const *file, int line) {
Q_onAssert(file, line);
}
/*--------------------------------------------------------------------------*/
#ifdef Q_SPY
/*..........................................................................*/
uint8_t QS_onStartup(void const *arg) {
static uint8_t qsBuf[6*256]; /* buffer for Quantum Spy */
uint32_t tmp;
QS_initBuf(qsBuf, sizeof(qsBuf));
/* enable the peripherals used by the UART0 */
SYSCTL->RCGC1 |= (1 << 0); /* enable clock to UART0 */
SYSCTL->RCGC2 |= (1 << 0); /* enable clock to GPIOA */
__NOP(); /* wait after enabling clocks */
__NOP();
__NOP();
/* configure UART0 pins for UART operation */
tmp = (1 << 0) | (1 << 1);
GPIOA->DIR &= ~tmp;
GPIOA->AFSEL |= tmp;
GPIOA->DR2R |= tmp; /* set 2mA drive, DR4R and DR8R are cleared */
GPIOA->SLR &= ~tmp;
GPIOA->ODR &= ~tmp;
GPIOA->PUR &= ~tmp;
GPIOA->PDR &= ~tmp;
GPIOA->DEN |= tmp;
/* configure the UART for the desired baud rate, 8-N-1 operation */
tmp = (((SystemFrequency * 8) / UART_BAUD_RATE) + 1) / 2;
UART0->IBRD = tmp / 64;
UART0->FBRD = tmp % 64;
UART0->LCRH = 0x60; /* configure 8-N-1 operation */
UART0->LCRH |= 0x10;
UART0->CTL |= (1 << 0) | (1 << 8) | (1 << 9);
QS_tickPeriod_ = SystemFrequency / BSP_TICKS_PER_SEC;
QS_tickTime_ = QS_tickPeriod_; /* to start the timestamp at zero */
/* setup the QS filters... */
QS_FILTER_ON(QS_ALL_RECORDS);
// QS_FILTER_OFF(QS_QEP_STATE_EMPTY);
// QS_FILTER_OFF(QS_QEP_STATE_ENTRY);
// QS_FILTER_OFF(QS_QEP_STATE_EXIT);
// QS_FILTER_OFF(QS_QEP_STATE_INIT);
// QS_FILTER_OFF(QS_QEP_INIT_TRAN);
// QS_FILTER_OFF(QS_QEP_INTERN_TRAN);
// QS_FILTER_OFF(QS_QEP_TRAN);
// QS_FILTER_OFF(QS_QEP_IGNORED);
// QS_FILTER_OFF(QS_QEP_DISPATCH);
// QS_FILTER_OFF(QS_QEP_UNHANDLED);
QS_FILTER_OFF(QS_QF_ACTIVE_ADD);
QS_FILTER_OFF(QS_QF_ACTIVE_REMOVE);
QS_FILTER_OFF(QS_QF_ACTIVE_SUBSCRIBE);
QS_FILTER_OFF(QS_QF_ACTIVE_UNSUBSCRIBE);
QS_FILTER_OFF(QS_QF_ACTIVE_POST_FIFO);
QS_FILTER_OFF(QS_QF_ACTIVE_POST_LIFO);
QS_FILTER_OFF(QS_QF_ACTIVE_GET);
QS_FILTER_OFF(QS_QF_ACTIVE_GET_LAST);
QS_FILTER_OFF(QS_QF_EQUEUE_INIT);
QS_FILTER_OFF(QS_QF_EQUEUE_POST_FIFO);
QS_FILTER_OFF(QS_QF_EQUEUE_POST_LIFO);
QS_FILTER_OFF(QS_QF_EQUEUE_GET);
QS_FILTER_OFF(QS_QF_EQUEUE_GET_LAST);
QS_FILTER_OFF(QS_QF_MPOOL_INIT);
QS_FILTER_OFF(QS_QF_MPOOL_GET);
QS_FILTER_OFF(QS_QF_MPOOL_PUT);
QS_FILTER_OFF(QS_QF_PUBLISH);
QS_FILTER_OFF(QS_QF_NEW);
QS_FILTER_OFF(QS_QF_GC_ATTEMPT);
QS_FILTER_OFF(QS_QF_GC);
// QS_FILTER_OFF(QS_QF_TICK);
QS_FILTER_OFF(QS_QF_TIMEEVT_ARM);
QS_FILTER_OFF(QS_QF_TIMEEVT_AUTO_DISARM);
QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM_ATTEMPT);
QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM);
QS_FILTER_OFF(QS_QF_TIMEEVT_REARM);
QS_FILTER_OFF(QS_QF_TIMEEVT_POST);
QS_FILTER_OFF(QS_QF_CRIT_ENTRY);
QS_FILTER_OFF(QS_QF_CRIT_EXIT);
QS_FILTER_OFF(QS_QF_ISR_ENTRY);
QS_FILTER_OFF(QS_QF_ISR_EXIT);
QS_RESET();
return (uint8_t)1; /* return success */
}
/*..........................................................................*/
void QS_onCleanup(void) {
}
/*..........................................................................*/
QSTimeCtr QS_onGetTime(void) { /* invoked with interrupts locked */
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { /* not set? */
return QS_tickTime_ - (QSTimeCtr)SysTick->VAL;
}
else { /* the rollover occured, but the SysTick_ISR did not run yet */
return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL;
}
}
/*..........................................................................*/
void QS_onFlush(void) {
uint16_t fifo = UART_TXFIFO_DEPTH; /* Tx FIFO depth */
uint8_t const *block;
QF_INT_DISABLE();
while ((block = QS_getBlock(&fifo)) != (uint8_t *)0) {
QF_INT_ENABLE();
/* busy-wait until TX FIFO empty */
while ((UART0->FR & UART_FR_TXFE) == 0) {
}
while (fifo-- != 0) { /* any bytes in the block? */
UART0->DR = *block++; /* put into the TX FIFO */
}
fifo = UART_TXFIFO_DEPTH; /* re-load the Tx FIFO depth */
QF_INT_DISABLE();
}
QF_INT_ENABLE();
}
#endif /* Q_SPY */
/*--------------------------------------------------------------------------*/
/*****************************************************************************
* NOTE01:
* The QF_onIdle() callback is called with interrupts locked, because the
* determination of the idle condition might change by any interrupt posting
* an event. QF::onIdle() must internally unlock interrupts, ideally
* atomically with putting the CPU to the power-saving mode.
*
* NOTE02:
* The User LED is used to visualize the idle loop activity. The brightness
* of the LED is proportional to the frequency of invcations of the idle loop.
* Please note that the LED is toggled with interrupts locked, so no interrupt
* execution time contributes to the brightness of the User LED.
*/