/***************************************************************************** * Product: DPP example, STM32746G-Discovery board, dual-mode QXK kernel * Last Updated for Version: 5.9.0 * Date of the Last Update: 2017-04-13 * * Q u a n t u m L e a P s * --------------------------- * innovating embedded systems * * Copyright (C) Quantum Leaps, LLC. All rights reserved. * * This program is open source software: you can redistribute it and/or * modify it under the terms of the GNU General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Alternatively, this program may be distributed and modified under the * terms of Quantum Leaps commercial licenses, which expressly supersede * the GNU General Public License and are specifically designed for * licensees interested in retaining the proprietary status of their code. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * Contact information: * https://state-machine.com * mailto:info@state-machine.com *****************************************************************************/ #include "qpc.h" #include "dpp.h" #include "bsp.h" /* STM32Cube include files */ #include "stm32f7xx_hal.h" #include "stm32746g_discovery.h" /* add other drivers if necessary... */ Q_DEFINE_THIS_FILE /*!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! * Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority(). * DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE! */ enum KernelUnawareISRs { /* see NOTE00 */ USART1_PRIO, /* ... */ MAX_KERNEL_UNAWARE_CMSIS_PRI /* keep always last */ }; /* "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts */ Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI); enum KernelAwareISRs { GPIO_EVEN_PRIO = QF_AWARE_ISR_CMSIS_PRI, /* see NOTE00 */ SYSTICK_PRIO, /* ... */ MAX_KERNEL_AWARE_CMSIS_PRI /* keep always last */ }; /* "kernel-aware" interrupts should not overlap the PendSV priority */ Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS))); /* ISRs defined in this BSP ------------------------------------------------*/ void SysTick_Handler(void); //void GPIO_EVEN_IRQHandler(void); void USART1_IRQHandler(void); /* Local-scope objects -----------------------------------------------------*/ static uint32_t l_rnd; /* random seed */ static QXMutex l_rndMutex; /* mutex to protect the random seed */ #ifdef Q_SPY QSTimeCtr QS_tickTime_; QSTimeCtr QS_tickPeriod_; /* QS source IDs */ static uint8_t const l_SysTick_Handler = (uint8_t)0; static uint8_t const l_GPIO_EVEN_IRQHandler = (uint8_t)0; static UART_HandleTypeDef l_uartHandle; enum AppRecords { /* application-specific trace records */ PHILO_STAT = QS_USER, COMMAND_STAT }; #endif /*..........................................................................*/ void SysTick_Handler(void) { /* state of the button debouncing, see below */ static struct ButtonsDebouncing { uint32_t depressed; uint32_t previous; } buttons = { ~0U, ~0U }; uint32_t current; uint32_t tmp; QXK_ISR_ENTRY(); /* inform QXK about entering an ISR */ #ifdef Q_SPY { tmp = SysTick->CTRL; /* clear SysTick_CTRL_COUNTFLAG */ QS_tickTime_ += QS_tickPeriod_; /* account for the clock rollover */ } #endif QF_TICK_X(0U, &l_SysTick_Handler); /* process time events for rate 0 */ /* Perform the debouncing of buttons. The algorithm for debouncing * adapted from the book "Embedded Systems Dictionary" by Jack Ganssle * and Michael Barr, page 71. */ current = BSP_PB_GetState(BUTTON_KEY); /* read the Key button */ tmp = buttons.depressed; /* save the debounced depressed buttons */ buttons.depressed |= (buttons.previous & current); /* set depressed */ buttons.depressed &= (buttons.previous | current); /* clear released */ buttons.previous = current; /* update the history */ tmp ^= buttons.depressed; /* changed debounced depressed */ if (tmp != 0U) { /* debounced Key button state changed? */ if (buttons.depressed != 0U) { /* PB0 depressed?*/ static QEvt const pauseEvt = { PAUSE_SIG, 0U, 0U}; QF_PUBLISH(&pauseEvt, &l_SysTick_Handler); } else { /* the button is released */ static QEvt const serveEvt = { SERVE_SIG, 0U, 0U}; QF_PUBLISH(&serveEvt, &l_SysTick_Handler); } } QXK_ISR_EXIT(); /* inform QXK about exiting an ISR */ } /*..........................................................................*/ #ifdef Q_SPY /* * ISR for receiving bytes from the QSPY Back-End * NOTE: This ISR is "QF-unaware" meaning that it does not interact with * the QF/QXK and is not disabled. Such ISRs don't need to call QXK_ISR_ENTRY/ * QXK_ISR_EXIT and they cannot post or publish events. */ void USART1_IRQHandler(void) { /* is RX register NOT empty? */ if ((l_uartHandle.Instance->ISR & USART_ISR_RXNE) != 0) { uint32_t b = l_uartHandle.Instance->RDR; QS_RX_PUT(b); l_uartHandle.Instance->ISR &= ~USART_ISR_RXNE; /* clear interrupt */ } } /*..........................................................................*/ void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandle) { (void)UartHandle; /* dummy implementation needed for STM32Cube */ } #endif /*..........................................................................*/ void BSP_init(void) { RCC_OscInitTypeDef RCC_OscInitStruct; RCC_ClkInitTypeDef RCC_ClkInitStruct; SCB_EnableICache(); /* Enable I-Cache */ SCB_EnableDCache(); /* Enable D-Cache */ /* Configure Flash prefetch and Instr. cache through ART accelerator */ #if (ART_ACCLERATOR_ENABLE != 0) __HAL_FLASH_ART_ENABLE(); #endif /* ART_ACCLERATOR_ENABLE */ /* Configure the system clock to 216 MHz... */ /* Enable HSE Oscillator and activate PLL with HSE as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 25; RCC_OscInitStruct.PLL.PLLN = 432; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 9; Q_ALLEGE(HAL_RCC_OscConfig(&RCC_OscInitStruct) == HAL_OK); /* Activate the OverDrive to reach the 216 MHz Frequency */ Q_ALLEGE(HAL_PWREx_EnableOverDrive() == HAL_OK); /* Set PLL as system clock source * and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; Q_ALLEGE(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_7) == HAL_OK); /* configure the FPU usage by choosing one of the options... */ #if 1 /* OPTION 1: * Use the automatic FPU state preservation and the FPU lazy stacking. * * NOTE: * Use the following setting when FPU is used in more than one task or * in any ISRs. This setting is the safest and recommended, but requires * extra stack space and CPU cycles. */ FPU->FPCCR |= (1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos); #else /* OPTION 2: * Do NOT to use the automatic FPU state preservation and * do NOT to use the FPU lazy stacking. * * NOTE: * Use the following setting when FPU is used in ONE task only and not * in any ISR. This setting is very efficient, but if more than one task * (or ISR) start using the FPU, this can lead to corruption of the * FPU registers. This option should be used with CAUTION. */ FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos)); #endif /* Configure LED1 */ BSP_LED_Init(LED1); /* Configure the User Button in GPIO Mode */ BSP_PB_Init(BUTTON_KEY, BUTTON_MODE_GPIO); //... BSP_randomSeed(1234U); if (QS_INIT((void *)0) == 0) { /* initialize the QS software tracing */ Q_ERROR(); } QS_OBJ_DICTIONARY(&l_SysTick_Handler); QS_OBJ_DICTIONARY(&l_GPIO_EVEN_IRQHandler); QS_USR_DICTIONARY(PHILO_STAT); QS_USR_DICTIONARY(COMMAND_STAT); } /*..........................................................................*/ void BSP_displayPhilStat(uint8_t n, char const *stat) { if (stat[0] == 'e') { BSP_LED_On(LED1); } else { BSP_LED_Off(LED1); } QS_BEGIN(PHILO_STAT, AO_Philo[n]) /* application-specific record begin */ QS_U8(1, n); /* Philosopher number */ QS_STR(stat); /* Philosopher status */ QS_END() } /*..........................................................................*/ void BSP_displayPaused(uint8_t paused) { if (paused != 0U) { //BSP_LED_On(LED2); not enough LEDs } else { //BSP_LED_Off(LED2); not enough LEDs } } /*..........................................................................*/ uint32_t BSP_random(void) { /* a very cheap pseudo-random-number generator */ uint32_t rnd; /* Some flating point code is to exercise the VFP... */ float volatile x = 3.1415926F; x = x + 2.7182818F; QXMutex_lock(&l_rndMutex); /* lock the random-seed mutex */ /* "Super-Duper" Linear Congruential Generator (LCG) * LCG(2^32, 3*7*11*13*23, 0, seed) */ rnd = l_rnd * (3U*7U*11U*13U*23U); l_rnd = rnd; /* set for the next time */ QXMutex_unlock(&l_rndMutex); /* unlock the random-seed mutex */ return (rnd >> 8); } /*..........................................................................*/ void BSP_randomSeed(uint32_t seed) { l_rnd = seed; QXMutex_init(&l_rndMutex, N_PHILO); /* ceiling == max Philo priority */ } /*..........................................................................*/ void BSP_terminate(int16_t result) { (void)result; } /*..........................................................................*/ void QF_onStartup(void) { /* assing all priority bits for preemption-prio. and none to sub-prio. */ NVIC_SetPriorityGrouping(0U); /* set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate */ SysTick_Config(SystemCoreClock / BSP_TICKS_PER_SEC); /* set priorities of ALL ISRs used in the system, see NOTE00 * * !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! * Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority(). * DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE! */ NVIC_SetPriority(USART1_IRQn, USART1_PRIO); NVIC_SetPriority(SysTick_IRQn, SYSTICK_PRIO); //NVIC_SetPriority(GPIO_EVEN_IRQn, GPIO_EVEN_PRIO); /* ... */ /* enable IRQs... */ //NVIC_EnableIRQ(GPIO_EVEN_IRQn); #ifdef Q_SPY NVIC_EnableIRQ(USART1_IRQn); /* UART1 interrupt used for QS-RX */ #endif } /*..........................................................................*/ void QF_onCleanup(void) { } /*..........................................................................*/ void QXK_onIdle(void) { /* toggle the User LED on and then off, see NOTE01 */ QF_INT_DISABLE(); //BSP_LED_On(LED3); not enough LEDs //BSP_LED_On(LED3); not enough LEDs QF_INT_ENABLE(); #ifdef Q_SPY QS_rxParse(); /* parse all the received bytes */ if ((l_uartHandle.Instance->ISR & UART_FLAG_TXE) != 0U) { /* TXE empty? */ uint16_t b; QF_INT_DISABLE(); b = QS_getByte(); QF_INT_ENABLE(); if (b != QS_EOD) { /* not End-Of-Data? */ l_uartHandle.Instance->TDR = (b & 0xFFU); /* put into TDR */ } } #elif defined NDEBUG /* Put the CPU and peripherals to the low-power mode. * you might need to customize the clock management for your application, * see the datasheet for your particular Cortex-M MCU. */ /* !!!CAUTION!!! * The WFI instruction stops the CPU clock, which unfortunately disables * the JTAG port, so the ST-Link debugger can no longer connect to the * board. For that reason, the call to __WFI() has to be used with CAUTION. * * NOTE: If you find your board "frozen" like this, strap BOOT0 to VDD and * reset the board, then connect with ST-Link Utilities and erase the part. * The trick with BOOT(0) is it gets the part to run the System Loader * instead of your broken code. When done disconnect BOOT0, and start over. */ //__WFI(); /* Wait-For-Interrupt */ #endif } /*..........................................................................*/ void Q_onAssert(char const *module, int loc) { /* * NOTE: add here your application-specific error handling */ (void)module; (void)loc; QS_ASSERTION(module, loc, (uint32_t)10000U); /* report assertion to QS */ #ifndef NDEBUG /* light up both LEDs */ BSP_LED_On(LED1); /* for debugging, hang on in an endless loop... */ for (;;) { } #endif NVIC_SystemReset(); } /* QS callbacks ============================================================*/ #ifdef Q_SPY /*..........................................................................*/ uint8_t QS_onStartup(void const *arg) { static uint8_t qsTxBuf[2*1024]; /* buffer for QS transmit channel */ static uint8_t qsRxBuf[100]; /* buffer for QS receive channel */ QS_initBuf (qsTxBuf, sizeof(qsTxBuf)); QS_rxInitBuf(qsRxBuf, sizeof(qsRxBuf)); l_uartHandle.Instance = USART1; l_uartHandle.Init.BaudRate = 115200; l_uartHandle.Init.WordLength = UART_WORDLENGTH_8B; l_uartHandle.Init.StopBits = UART_STOPBITS_1; l_uartHandle.Init.Parity = UART_PARITY_NONE; l_uartHandle.Init.HwFlowCtl = UART_HWCONTROL_NONE; l_uartHandle.Init.Mode = UART_MODE_TX_RX; l_uartHandle.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&l_uartHandle) != HAL_OK) { return (uint8_t)0; /* return failure */ } /* Set UART to receive 1 byte at a time via interrupt */ HAL_UART_Receive_IT(&l_uartHandle, (uint8_t *)qsRxBuf, 1); QS_tickPeriod_ = SystemCoreClock / BSP_TICKS_PER_SEC; QS_tickTime_ = QS_tickPeriod_; /* to start the timestamp at zero */ /* setup the QS filters... */ QS_FILTER_ON(QS_SM_RECORDS); QS_FILTER_ON(QS_UA_RECORDS); return (uint8_t)1; /* return success */ } /*..........................................................................*/ void QS_onCleanup(void) { } /*..........................................................................*/ QSTimeCtr QS_onGetTime(void) { /* NOTE: invoked with interrupts DISABLED */ if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { /* not set? */ return QS_tickTime_ - (QSTimeCtr)SysTick->VAL; } else { /* the rollover occured, but the SysTick_ISR did not run yet */ return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL; } } /*..........................................................................*/ void QS_onFlush(void) { uint16_t b; QF_INT_DISABLE(); while ((b = QS_getByte()) != QS_EOD) { /* while not End-Of-Data... */ QF_INT_ENABLE(); /* while TXE not empty */ while ((l_uartHandle.Instance->ISR & UART_FLAG_TXE) == 0U) { } l_uartHandle.Instance->TDR = (b & 0xFFU); /* put into TDR */ QF_INT_DISABLE(); } QF_INT_ENABLE(); } /*..........................................................................*/ /*! callback function to reset the target (to be implemented in the BSP) */ void QS_onReset(void) { NVIC_SystemReset(); } /*..........................................................................*/ /*! callback function to execute a user command (to be implemented in BSP) */ void QS_onCommand(uint8_t cmdId, uint32_t param1, uint32_t param2, uint32_t param3) { void assert_failed(char const *module, int loc); (void)cmdId; (void)param1; (void)param2; (void)param3; QS_BEGIN(COMMAND_STAT, (void *)1) /* application-specific record begin */ QS_U8(2, cmdId); QS_U32(8, param1); QS_END() if (cmdId == 10U) { Q_ERROR(); } else if (cmdId == 11U) { assert_failed("QS_onCommand", 123); } } #endif /* Q_SPY */ /*--------------------------------------------------------------------------*/ /***************************************************************************** * NOTE00: * The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest * ISR priority that is disabled by the QF framework. The value is suitable * for the NVIC_SetPriority() CMSIS function. * * Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e., * with the numerical values of priorities equal or higher than * QF_AWARE_ISR_CMSIS_PRI) are allowed to call the QXK_ISR_ENTRY/QXK_ISR_ENTRY * macros or any other QF services. These ISRs are "QF-aware". * * Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority * level (i.e., with the numerical values of priorities less than * QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel. * Such "QF-unaware" ISRs cannot call any QF services. In particular they * can NOT call the macros QXK_ISR_ENTRY/QXK_ISR_ENTRY. The only mechanism * by which a "QF-unaware" ISR can communicate with the QF framework is by * triggering a "QF-aware" ISR, which can post/publish events. * * NOTE01: * The User LED is used to visualize the idle loop activity. The brightness * of the LED is proportional to the frequency of invcations of the idle loop. * Please note that the LED is toggled with interrupts locked, so no interrupt * execution time contributes to the brightness of the User LED. */