/***************************************************************************** * Product: DPP example, NXP mbed-LPC1768 board, QK kernel * Last Updated for Version: 5.4.0 * Date of the Last Update: 2015-04-06 * * Q u a n t u m L e a P s * --------------------------- * innovating embedded systems * * Copyright (C) Quantum Leaps, LLC. state-machine.com. * * This program is open source software: you can redistribute it and/or * modify it under the terms of the GNU General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Alternatively, this program may be distributed and modified under the * terms of Quantum Leaps commercial licenses, which expressly supersede * the GNU General Public License and are specifically designed for * licensees interested in retaining the proprietary status of their code. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * Contact information: * Web : http://www.state-machine.com * Email: info@state-machine.com *****************************************************************************/ #include "qpc.h" #include "dpp.h" #include "bsp.h" #include "LPC17xx.h" /* CMSIS-compliant header file for the MCU used */ /* add other drivers if necessary... */ Q_DEFINE_THIS_FILE /*!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! * Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority(). * DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE! */ enum KernelUnawareISRs { /* see NOTE00 */ /* ... */ MAX_KERNEL_UNAWARE_CMSIS_PRI /* keep always last */ }; /* "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts */ Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI); enum KernelAwareISRs { EINT0_PRIO = QF_AWARE_ISR_CMSIS_PRI, /* see NOTE00 */ SYSTICK_PRIO, /* ... */ MAX_KERNEL_AWARE_CMSIS_PRI /* keep always last */ }; /* "kernel-aware" interrupts should not overlap the PendSV priority */ Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS))); /* ISRs defined in this BSP ------------------------------------------------*/ void SysTick_Handler(void); void EINT0_IRQHandler(void); /* Local-scope objects -----------------------------------------------------*/ /* LEDs available on the board */ #define LED_1 (1U << 18) /* P1.18 */ #define LED_2 (1U << 20) /* P1.20 */ #define LED_3 (1U << 21) /* P1.21 */ #define LED_4 (1U << 23) /* P1.23 */ /* Push-Button wired externally to DIP8 (P0.6) */ #define BTN_EXT (1U << 6) /* P0.6 */ static uint32_t l_rnd; /* random seed */ #ifdef Q_SPY QSTimeCtr QS_tickTime_; QSTimeCtr QS_tickPeriod_; /* event-source identifiers used for tracing */ static uint8_t l_SysTick_Handler; static uint8_t l_EINT0_IRQHandler; #define UART_BAUD_RATE 115200U #define UART_FR_TXFE 0x80U #define UART_TXFIFO_DEPTH 16U enum AppRecords { /* application-specific trace records */ PHILO_STAT = QS_USER }; #endif /* ISRs used in the application ==========================================*/ void SysTick_Handler(void) { /* state of the button debouncing, see below */ static struct ButtonsDebouncing { uint32_t depressed; uint32_t previous; } buttons = { ~0U, ~0U }; uint32_t current; uint32_t tmp; QK_ISR_ENTRY(); /* inform QK about entering an ISR */ #ifdef Q_SPY { tmp = SysTick->CTRL; /* clear CTRL_COUNTFLAG */ QS_tickTime_ += QS_tickPeriod_; /* account for the clock rollover */ } #endif QF_TICK_X(0U, &l_SysTick_Handler); /* process time events for rate 0 */ /* get state of the buttons */ /* Perform the debouncing of buttons. The algorithm for debouncing * adapted from the book "Embedded Systems Dictionary" by Jack Ganssle * and Michael Barr, page 71. */ current = ~LPC_GPIO0->FIOPIN; /* read P0 with the state of the Buttons */ tmp = buttons.depressed; /* save the debounced depressed buttons */ buttons.depressed |= (buttons.previous & current); /* set depressed */ buttons.depressed &= (buttons.previous | current); /* clear released */ buttons.previous = current; /* update the history */ tmp ^= buttons.depressed; /* changed debounced depressed */ if ((tmp & BTN_EXT) != 0U) { /* debounced BTN_EXT state changed? */ if ((buttons.depressed & BTN_EXT) != 0U) { /* is BTN_EXT depressed? */ static QEvt const pauseEvt = { PAUSE_SIG, 0U, 0U}; QF_PUBLISH(&pauseEvt, &l_SysTick_Handler); } else { /* the button is released */ static QEvt const serveEvt = { SERVE_SIG, 0U, 0U}; QF_PUBLISH(&serveEvt, &l_SysTick_Handler); } } QK_ISR_EXIT(); /* inform QK about exiting an ISR */ } /*..........................................................................*/ void EINT0_IRQHandler(void) { QK_ISR_ENTRY(); /* inform QK about entering an ISR */ QACTIVE_POST(AO_Table, Q_NEW(QEvt, MAX_PUB_SIG), /* for testing... */ &l_EINT0_IRQHandler); QK_ISR_EXIT(); /* inform QK about exiting an ISR */ } /* BSP functions ===========================================================*/ void BSP_init(void) { /* NOTE: SystemInit() has been already called from the startup code * but SystemCoreClock needs to be updated */ SystemCoreClockUpdate(); /* turn the GPIO clock on */ LPC_SC->PCONP |= (1U << 15); /* setup the GPIO pin functions for the LEDs... */ LPC_PINCON->PINSEL3 &= ~(3U << 4); /* LED_1: function P1.18 to GPIO */ LPC_PINCON->PINSEL3 &= ~(3U << 8); /* LED_2: function P1.20 to GPIO */ LPC_PINCON->PINSEL3 &= ~(3U << 10); /* LED_3: function P1.21 to GPIO */ LPC_PINCON->PINSEL3 &= ~(3U << 14); /* LED_4: function P1.23 to GPIO */ /* Set GPIO-P1 LED pins to output */ LPC_GPIO1->FIODIR |= (LED_1 | LED_2 | LED_3 | LED_4); /* setup the GPIO pin function for the Button... */ LPC_PINCON->PINSEL0 &= ~(3U << 12); /* function P0.6 to GPIO, pull-up */ /* Set GPIO-P0 Button pin as input */ LPC_GPIO0->FIODIR &= ~BTN_EXT; BSP_randomSeed(1234U); if (QS_INIT((void *)0) == 0U) { /* initialize the QS software tracing */ Q_ERROR(); } QS_OBJ_DICTIONARY(&l_SysTick_Handler); QS_OBJ_DICTIONARY(&l_EINT0_IRQHandler); QS_USR_DICTIONARY(PHILO_STAT); } /*..........................................................................*/ void BSP_displayPhilStat(uint8_t n, char const *stat) { if (stat[0] == 'h') { LPC_GPIO1->FIOSET = LED_1; /* turn LED on */ } else { LPC_GPIO1->FIOCLR = LED_1; /* turn LED off */ } if (stat[0] == 'e') { LPC_GPIO1->FIOSET = LED_2; /* turn LED on */ } else { LPC_GPIO1->FIOCLR = LED_2; /* turn LED off */ } QS_BEGIN(PHILO_STAT, AO_Philo[n]) /* application-specific record begin */ QS_U8(1, n); /* Philosopher number */ QS_STR(stat); /* Philosopher status */ QS_END() } /*..........................................................................*/ void BSP_displayPaused(uint8_t paused) { if (paused != (uint8_t)0) { LPC_GPIO1->FIOSET = LED_3; /* turn LED on */ } else { LPC_GPIO1->FIOCLR = LED_3; /* turn LED off */ } } /*..........................................................................*/ uint32_t BSP_random(void) { /* a very cheap pseudo-random-number generator */ /* "Super-Duper" Linear Congruential Generator (LCG) * LCG(2^32, 3*7*11*13*23, 0, seed) */ l_rnd = l_rnd * (3U*7U*11U*13U*23U); return l_rnd >> 8; } /*..........................................................................*/ void BSP_randomSeed(uint32_t seed) { l_rnd = seed; } /*..........................................................................*/ void BSP_terminate(int16_t result) { (void)result; } /* QF callbacks ============================================================*/ void QF_onStartup(void) { /* set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate */ SysTick_Config(SystemCoreClock / BSP_TICKS_PER_SEC); /* set priorities of ALL ISRs used in the system, see NOTE00 * * !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! * Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority(). * DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE! */ NVIC_SetPriority(SysTick_IRQn, SYSTICK_PRIO); NVIC_SetPriority(EINT0_IRQn, EINT0_PRIO); /* ... */ /* enable IRQs in the NVIC... */ NVIC_EnableIRQ(EINT0_IRQn); } /*..........................................................................*/ void QF_onCleanup(void) { } /*..........................................................................*/ void QK_onIdle(void) { /* toggle the User LED on and then off, see NOTE01 */ QF_INT_DISABLE(); LPC_GPIO1->FIOSET = LED_4; /* turn LED on */ __NOP(); /* a couple of NOPs to actually see the LED glow */ __NOP(); __NOP(); __NOP(); LPC_GPIO1->FIOCLR = LED_4; /* turn LED off */ QF_INT_ENABLE(); #ifdef Q_SPY if ((LPC_UART0->LSR & 0x20U) != 0U) { /* TX Holding Register empty? */ uint16_t fifo = UART_TXFIFO_DEPTH; /* max bytes we can accept */ uint8_t const *block; QF_INT_DISABLE(); block = QS_getBlock(&fifo); /* try to get next block to transmit */ QF_INT_ENABLE(); while (fifo-- != 0) { /* any bytes in the block? */ LPC_UART0->THR = *block++; /* put into the FIFO */ } } #elif defined NDEBUG /* Put the CPU and peripherals to the low-power mode. * you might need to customize the clock management for your application, * see the datasheet for your particular Cortex-M MCU. */ __WFI(); /* Wait-For-Interrupt */ #endif } /*..........................................................................*/ /* NOTE Q_onAssert() defined in assembly in startup_TM4C123GH6PM.s */ /* QS callbacks ============================================================*/ #ifdef Q_SPY static void UART0_setBaudrate(uint32_t baud); /* helper function */ /*..........................................................................*/ uint8_t QS_onStartup(void const *arg) { static uint8_t qsBuf[2*1024]; /* buffer for Quantum Spy */ QS_initBuf(qsBuf, sizeof(qsBuf)); // setup the P0_2 UART0 TX pin LPC_PINCON->PINSEL0 &= ~(3U << 4); /* clear P0_2 function */ LPC_PINCON->PINSEL0 |= (1U << 4); /* P0_2 to UART function (TX) */ LPC_PINCON->PINMODE0 &= ~(3U << 4); /* P0_2 pull-up register */ // setup the P0_3 UART0 RX pin LPC_PINCON->PINSEL0 &= ~(3U << 6); /* clear P0_3 function */ LPC_PINCON->PINSEL0 |= (1U << 6); /* P0_3 to UART function (RX) */ LPC_PINCON->PINMODE0 &= ~(3U << 6); /* P0_3 pull-up register */ /* enable power to UART0 */ LPC_SC->PCONP |= (1U << 3); /* enable FIFOs and default RX trigger level */ LPC_UART0->FCR = (1U << 0) /* FIFO Enable - 0 = Disables, 1 = Enabled */ | (0U << 1) /* Rx Fifo Reset */ | (0U << 2) /* Tx Fifo Reset */ | (0U << 6); /* Rx irq trig: 0=1char, 1=4chars, 2=8chars, 3=14chars */ /* disable IRQs */ LPC_UART0->IER = (0U << 0) /* Rx Data available IRQ disable */ | (0U << 1) /* Tx Fifo empty IRQ disable */ | (0U << 2); /* Rx Line Status IRQ disable */ // set default baud rate UART0_setBaudrate(115200U); // format 8-data-bits, 1-stop-bit, parity-none LPC_UART0->LCR = (3U << 0) /* 8-data-bits */ | (0U << 2) /* 1 stop-bit */ | (0U << 3) /* parity disable */ | (0U << 4); /* parity none */ QS_tickPeriod_ = SystemCoreClock / BSP_TICKS_PER_SEC; QS_tickTime_ = QS_tickPeriod_; /* to start the timestamp at zero */ /* setup the QS filters... */ QS_FILTER_ON(QS_QEP_STATE_ENTRY); QS_FILTER_ON(QS_QEP_STATE_EXIT); QS_FILTER_ON(QS_QEP_STATE_INIT); QS_FILTER_ON(QS_QEP_INIT_TRAN); QS_FILTER_ON(QS_QEP_INTERN_TRAN); QS_FILTER_ON(QS_QEP_TRAN); QS_FILTER_ON(QS_QEP_IGNORED); QS_FILTER_ON(QS_QEP_DISPATCH); QS_FILTER_ON(QS_QEP_UNHANDLED); // QS_FILTER_ON(QS_QF_ACTIVE_ADD); // QS_FILTER_ON(QS_QF_ACTIVE_REMOVE); // QS_FILTER_ON(QS_QF_ACTIVE_SUBSCRIBE); // QS_FILTER_ON(QS_QF_ACTIVE_UNSUBSCRIBE); // QS_FILTER_ON(QS_QF_ACTIVE_POST_FIFO); // QS_FILTER_ON(QS_QF_ACTIVE_POST_LIFO); // QS_FILTER_ON(QS_QF_ACTIVE_GET); // QS_FILTER_ON(QS_QF_ACTIVE_GET_LAST); // QS_FILTER_ON(QS_QF_EQUEUE_INIT); // QS_FILTER_ON(QS_QF_EQUEUE_POST_FIFO); // QS_FILTER_ON(QS_QF_EQUEUE_POST_LIFO); // QS_FILTER_ON(QS_QF_EQUEUE_GET); // QS_FILTER_ON(QS_QF_EQUEUE_GET_LAST); // QS_FILTER_ON(QS_QF_MPOOL_INIT); // QS_FILTER_ON(QS_QF_MPOOL_GET); // QS_FILTER_ON(QS_QF_MPOOL_PUT); // QS_FILTER_ON(QS_QF_PUBLISH); // QS_FILTER_ON(QS_QF_RESERVED8); // QS_FILTER_ON(QS_QF_NEW); // QS_FILTER_ON(QS_QF_GC_ATTEMPT); // QS_FILTER_ON(QS_QF_GC); QS_FILTER_ON(QS_QF_TICK); // QS_FILTER_ON(QS_QF_TIMEEVT_ARM); // QS_FILTER_ON(QS_QF_TIMEEVT_AUTO_DISARM); // QS_FILTER_ON(QS_QF_TIMEEVT_DISARM_ATTEMPT); // QS_FILTER_ON(QS_QF_TIMEEVT_DISARM); // QS_FILTER_ON(QS_QF_TIMEEVT_REARM); // QS_FILTER_ON(QS_QF_TIMEEVT_POST); // QS_FILTER_ON(QS_QF_TIMEEVT_CTR); // QS_FILTER_ON(QS_QF_CRIT_ENTRY); // QS_FILTER_ON(QS_QF_CRIT_EXIT); // QS_FILTER_ON(QS_QF_ISR_ENTRY); // QS_FILTER_ON(QS_QF_ISR_EXIT); // QS_FILTER_ON(QS_QF_INT_DISABLE); // QS_FILTER_ON(QS_QF_INT_ENABLE); // QS_FILTER_ON(QS_QF_ACTIVE_POST_ATTEMPT); // QS_FILTER_ON(QS_QF_EQUEUE_POST_ATTEMPT); // QS_FILTER_ON(QS_QF_MPOOL_GET_ATTEMPT); // QS_FILTER_ON(QS_QF_RESERVED1); // QS_FILTER_ON(QS_QF_RESERVED0); // QS_FILTER_ON(QS_QK_MUTEX_LOCK); // QS_FILTER_ON(QS_QK_MUTEX_UNLOCK); // QS_FILTER_ON(QS_QK_SCHEDULE); // QS_FILTER_ON(QS_QK_RESERVED1); // QS_FILTER_ON(QS_QK_RESERVED0); // QS_FILTER_ON(QS_QEP_TRAN_HIST); // QS_FILTER_ON(QS_QEP_TRAN_EP); // QS_FILTER_ON(QS_QEP_TRAN_XP); // QS_FILTER_ON(QS_QEP_RESERVED1); // QS_FILTER_ON(QS_QEP_RESERVED0); QS_FILTER_ON(QS_SIG_DICT); QS_FILTER_ON(QS_OBJ_DICT); QS_FILTER_ON(QS_FUN_DICT); QS_FILTER_ON(QS_USR_DICT); QS_FILTER_ON(QS_EMPTY); QS_FILTER_ON(QS_RESERVED3); QS_FILTER_ON(QS_RESERVED2); QS_FILTER_ON(QS_TEST_RUN); QS_FILTER_ON(QS_TEST_FAIL); QS_FILTER_ON(QS_ASSERT_FAIL); return (uint8_t)1; /* return success */ } /*..........................................................................*/ void QS_onCleanup(void) { } /*..........................................................................*/ QSTimeCtr QS_onGetTime(void) { /* NOTE: invoked with interrupts DISABLED */ if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { /* not set? */ return QS_tickTime_ - (QSTimeCtr)SysTick->VAL; } else { /* the rollover occured, but the SysTick_ISR did not run yet */ return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL; } } /*..........................................................................*/ void QS_onFlush(void) { uint16_t b; QF_INT_DISABLE(); while ((b = QS_getByte()) != QS_EOD) { /* while not End-Of-Data... */ QF_INT_ENABLE(); while ((LPC_UART0->LSR & 0x20U) == 0U) { /* while THR empty... */ } LPC_UART0->THR = (b & 0xFFU); /* put into the DR register */ } QF_INT_ENABLE(); } /*..........................................................................*/ /* * Set the LPC UART0 barud-rate generator according to * Section 14.4.12 in LPC176x Manual (document UM10360) */ static void UART0_setBaudrate(uint32_t baud) { /* First we check to see if the basic divide with no DivAddVal/MulVal * ratio gives us an integer result. If it does, we set DivAddVal = 0, * MulVal = 1. Otherwise, we search the valid ratio value range to find * the closest match. This could be more elegant, using search methods * and/or lookup tables, but the brute force method is not that much * slower, and is more maintainable. */ uint32_t PCLK = SystemCoreClock; /* divider /1 set below */ uint16_t DL = PCLK / (16U * baud); uint8_t DivAddVal = 0U; uint8_t MulVal = 1U; /* set PCLK divider to 1 */ LPC_SC->PCLKSEL0 &= ~(0x3U << 6); /* clear divider bits */ LPC_SC->PCLKSEL0 |= (0x1U << 6); /* set divider to 1 */ if ((PCLK % (16U * baud)) != 0U) { /* non zero remainder? */ uint32_t err_best = baud; bool found = false; uint32_t b; uint8_t mv; for (mv = 1U; mv < 16U && !found; mv++) { uint16_t dlv; uint8_t dav; for (dav = 0U; dav < mv; ++dav) { /* * baud = PCLK / (16 * dlv * (1 + (DivAdd / Mul)) * solving for dlv, we get * dlv = mul * PCLK / (16 * baud * (divadd + mul)) * mul has 4 bits, PCLK has 27 so we have 1 bit headroom, * which can be used for rounding for many values of mul * and PCLK we have 2 or more bits of headroom which can * be used to improve precision * note: X / 32 doesn't round correctly. * Instead, we use ((X / 16) + 1) / 2 for correct rounding */ if ((mv*PCLK*2U) & 0x80000000U) { /* 1 bit headroom */ dlv = ((((2U*mv*PCLK) / (baud*(dav + mv)))/16U) + 1U)/2U; } else { /* 2 bits headroom, use more precision */ dlv = ((((4U*mv*PCLK) / (baud*(dav+mv)))/32U) + 1U)/2U; } /* datasheet says if DLL==DLM==0, then 1 is used instead */ if (dlv == 0U) { dlv = 1U; } /* datasheet says if dav > 0 then DL must be >= 2 */ if ((dav > 0U) && (dlv < 2U)) { dlv = 2U; } /* integer rearrangement of baud equation (with rounding) */ b = ((PCLK*mv / (dlv*(dav + mv)*8U)) + 1U)/2U; b = (b >= baud) ? (b - baud) : (baud - b); /* check to see how we did */ if (b < err_best) { err_best = b; DL = dlv; MulVal = mv; DivAddVal = dav; if (b == baud) { found = true; break; /* break out of the inner for-loop */ } } } } } // set LCR[DLAB] to enable writing to divider registers LPC_UART0->LCR |= (1U << 7); // set divider values LPC_UART0->DLM = (DL >> 8) & 0xFFU; LPC_UART0->DLL = (DL >> 0) & 0xFFU; LPC_UART0->FDR = ((uint32_t)DivAddVal << 0) | ((uint32_t)MulVal << 4); // clear LCR[DLAB] LPC_UART0->LCR &= ~(1U << 7); } #endif /* Q_SPY */ /*--------------------------------------------------------------------------*/ /***************************************************************************** * NOTE00: * The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest * ISR priority that is disabled by the QF framework. The value is suitable * for the NVIC_SetPriority() CMSIS function. * * Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e., * with the numerical values of priorities equal or higher than * QF_AWARE_ISR_CMSIS_PRI) are allowed to call the QK_ISR_ENTRY/QK_ISR_ENTRY * macros or any other QF/QK services. These ISRs are "QF-aware". * * Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority * level (i.e., with the numerical values of priorities less than * QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel. * Such "QF-unaware" ISRs cannot call any QF/QK services. In particular they * can NOT call the macros QK_ISR_ENTRY/QK_ISR_ENTRY. The only mechanism * by which a "QF-unaware" ISR can communicate with the QF framework is by * triggering a "QF-aware" ISR, which can post/publish events. * * NOTE01: * The User LED is used to visualize the idle loop activity. The brightness * of the LED is proportional to the frequency of invcations of the idle loop. * Please note that the LED is toggled with interrupts locked, so no interrupt * execution time contributes to the brightness of the User LED. */