/***************************************************************************** * Product: "Fly 'n' Shoot" game example, cooperative Vanilla kernel * Last Updated for Version: 5.1.1 * Date of the Last Update: Oct 09, 2013 * * Q u a n t u m L e a P s * --------------------------- * innovating embedded systems * * Copyright (C) 2002-2013 Quantum Leaps, LLC. All rights reserved. * * This program is open source software: you can redistribute it and/or * modify it under the terms of the GNU General Public License as published * by the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * Alternatively, this program may be distributed and modified under the * terms of Quantum Leaps commercial licenses, which expressly supersede * the GNU General Public License and are specifically designed for * licensees interested in retaining the proprietary status of their code. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * Contact information: * Quantum Leaps Web sites: http://www.quantum-leaps.com * http://www.state-machine.com * e-mail: info@quantum-leaps.com *****************************************************************************/ #include "qp_port.h" #include "game.h" #include "bsp.h" #include "lm3s_cmsis.h" #include "display96x16x1.h" Q_DEFINE_THIS_FILE /*!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! * Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority(). * DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE! */ enum KernelUnawareISRs { /* see NOTE00 */ /* ... */ MAX_KERNEL_UNAWARE_CMSIS_PRI /* keep always last */ }; /* "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts */ Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI); enum KernelAwareISRs { GPIOPORTA_PRIO = QF_AWARE_ISR_CMSIS_PRI, /* see NOTE00 */ ADCSEQ3_PRIO, SYSTICK_PRIO, /* ... */ MAX_KERNEL_AWARE_CMSIS_PRI /* keep always last */ }; /* "kernel-aware" interrupts should not overlap the PendSV priority */ Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS))); /* ISRs defined in this BSP ------------------------------------------------*/ void SysTick_Handler(void); void GPIOPortA_IRQHandler(void); void assert_failed(char const *file, int line); /* Local-scope objects -----------------------------------------------------*/ #define PUSH_BUTTON (1U << 4) #define USER_LED (1U << 5) #define ADC_TRIGGER_TIMER 0x00000005U #define ADC_CTL_IE 0x00000040U #define ADC_CTL_END 0x00000020U #define ADC_CTL_CH0 0x00000000U #define ADC_SSFSTAT0_EMPTY 0x00000100U #define UART_FR_TXFE 0x00000080U #ifdef Q_SPY QSTimeCtr QS_tickTime_; QSTimeCtr QS_tickPeriod_; static uint8_t l_SysTick_Handler; static uint8_t l_ADCSeq3_IRQHandler; static uint8_t l_GPIOPortA_IRQHandler; #define UART_BAUD_RATE 115200U #define UART_TXFIFO_DEPTH 16U #define UART_FR_TXFE 0x00000080U #endif /* prototypes of ISRs defined in the BSP....................................*/ void SysTick_Handler(void); void ADCSeq3_IRQHandler(void); void assert_failed(char const *file, int line); /*..........................................................................*/ void SysTick_Handler(void) { static QEvt const tickEvt = { TIME_TICK_SIG, 0U, 0U }; #ifdef Q_SPY { uint32_t dummy = SysTick->CTRL; /* clear SysTick_CTRL_COUNTFLAG */ QS_tickTime_ += QS_tickPeriod_; /* account for the clock rollover */ } #endif QF_TICK(&l_SysTick_Handler); /* process all armed time events */ QF_PUBLISH(&tickEvt, &l_SysTick_Handler); /* publish to all subscribers */ } /*..........................................................................*/ void ADCSeq3_IRQHandler(void) { static uint32_t adcLPS = 0U; /* Low-Pass-Filtered ADC reading */ static uint32_t wheel = 0U; /* the last wheel position */ static uint32_t btn_debounced = 0U; static uint8_t debounce_state = 0U; uint32_t tmp; ADC->ISC = (1U << 3); /* clear the ADCSeq3 interrupt */ /* the ADC Sequence 3 FIFO must have a sample */ Q_ASSERT((ADC->SSFSTAT3 & ADC_SSFSTAT0_EMPTY) == 0); tmp = ADC->SSFIFO3; /* read the data from the ADC */ /* 1st order low-pass filter: time constant ~= 2^n samples * TF = (1/2^n)/(z-((2^n - 1)/2^n)), * eg, n=3, y(k+1) = y(k) - y(k)/8 + x(k)/8 => y += (x - y)/8 */ adcLPS += (((int)tmp - (int)adcLPS + 4) >> 3); /* compute the next position of the wheel */ tmp = (((1 << 10) - adcLPS)*(BSP_SCREEN_HEIGHT - 2)) >> 10; if (tmp != wheel) { /* did the wheel position change? */ ObjectPosEvt *ope = Q_NEW(ObjectPosEvt, PLAYER_SHIP_MOVE_SIG); ope->x = (uint8_t)GAME_SHIP_X; /* x-position is fixed */ ope->y = (uint8_t)tmp; QACTIVE_POST(AO_Ship, (QEvt *)ope, &l_ADCSeq3_IRQHandler); wheel = tmp; /* save the last position of the wheel */ } tmp = GPIOC->DATA_Bits[PUSH_BUTTON]; /* read the push btn */ switch (debounce_state) { case 0: if (tmp != btn_debounced) { debounce_state = 1U; /* transition to the next state */ } break; case 1: if (tmp != btn_debounced) { debounce_state = 2U; /* transition to the next state */ } else { debounce_state = 0U; /* transition back to state 0 */ } break; case 2: if (tmp != btn_debounced) { debounce_state = 3U; /* transition to the next state */ } else { debounce_state = 0U; /* transition back to state 0 */ } break; case 3: if (tmp != btn_debounced) { btn_debounced = tmp; /* save the debounced button value */ if (tmp == 0U) { /* is the button depressed? */ static QEvt const fireEvt = { PLAYER_TRIGGER_SIG, 0 }; QF_PUBLISH(&fireEvt, &l_ADCSeq3_IRQHandler); } } debounce_state = 0U; /* transition back to state 0 */ break; } } /*..........................................................................*/ void GPIOPortA_IRQHandler(void) { QACTIVE_POST(AO_Tunnel, Q_NEW(QEvt, MAX_PUB_SIG), /* for testing... */ &l_GPIOPortA_IRQHandler); } /*..........................................................................*/ void BSP_init(void) { /* set the system clock as specified in lm3s_config.h (20MHz from PLL) */ SystemInit(); /* enable clock to the peripherals used by the application */ SYSCTL->RCGC0 |= (1 << 16); /* enable clock to ADC */ SYSCTL->RCGC1 |= (1 << 16) | (1 << 17); /* enable clock to TIMER0 & 1 */ SYSCTL->RCGC2 |= (1 << 0) | (1 << 2); /* enable clock to GPIOA & C */ __NOP(); /* wait after enabling clocks */ __NOP(); __NOP(); /* Configure the ADC Sequence 3 to sample the potentiometer when the * timer expires. Set the sequence priority to 0 (highest). */ ADC->EMUX = (ADC->EMUX & ~(0xF << (3*4))) | (ADC_TRIGGER_TIMER << (3*4)); ADC->SSPRI = (ADC->SSPRI & ~(0xF << (3*4))) | (0 << (3*4)); /* set ADC Sequence 3 step to 0 */ ADC->SSMUX3 = (ADC->SSMUX3 & ~(0xF << (0*4))) | ((ADC_CTL_CH0 | ADC_CTL_IE | ADC_CTL_END) << (0*4)); ADC->SSCTL3 = (ADC->SSCTL3 & ~(0xF << (0*4))) | (((ADC_CTL_CH0 | ADC_CTL_IE | ADC_CTL_END) >> 4) <<(0*4)); ADC->ACTSS |= (1 << 3); /* configure TIMER1 to trigger the ADC to sample the potentiometer. */ TIMER1->CTL &= ~((1 << 0) | (1 << 16)); TIMER1->CFG = 0; TIMER1->TAMR = 0x02; TIMER1->TAILR = SystemFrequency / 120; TIMER1->CTL |= 0x02; TIMER1->CTL |= 0x20; /* configure the LED and push button */ GPIOC->DIR |= USER_LED; /* set direction: output */ GPIOC->DEN |= USER_LED; /* digital enable */ GPIOC->DATA_Bits[USER_LED] = 0; /* turn the User LED off */ GPIOC->DIR &= ~PUSH_BUTTON; /* set direction: input */ GPIOC->DEN |= PUSH_BUTTON; /* digital enable */ Display96x16x1Init(1); /* initialize the OLED display */ if (QS_INIT((void *)0) == 0) { /* initialize the QS software tracing */ Q_ERROR(); } QS_OBJ_DICTIONARY(&l_SysTick_Handler); QS_OBJ_DICTIONARY(&l_ADCSeq3_IRQHandler); } /*..........................................................................*/ void BSP_drawBitmap(uint8_t const *bitmap) { Display96x16x1ImageDraw(bitmap, 0, 0, BSP_SCREEN_WIDTH, (BSP_SCREEN_HEIGHT >> 3)); } /*..........................................................................*/ void BSP_drawBitmapXY(uint8_t const *bitmap, uint8_t x, uint8_t y) { Display96x16x1ImageDraw(bitmap, x, y, BSP_SCREEN_WIDTH, (BSP_SCREEN_HEIGHT >> 3)); } /*..........................................................................*/ void BSP_drawNString(uint8_t x, uint8_t y, char const *str) { Display96x16x1StringDraw(str, x, y); } /*..........................................................................*/ void BSP_updateScore(uint16_t score) { /* no room on the OLED display of the EV-LM3S811 board for the score */ } /*..........................................................................*/ void BSP_displayOn(void) { Display96x16x1DisplayOn(); } /*..........................................................................*/ void BSP_displayOff(void) { Display96x16x1DisplayOff(); } /*..........................................................................*/ void QF_onStartup(void) { /* set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate */ SysTick_Config(SystemFrequency / BSP_TICKS_PER_SEC); /* assing all priority bits for preemption-prio. and none to sub-prio. */ NVIC_SetPriorityGrouping(0U); /* set priorities of ALL ISRs used in the system, see NOTE00 * * !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! * Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority(). * DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE! */ NVIC_SetPriority(ADCSeq3_IRQn, ADCSEQ3_PRIO); NVIC_SetPriority(SysTick_IRQn, SYSTICK_PRIO); /* ... */ /* enable IRQs... */ NVIC_EnableIRQ(ADCSeq3_IRQn); NVIC_EnableIRQ(GPIOPortA_IRQn); ADC->ISC = (1 << 3); ADC->IM |= (1 << 3); TIMER1->CTL |= ((1 << 0) | (1 << 16)); /* enable TIMER1 */ } /*..........................................................................*/ void QF_onCleanup(void) { } /*..........................................................................*/ void QF_onIdle(void) { /* called with interrupts disabled, see NOTE01 */ /* toggle the User LED on and then off, see NOTE02 */ GPIOC->DATA_Bits[USER_LED] = USER_LED; /* turn the User LED on */ GPIOC->DATA_Bits[USER_LED] = 0; /* turn the User LED off */ #ifdef Q_SPY QF_INT_ENABLE(); if ((UART0->FR & UART_FR_TXFE) != 0) { /* TX done? */ uint16_t fifo = UART_TXFIFO_DEPTH; /* max bytes we can accept */ uint8_t const *block; QF_INT_DISABLE(); block = QS_getBlock(&fifo); /* try to get next block to transmit */ QF_INT_ENABLE(); while (fifo-- != 0) { /* any bytes in the block? */ UART0->DR = *block++; /* put into the FIFO */ } } #elif defined NDEBUG /* Put the CPU and peripherals to the low-power mode. * you might need to customize the clock management for your application, * see the datasheet for your particular Cortex-M MCU. */ QF_CPU_SLEEP(); /* atomically go to sleep and enable interrupts */ #else QF_INT_ENABLE(); /* just enable interrupts */ #endif } /*..........................................................................*/ void Q_onAssert(char const Q_ROM * const Q_ROM_VAR file, int line) { (void)file; /* avoid compiler warning */ (void)line; /* avoid compiler warning */ QF_INT_DISABLE(); /* make sure that all interrupts are disabled */ QS_ASSERTION(file, line); for (;;) { /* NOTE: replace the loop with reset for final version */ } } /*..........................................................................*/ /* error routine that is called if the CMSIS library encounters an error */ void assert_failed(char const *file, int line) { Q_onAssert(file, line); } /*--------------------------------------------------------------------------*/ #ifdef Q_SPY /*..........................................................................*/ uint8_t QS_onStartup(void const *arg) { static uint8_t qsBuf[6*256]; /* buffer for Quantum Spy */ uint32_t tmp; QS_initBuf(qsBuf, sizeof(qsBuf)); /* enable the peripherals used by the UART0 */ SYSCTL->RCGC1 |= (1 << 0); /* enable clock to UART0 */ SYSCTL->RCGC2 |= (1 << 0); /* enable clock to GPIOA */ __NOP(); /* wait after enabling clocks */ __NOP(); __NOP(); /* configure UART0 pins for UART operation */ tmp = (1 << 0) | (1 << 1); GPIOA->DIR &= ~tmp; GPIOA->AFSEL |= tmp; GPIOA->DR2R |= tmp; /* set 2mA drive, DR4R and DR8R are cleared */ GPIOA->SLR &= ~tmp; GPIOA->ODR &= ~tmp; GPIOA->PUR &= ~tmp; GPIOA->PDR &= ~tmp; GPIOA->DEN |= tmp; /* configure the UART for the desired baud rate, 8-N-1 operation */ tmp = (((SystemFrequency * 8) / UART_BAUD_RATE) + 1) / 2; UART0->IBRD = tmp / 64; UART0->FBRD = tmp % 64; UART0->LCRH = 0x60; /* configure 8-N-1 operation */ UART0->LCRH |= 0x10; UART0->CTL |= (1 << 0) | (1 << 8) | (1 << 9); QS_tickPeriod_ = SystemFrequency / BSP_TICKS_PER_SEC; QS_tickTime_ = QS_tickPeriod_; /* to start the timestamp at zero */ /* setup the QS filters... */ QS_FILTER_ON(QS_ALL_RECORDS); // QS_FILTER_OFF(QS_QEP_STATE_EMPTY); // QS_FILTER_OFF(QS_QEP_STATE_ENTRY); // QS_FILTER_OFF(QS_QEP_STATE_EXIT); // QS_FILTER_OFF(QS_QEP_STATE_INIT); // QS_FILTER_OFF(QS_QEP_INIT_TRAN); // QS_FILTER_OFF(QS_QEP_INTERN_TRAN); // QS_FILTER_OFF(QS_QEP_TRAN); // QS_FILTER_OFF(QS_QEP_IGNORED); // QS_FILTER_OFF(QS_QEP_DISPATCH); // QS_FILTER_OFF(QS_QEP_UNHANDLED); QS_FILTER_OFF(QS_QF_ACTIVE_ADD); QS_FILTER_OFF(QS_QF_ACTIVE_REMOVE); QS_FILTER_OFF(QS_QF_ACTIVE_SUBSCRIBE); QS_FILTER_OFF(QS_QF_ACTIVE_UNSUBSCRIBE); QS_FILTER_OFF(QS_QF_ACTIVE_POST_FIFO); QS_FILTER_OFF(QS_QF_ACTIVE_POST_LIFO); QS_FILTER_OFF(QS_QF_ACTIVE_GET); QS_FILTER_OFF(QS_QF_ACTIVE_GET_LAST); QS_FILTER_OFF(QS_QF_EQUEUE_INIT); QS_FILTER_OFF(QS_QF_EQUEUE_POST_FIFO); QS_FILTER_OFF(QS_QF_EQUEUE_POST_LIFO); QS_FILTER_OFF(QS_QF_EQUEUE_GET); QS_FILTER_OFF(QS_QF_EQUEUE_GET_LAST); QS_FILTER_OFF(QS_QF_MPOOL_INIT); QS_FILTER_OFF(QS_QF_MPOOL_GET); QS_FILTER_OFF(QS_QF_MPOOL_PUT); QS_FILTER_OFF(QS_QF_PUBLISH); QS_FILTER_OFF(QS_QF_NEW); QS_FILTER_OFF(QS_QF_GC_ATTEMPT); QS_FILTER_OFF(QS_QF_GC); // QS_FILTER_OFF(QS_QF_TICK); QS_FILTER_OFF(QS_QF_TIMEEVT_ARM); QS_FILTER_OFF(QS_QF_TIMEEVT_AUTO_DISARM); QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM_ATTEMPT); QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM); QS_FILTER_OFF(QS_QF_TIMEEVT_REARM); QS_FILTER_OFF(QS_QF_TIMEEVT_POST); QS_FILTER_OFF(QS_QF_CRIT_ENTRY); QS_FILTER_OFF(QS_QF_CRIT_EXIT); QS_FILTER_OFF(QS_QF_ISR_ENTRY); QS_FILTER_OFF(QS_QF_ISR_EXIT); QS_RESET(); return (uint8_t)1; /* return success */ } /*..........................................................................*/ void QS_onCleanup(void) { } /*..........................................................................*/ QSTimeCtr QS_onGetTime(void) { /* invoked with interrupts locked */ if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { /* not set? */ return QS_tickTime_ - (QSTimeCtr)SysTick->VAL; } else { /* the rollover occured, but the SysTick_ISR did not run yet */ return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL; } } /*..........................................................................*/ void QS_onFlush(void) { uint16_t fifo = UART_TXFIFO_DEPTH; /* Tx FIFO depth */ uint8_t const *block; QF_INT_DISABLE(); while ((block = QS_getBlock(&fifo)) != (uint8_t *)0) { QF_INT_ENABLE(); /* busy-wait until TX FIFO empty */ while ((UART0->FR & UART_FR_TXFE) == 0) { } while (fifo-- != 0) { /* any bytes in the block? */ UART0->DR = *block++; /* put into the TX FIFO */ } fifo = UART_TXFIFO_DEPTH; /* re-load the Tx FIFO depth */ QF_INT_DISABLE(); } QF_INT_ENABLE(); } #endif /* Q_SPY */ /*--------------------------------------------------------------------------*/ /***************************************************************************** * NOTE00: * The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest * ISR priority that is disabled by the QF framework. The value is suitable * for the NVIC_SetPriority() CMSIS function. * * Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e., * with the numerical values of priorities equal or higher than * QF_AWARE_ISR_CMSIS_PRI) are allowed to call any QF services. These ISRs * are "QF-aware". * * Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority * level (i.e., with the numerical values of priorities less than * QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel. * Such "QF-unaware" ISRs cannot call any QF services. The only mechanism * by which a "QF-unaware" ISR can communicate with the QF framework is by * triggering a "QF-aware" ISR, which can post/publish events. * * NOTE01: * The QF_onIdle() callback is called with interrupts disabled, because the * determination of the idle condition might change by any interrupt posting * an event. QF::onIdle() must internally enable interrupts, ideally * atomically with putting the CPU to the power-saving mode. * * NOTE02: * The User LED is used to visualize the idle loop activity. The brightness * of the LED is proportional to the frequency of invcations of the idle loop. * Please note that the LED is toggled with interrupts locked, so no interrupt * execution time contributes to the brightness of the User LED. */