mirror of
https://github.com/QuantumLeaps/qpc.git
synced 2025-01-28 07:03:10 +08:00
431 lines
15 KiB
C
431 lines
15 KiB
C
//============================================================================
|
|
// QP/C Real-Time Embedded Framework (RTEF)
|
|
// Version 8.0.2
|
|
//
|
|
// Copyright (C) 2005 Quantum Leaps, LLC. All rights reserved.
|
|
//
|
|
// Q u a n t u m L e a P s
|
|
// ------------------------
|
|
// Modern Embedded Software
|
|
//
|
|
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-QL-commercial
|
|
//
|
|
// This software is dual-licensed under the terms of the open-source GNU
|
|
// General Public License (GPL) or under the terms of one of the closed-
|
|
// source Quantum Leaps commercial licenses.
|
|
//
|
|
// Redistributions in source code must retain this top-level comment block.
|
|
// Plagiarizing this software to sidestep the license obligations is illegal.
|
|
//
|
|
// NOTE:
|
|
// The GPL does NOT permit the incorporation of this code into proprietary
|
|
// programs. Please contact Quantum Leaps for commercial licensing options,
|
|
// which expressly supersede the GPL and are designed explicitly for
|
|
// closed-source distribution.
|
|
//
|
|
// Quantum Leaps contact information:
|
|
// <www.state-machine.com/licensing>
|
|
// <info@state-machine.com>
|
|
//============================================================================
|
|
|
|
// expose features from the 2008 POSIX standard (IEEE Standard 1003.1-2008)
|
|
#define _POSIX_C_SOURCE 200809L
|
|
|
|
#define QP_IMPL // this is QP implementation
|
|
#include "qp_port.h" // QP port
|
|
#include "qp_pkg.h" // QP package-scope interface
|
|
#include "qsafe.h" // QP Functional Safety (FuSa) Subsystem
|
|
#ifdef Q_SPY // QS software tracing enabled?
|
|
#include "qs_port.h" // QS port
|
|
#include "qs_pkg.h" // QS package-scope internal interface
|
|
#else
|
|
#include "qs_dummy.h" // disable the QS software tracing
|
|
#endif // Q_SPY
|
|
|
|
#include <limits.h> // for PTHREAD_STACK_MIN
|
|
#include <sys/mman.h> // for mlockall()
|
|
#include <sys/ioctl.h>
|
|
#include <time.h> // for clock_nanosleep()
|
|
#include <string.h> // for memcpy() and memset()
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <unistd.h>
|
|
#include <signal.h>
|
|
|
|
Q_DEFINE_THIS_MODULE("qf_port")
|
|
|
|
// Local objects =============================================================
|
|
|
|
static bool l_isRunning; // flag indicating when QF is running
|
|
static struct timespec l_tick; // structure for the clock tick
|
|
static int_t l_tickPrio; // priority of the ticker thread
|
|
|
|
#define NSEC_PER_SEC 1000000000L
|
|
#define DEFAULT_TICKS_PER_SEC 100L
|
|
|
|
//----------------------------------------------------------------------------
|
|
#ifdef __APPLE__
|
|
|
|
#define TIMER_ABSTIME 0
|
|
|
|
// emulate clock_nanosleep() for CLOCK_MONOTONIC and TIMER_ABSTIME
|
|
static inline int clock_nanosleep(clockid_t clockid, int flags,
|
|
const struct timespec* t,
|
|
struct timespec* remain)
|
|
{
|
|
Q_UNUSED_PAR(clockid);
|
|
Q_UNUSED_PAR(flags);
|
|
Q_UNUSED_PAR(remain);
|
|
|
|
struct timespec ts_delta;
|
|
clock_gettime(CLOCK_MONOTONIC, &ts_delta);
|
|
|
|
ts_delta.tv_sec = t->tv_sec - ts_delta.tv_sec;
|
|
ts_delta.tv_nsec = t->tv_nsec - ts_delta.tv_nsec;
|
|
if (ts_delta.tv_sec < 0) {
|
|
ts_delta.tv_sec = 0;
|
|
ts_delta.tv_nsec = 0;
|
|
}
|
|
else if (ts_delta.tv_nsec < 0) {
|
|
if (ts_delta.tv_sec == 0) {
|
|
ts_delta.tv_sec = 0;
|
|
ts_delta.tv_nsec = 0;
|
|
}
|
|
else {
|
|
ts_delta.tv_sec = ts_delta.tv_sec - 1;
|
|
ts_delta.tv_nsec = ts_delta.tv_nsec + NSEC_PER_SEC;
|
|
}
|
|
}
|
|
|
|
return nanosleep(&ts_delta, NULL);
|
|
}
|
|
#endif
|
|
|
|
//----------------------------------------------------------------------------
|
|
static void *ticker_thread(void *arg); // prototype
|
|
static void *ticker_thread(void *arg) { // for pthread_create()
|
|
Q_UNUSED_PAR(arg);
|
|
|
|
// system clock tick must be configured
|
|
Q_REQUIRE_ID(100, l_tick.tv_nsec != 0);
|
|
|
|
// get the absolute monotonic time for no-drift sleeping
|
|
static struct timespec next_tick;
|
|
clock_gettime(CLOCK_MONOTONIC, &next_tick);
|
|
|
|
// round down nanoseconds to the nearest configured period
|
|
next_tick.tv_nsec = (next_tick.tv_nsec / l_tick.tv_nsec) * l_tick.tv_nsec;
|
|
|
|
while (l_isRunning) { // the clock tick loop...
|
|
|
|
// advance to the next tick (absolute time)
|
|
next_tick.tv_nsec += l_tick.tv_nsec;
|
|
if (next_tick.tv_nsec >= NSEC_PER_SEC) {
|
|
next_tick.tv_nsec -= NSEC_PER_SEC;
|
|
next_tick.tv_sec += 1;
|
|
}
|
|
|
|
// sleep without drifting till next_tick (absolute), see NOTE03
|
|
if (clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
|
|
&next_tick, NULL) == 0) // success?
|
|
{
|
|
// clock tick callback (must call QTIMEEVT_TICK_X())
|
|
QF_onClockTick();
|
|
}
|
|
}
|
|
return (void *)0; // return success
|
|
}
|
|
//............................................................................
|
|
static void sigIntHandler(int dummy); // prototype
|
|
static void sigIntHandler(int dummy) {
|
|
Q_UNUSED_PAR(dummy);
|
|
QF_onCleanup();
|
|
exit(-1);
|
|
}
|
|
|
|
// Global objects ============================================================
|
|
QPSet QF_readySet_;
|
|
QPSet QF_readySet_dis_;
|
|
pthread_cond_t QF_condVar_; // Cond.var. to signal events
|
|
|
|
//============================================================================
|
|
// QF functions
|
|
|
|
// NOTE: initialize the critical section mutex as non-recursive,
|
|
// but check that nesting of critical sections never occurs
|
|
// (see QF_enterCriticalSection_()/QF_leaveCriticalSection_()
|
|
static pthread_mutex_t l_critSectMutex_ = PTHREAD_MUTEX_INITIALIZER;
|
|
static int_t l_critSectNest; // critical section nesting up-down counter
|
|
|
|
//............................................................................
|
|
void QF_enterCriticalSection_(void) {
|
|
pthread_mutex_lock(&l_critSectMutex_);
|
|
Q_ASSERT_INCRIT(101, l_critSectNest == 0); // NO nesting of crit.sect!
|
|
++l_critSectNest;
|
|
}
|
|
//............................................................................
|
|
void QF_leaveCriticalSection_(void) {
|
|
Q_ASSERT_INCRIT(102, l_critSectNest == 1); // crit.sect. must balance!
|
|
if ((--l_critSectNest) == 0) {
|
|
pthread_mutex_unlock(&l_critSectMutex_);
|
|
}
|
|
}
|
|
|
|
//............................................................................
|
|
void QF_init(void) {
|
|
// init the global condition variable with the default initializer
|
|
pthread_cond_init(&QF_condVar_, NULL);
|
|
|
|
QPSet_setEmpty(&QF_readySet_);
|
|
|
|
// lock memory so we're never swapped out to disk
|
|
//mlockall(MCL_CURRENT | MCL_FUTURE); // un-comment when supported
|
|
|
|
QTimeEvt_init(); // initialize QTimeEvts
|
|
|
|
l_tick.tv_sec = 0;
|
|
l_tick.tv_nsec = NSEC_PER_SEC / DEFAULT_TICKS_PER_SEC; // default rate
|
|
l_tickPrio = sched_get_priority_min(SCHED_FIFO); // default ticker prio
|
|
|
|
// install the SIGINT (Ctrl-C) signal handler
|
|
struct sigaction sig_act;
|
|
memset(&sig_act, 0, sizeof(sig_act));
|
|
sig_act.sa_handler = &sigIntHandler;
|
|
sigaction(SIGINT, &sig_act, NULL);
|
|
}
|
|
|
|
//............................................................................
|
|
int QF_run(void) {
|
|
l_isRunning = true; // QF is running
|
|
|
|
QF_onStartup(); // application-specific startup callback
|
|
|
|
QF_CRIT_STAT
|
|
// system clock tick configured?
|
|
if ((l_tick.tv_sec != 0) || (l_tick.tv_nsec != 0)) {
|
|
|
|
pthread_attr_t attr;
|
|
pthread_attr_init(&attr);
|
|
|
|
// SCHED_FIFO corresponds to real-time preemptive priority-based
|
|
// scheduler.
|
|
// NOTE: This scheduling policy requires the superuser privileges
|
|
pthread_attr_setschedpolicy (&attr, SCHED_FIFO);
|
|
pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
|
|
pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_DETACHED);
|
|
|
|
struct sched_param param;
|
|
param.sched_priority = l_tickPrio;
|
|
|
|
pthread_attr_setschedparam(&attr, ¶m);
|
|
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
|
|
|
|
pthread_t ticker;
|
|
int err = pthread_create(&ticker, &attr, &ticker_thread, 0);
|
|
if (err != 0) {
|
|
// Creating the p-thread with the SCHED_FIFO policy failed.
|
|
// Most probably this application has no superuser privileges,
|
|
// so we just fall back to the default SCHED_OTHER policy
|
|
// and priority 0.
|
|
pthread_attr_setschedpolicy(&attr, SCHED_OTHER);
|
|
param.sched_priority = 0;
|
|
pthread_attr_setschedparam(&attr, ¶m);
|
|
err = pthread_create(&ticker, &attr, &ticker_thread, 0);
|
|
}
|
|
QF_CRIT_ENTRY();
|
|
Q_ASSERT_INCRIT(310, err == 0); // ticker thread must be created
|
|
QF_CRIT_EXIT();
|
|
|
|
//pthread_attr_getschedparam(&attr, ¶m);
|
|
//printf("param.sched_priority==%d\n", param.sched_priority);
|
|
|
|
pthread_attr_destroy(&attr);
|
|
}
|
|
|
|
// the combined event-loop and background-loop of the QV kernel
|
|
QF_CRIT_ENTRY();
|
|
|
|
// produce the QS_QF_RUN trace record
|
|
QS_BEGIN_PRE(QS_QF_RUN, 0U)
|
|
QS_END_PRE()
|
|
|
|
while (l_isRunning) {
|
|
// find the maximum priority AO ready to run
|
|
if (QPSet_notEmpty(&QF_readySet_)) {
|
|
uint_fast8_t p = QPSet_findMax(&QF_readySet_);
|
|
QActive *a = QActive_registry_[p];
|
|
|
|
// the active object 'a' must still be registered in QF
|
|
// (e.g., it must not be stopped)
|
|
Q_ASSERT_INCRIT(320, a != (QActive *)0);
|
|
QF_CRIT_EXIT();
|
|
|
|
QEvt const *e = QActive_get_(a);
|
|
QASM_DISPATCH(&a->super, e, a->prio); // dispatch to the HSM
|
|
QF_gc(e);
|
|
|
|
QF_CRIT_ENTRY();
|
|
if (a->eQueue.frontEvt == (QEvt *)0) { // empty queue?
|
|
QPSet_remove(&QF_readySet_, p);
|
|
}
|
|
}
|
|
else {
|
|
// the QV kernel in embedded systems calls here the QV_onIdle()
|
|
// callback. However, the POSIX-QV port does not do busy-waiting
|
|
// for events. Instead, the POSIX-QV port efficiently waits until
|
|
// QP events become available.
|
|
while (QPSet_isEmpty(&QF_readySet_)) {
|
|
Q_ASSERT_INCRIT(390, l_critSectNest == 1);
|
|
--l_critSectNest;
|
|
|
|
pthread_cond_wait(&QF_condVar_, &l_critSectMutex_);
|
|
|
|
Q_ASSERT_INCRIT(391, l_critSectNest == 0);
|
|
++l_critSectNest;
|
|
}
|
|
}
|
|
}
|
|
QF_CRIT_EXIT();
|
|
QF_onCleanup(); // cleanup callback
|
|
QS_EXIT(); // cleanup the QSPY connection
|
|
|
|
pthread_cond_destroy(&QF_condVar_); // cleanup the condition variable
|
|
pthread_mutex_destroy(&l_critSectMutex_); // cleanup the global mutex
|
|
|
|
return 0; // return success
|
|
}
|
|
//............................................................................
|
|
void QF_stop(void) {
|
|
l_isRunning = false; // terminate the main event-loop
|
|
|
|
// unblock the event-loop so it can terminate
|
|
QPSet_insert(&QF_readySet_, 1U);
|
|
pthread_cond_signal(&QF_condVar_);
|
|
}
|
|
//............................................................................
|
|
void QF_setTickRate(uint32_t ticksPerSec, int tickPrio) {
|
|
if (ticksPerSec != 0U) {
|
|
l_tick.tv_nsec = NSEC_PER_SEC / ticksPerSec;
|
|
}
|
|
else {
|
|
l_tick.tv_nsec = 0U; // means NO system clock tick
|
|
}
|
|
l_tickPrio = tickPrio;
|
|
}
|
|
|
|
// console access ============================================================
|
|
#ifdef QF_CONSOLE
|
|
|
|
#include <termios.h>
|
|
|
|
static struct termios l_tsav; // structure with saved terminal attributes
|
|
|
|
void QF_consoleSetup(void) {
|
|
struct termios tio; // modified terminal attributes
|
|
|
|
tcgetattr(0, &l_tsav); // save the current terminal attributes
|
|
tcgetattr(0, &tio); // obtain the current terminal attributes
|
|
tio.c_lflag &= ~(ICANON | ECHO); // disable the canonical mode & echo
|
|
tcsetattr(0, TCSANOW, &tio); // set the new attributes
|
|
}
|
|
//............................................................................
|
|
void QF_consoleCleanup(void) {
|
|
tcsetattr(0, TCSANOW, &l_tsav); // restore the saved attributes
|
|
}
|
|
//............................................................................
|
|
int QF_consoleGetKey(void) {
|
|
int byteswaiting;
|
|
ioctl(0, FIONREAD, &byteswaiting);
|
|
if (byteswaiting > 0) {
|
|
char ch;
|
|
byteswaiting = read(0, &ch, 1);
|
|
return (int)ch;
|
|
}
|
|
return 0; // no input at this time
|
|
}
|
|
//............................................................................
|
|
int QF_consoleWaitForKey(void) {
|
|
return (int)getchar();
|
|
}
|
|
#endif
|
|
|
|
// QActive functions =========================================================
|
|
void QActive_start(QActive * const me,
|
|
QPrioSpec const prioSpec,
|
|
QEvtPtr * const qSto, uint_fast16_t const qLen,
|
|
void * const stkSto, uint_fast16_t const stkSize,
|
|
void const * const par)
|
|
{
|
|
Q_UNUSED_PAR(stkSto);
|
|
Q_UNUSED_PAR(stkSize);
|
|
|
|
// no per-AO stack needed for this port
|
|
QF_CRIT_STAT
|
|
QF_CRIT_ENTRY();
|
|
Q_REQUIRE_INCRIT(600, stkSto == (void *)0);
|
|
QF_CRIT_EXIT();
|
|
|
|
me->prio = (uint8_t)(prioSpec & 0xFFU); // QF-priority of the AO
|
|
me->pthre = 0U; // preemption-threshold (not used in this port)
|
|
QActive_register_(me); // register this AO
|
|
|
|
QEQueue_init(&me->eQueue, qSto, qLen);
|
|
|
|
// top-most initial tran. (virtual call)
|
|
(*me->super.vptr->init)(&me->super, par, me->prio);
|
|
QS_FLUSH(); // flush the QS trace buffer to the host
|
|
}
|
|
//............................................................................
|
|
#ifdef QACTIVE_CAN_STOP
|
|
void QActive_stop(QActive * const me) {
|
|
QActive_unsubscribeAll(me);
|
|
|
|
// make sure the AO is no longer in "ready set"
|
|
QF_CRIT_STAT
|
|
QF_CRIT_ENTRY();
|
|
QPSet_remove(&QF_readySet_, me->prio);
|
|
QF_CRIT_EXIT();
|
|
|
|
QActive_unregister_(me);
|
|
}
|
|
#endif
|
|
//............................................................................
|
|
void QActive_setAttr(QActive *const me, uint32_t attr1, void const *attr2) {
|
|
Q_UNUSED_PAR(me);
|
|
Q_UNUSED_PAR(attr1);
|
|
Q_UNUSED_PAR(attr2);
|
|
Q_ERROR_INCRIT(900); // should not be called in this QP port
|
|
}
|
|
|
|
//============================================================================
|
|
// NOTE01:
|
|
// In Linux, the scheduler policy closest to real-time is the SCHED_FIFO
|
|
// policy, available only with superuser privileges. QF_run() attempts to set
|
|
// this policy as well as to maximize its priority, so that the ticking
|
|
// occurs in the most timely manner (as close to an interrupt as possible).
|
|
// However, setting the SCHED_FIFO policy might fail, most probably due to
|
|
// insufficient privileges.
|
|
//
|
|
// NOTE03:
|
|
// Any blocking system call, such as clock_nanosleep() system call can
|
|
// be interrupted by a signal, such as ^C from the keyboard. In this case this
|
|
// QF port breaks out of the event-loop and returns to main() that exits and
|
|
// terminates all spawned p-threads.
|
|
//
|
|
// NOTE04:
|
|
// According to the man pages (for pthread_attr_setschedpolicy) the only value
|
|
// supported in the Linux p-threads implementation is PTHREAD_SCOPE_SYSTEM,
|
|
// meaning that the threads contend for CPU time with all processes running on
|
|
// the machine. In particular, thread priorities are interpreted relative to
|
|
// the priorities of all other processes on the machine.
|
|
//
|
|
// This is good, because it seems that if we set the priorities high enough,
|
|
// no other process (or thread running within) can gain control over the CPU.
|
|
//
|
|
// However, QF limits the number of priority levels to QF_MAX_ACTIVE.
|
|
// Assuming that a QF application will be real-time, this port reserves the
|
|
// three highest p-thread priorities for the ISR-like threads (e.g., I/O),
|
|
// and the remaining highest-priorities for the active objects.
|
|
//
|
|
|