qpc/ports/posix-qv/qf_port.c
2025-01-21 18:11:57 -05:00

431 lines
15 KiB
C

//============================================================================
// QP/C Real-Time Embedded Framework (RTEF)
// Version 8.0.2
//
// Copyright (C) 2005 Quantum Leaps, LLC. All rights reserved.
//
// Q u a n t u m L e a P s
// ------------------------
// Modern Embedded Software
//
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-QL-commercial
//
// This software is dual-licensed under the terms of the open-source GNU
// General Public License (GPL) or under the terms of one of the closed-
// source Quantum Leaps commercial licenses.
//
// Redistributions in source code must retain this top-level comment block.
// Plagiarizing this software to sidestep the license obligations is illegal.
//
// NOTE:
// The GPL does NOT permit the incorporation of this code into proprietary
// programs. Please contact Quantum Leaps for commercial licensing options,
// which expressly supersede the GPL and are designed explicitly for
// closed-source distribution.
//
// Quantum Leaps contact information:
// <www.state-machine.com/licensing>
// <info@state-machine.com>
//============================================================================
// expose features from the 2008 POSIX standard (IEEE Standard 1003.1-2008)
#define _POSIX_C_SOURCE 200809L
#define QP_IMPL // this is QP implementation
#include "qp_port.h" // QP port
#include "qp_pkg.h" // QP package-scope interface
#include "qsafe.h" // QP Functional Safety (FuSa) Subsystem
#ifdef Q_SPY // QS software tracing enabled?
#include "qs_port.h" // QS port
#include "qs_pkg.h" // QS package-scope internal interface
#else
#include "qs_dummy.h" // disable the QS software tracing
#endif // Q_SPY
#include <limits.h> // for PTHREAD_STACK_MIN
#include <sys/mman.h> // for mlockall()
#include <sys/ioctl.h>
#include <time.h> // for clock_nanosleep()
#include <string.h> // for memcpy() and memset()
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <signal.h>
Q_DEFINE_THIS_MODULE("qf_port")
// Local objects =============================================================
static bool l_isRunning; // flag indicating when QF is running
static struct timespec l_tick; // structure for the clock tick
static int_t l_tickPrio; // priority of the ticker thread
#define NSEC_PER_SEC 1000000000L
#define DEFAULT_TICKS_PER_SEC 100L
//----------------------------------------------------------------------------
#ifdef __APPLE__
#define TIMER_ABSTIME 0
// emulate clock_nanosleep() for CLOCK_MONOTONIC and TIMER_ABSTIME
static inline int clock_nanosleep(clockid_t clockid, int flags,
const struct timespec* t,
struct timespec* remain)
{
Q_UNUSED_PAR(clockid);
Q_UNUSED_PAR(flags);
Q_UNUSED_PAR(remain);
struct timespec ts_delta;
clock_gettime(CLOCK_MONOTONIC, &ts_delta);
ts_delta.tv_sec = t->tv_sec - ts_delta.tv_sec;
ts_delta.tv_nsec = t->tv_nsec - ts_delta.tv_nsec;
if (ts_delta.tv_sec < 0) {
ts_delta.tv_sec = 0;
ts_delta.tv_nsec = 0;
}
else if (ts_delta.tv_nsec < 0) {
if (ts_delta.tv_sec == 0) {
ts_delta.tv_sec = 0;
ts_delta.tv_nsec = 0;
}
else {
ts_delta.tv_sec = ts_delta.tv_sec - 1;
ts_delta.tv_nsec = ts_delta.tv_nsec + NSEC_PER_SEC;
}
}
return nanosleep(&ts_delta, NULL);
}
#endif
//----------------------------------------------------------------------------
static void *ticker_thread(void *arg); // prototype
static void *ticker_thread(void *arg) { // for pthread_create()
Q_UNUSED_PAR(arg);
// system clock tick must be configured
Q_REQUIRE_ID(100, l_tick.tv_nsec != 0);
// get the absolute monotonic time for no-drift sleeping
static struct timespec next_tick;
clock_gettime(CLOCK_MONOTONIC, &next_tick);
// round down nanoseconds to the nearest configured period
next_tick.tv_nsec = (next_tick.tv_nsec / l_tick.tv_nsec) * l_tick.tv_nsec;
while (l_isRunning) { // the clock tick loop...
// advance to the next tick (absolute time)
next_tick.tv_nsec += l_tick.tv_nsec;
if (next_tick.tv_nsec >= NSEC_PER_SEC) {
next_tick.tv_nsec -= NSEC_PER_SEC;
next_tick.tv_sec += 1;
}
// sleep without drifting till next_tick (absolute), see NOTE03
if (clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
&next_tick, NULL) == 0) // success?
{
// clock tick callback (must call QTIMEEVT_TICK_X())
QF_onClockTick();
}
}
return (void *)0; // return success
}
//............................................................................
static void sigIntHandler(int dummy); // prototype
static void sigIntHandler(int dummy) {
Q_UNUSED_PAR(dummy);
QF_onCleanup();
exit(-1);
}
// Global objects ============================================================
QPSet QF_readySet_;
QPSet QF_readySet_dis_;
pthread_cond_t QF_condVar_; // Cond.var. to signal events
//============================================================================
// QF functions
// NOTE: initialize the critical section mutex as non-recursive,
// but check that nesting of critical sections never occurs
// (see QF_enterCriticalSection_()/QF_leaveCriticalSection_()
static pthread_mutex_t l_critSectMutex_ = PTHREAD_MUTEX_INITIALIZER;
static int_t l_critSectNest; // critical section nesting up-down counter
//............................................................................
void QF_enterCriticalSection_(void) {
pthread_mutex_lock(&l_critSectMutex_);
Q_ASSERT_INCRIT(101, l_critSectNest == 0); // NO nesting of crit.sect!
++l_critSectNest;
}
//............................................................................
void QF_leaveCriticalSection_(void) {
Q_ASSERT_INCRIT(102, l_critSectNest == 1); // crit.sect. must balance!
if ((--l_critSectNest) == 0) {
pthread_mutex_unlock(&l_critSectMutex_);
}
}
//............................................................................
void QF_init(void) {
// init the global condition variable with the default initializer
pthread_cond_init(&QF_condVar_, NULL);
QPSet_setEmpty(&QF_readySet_);
// lock memory so we're never swapped out to disk
//mlockall(MCL_CURRENT | MCL_FUTURE); // un-comment when supported
QTimeEvt_init(); // initialize QTimeEvts
l_tick.tv_sec = 0;
l_tick.tv_nsec = NSEC_PER_SEC / DEFAULT_TICKS_PER_SEC; // default rate
l_tickPrio = sched_get_priority_min(SCHED_FIFO); // default ticker prio
// install the SIGINT (Ctrl-C) signal handler
struct sigaction sig_act;
memset(&sig_act, 0, sizeof(sig_act));
sig_act.sa_handler = &sigIntHandler;
sigaction(SIGINT, &sig_act, NULL);
}
//............................................................................
int QF_run(void) {
l_isRunning = true; // QF is running
QF_onStartup(); // application-specific startup callback
QF_CRIT_STAT
// system clock tick configured?
if ((l_tick.tv_sec != 0) || (l_tick.tv_nsec != 0)) {
pthread_attr_t attr;
pthread_attr_init(&attr);
// SCHED_FIFO corresponds to real-time preemptive priority-based
// scheduler.
// NOTE: This scheduling policy requires the superuser privileges
pthread_attr_setschedpolicy (&attr, SCHED_FIFO);
pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_DETACHED);
struct sched_param param;
param.sched_priority = l_tickPrio;
pthread_attr_setschedparam(&attr, &param);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
pthread_t ticker;
int err = pthread_create(&ticker, &attr, &ticker_thread, 0);
if (err != 0) {
// Creating the p-thread with the SCHED_FIFO policy failed.
// Most probably this application has no superuser privileges,
// so we just fall back to the default SCHED_OTHER policy
// and priority 0.
pthread_attr_setschedpolicy(&attr, SCHED_OTHER);
param.sched_priority = 0;
pthread_attr_setschedparam(&attr, &param);
err = pthread_create(&ticker, &attr, &ticker_thread, 0);
}
QF_CRIT_ENTRY();
Q_ASSERT_INCRIT(310, err == 0); // ticker thread must be created
QF_CRIT_EXIT();
//pthread_attr_getschedparam(&attr, &param);
//printf("param.sched_priority==%d\n", param.sched_priority);
pthread_attr_destroy(&attr);
}
// the combined event-loop and background-loop of the QV kernel
QF_CRIT_ENTRY();
// produce the QS_QF_RUN trace record
QS_BEGIN_PRE(QS_QF_RUN, 0U)
QS_END_PRE()
while (l_isRunning) {
// find the maximum priority AO ready to run
if (QPSet_notEmpty(&QF_readySet_)) {
uint_fast8_t p = QPSet_findMax(&QF_readySet_);
QActive *a = QActive_registry_[p];
// the active object 'a' must still be registered in QF
// (e.g., it must not be stopped)
Q_ASSERT_INCRIT(320, a != (QActive *)0);
QF_CRIT_EXIT();
QEvt const *e = QActive_get_(a);
QASM_DISPATCH(&a->super, e, a->prio); // dispatch to the HSM
QF_gc(e);
QF_CRIT_ENTRY();
if (a->eQueue.frontEvt == (QEvt *)0) { // empty queue?
QPSet_remove(&QF_readySet_, p);
}
}
else {
// the QV kernel in embedded systems calls here the QV_onIdle()
// callback. However, the POSIX-QV port does not do busy-waiting
// for events. Instead, the POSIX-QV port efficiently waits until
// QP events become available.
while (QPSet_isEmpty(&QF_readySet_)) {
Q_ASSERT_INCRIT(390, l_critSectNest == 1);
--l_critSectNest;
pthread_cond_wait(&QF_condVar_, &l_critSectMutex_);
Q_ASSERT_INCRIT(391, l_critSectNest == 0);
++l_critSectNest;
}
}
}
QF_CRIT_EXIT();
QF_onCleanup(); // cleanup callback
QS_EXIT(); // cleanup the QSPY connection
pthread_cond_destroy(&QF_condVar_); // cleanup the condition variable
pthread_mutex_destroy(&l_critSectMutex_); // cleanup the global mutex
return 0; // return success
}
//............................................................................
void QF_stop(void) {
l_isRunning = false; // terminate the main event-loop
// unblock the event-loop so it can terminate
QPSet_insert(&QF_readySet_, 1U);
pthread_cond_signal(&QF_condVar_);
}
//............................................................................
void QF_setTickRate(uint32_t ticksPerSec, int tickPrio) {
if (ticksPerSec != 0U) {
l_tick.tv_nsec = NSEC_PER_SEC / ticksPerSec;
}
else {
l_tick.tv_nsec = 0U; // means NO system clock tick
}
l_tickPrio = tickPrio;
}
// console access ============================================================
#ifdef QF_CONSOLE
#include <termios.h>
static struct termios l_tsav; // structure with saved terminal attributes
void QF_consoleSetup(void) {
struct termios tio; // modified terminal attributes
tcgetattr(0, &l_tsav); // save the current terminal attributes
tcgetattr(0, &tio); // obtain the current terminal attributes
tio.c_lflag &= ~(ICANON | ECHO); // disable the canonical mode & echo
tcsetattr(0, TCSANOW, &tio); // set the new attributes
}
//............................................................................
void QF_consoleCleanup(void) {
tcsetattr(0, TCSANOW, &l_tsav); // restore the saved attributes
}
//............................................................................
int QF_consoleGetKey(void) {
int byteswaiting;
ioctl(0, FIONREAD, &byteswaiting);
if (byteswaiting > 0) {
char ch;
byteswaiting = read(0, &ch, 1);
return (int)ch;
}
return 0; // no input at this time
}
//............................................................................
int QF_consoleWaitForKey(void) {
return (int)getchar();
}
#endif
// QActive functions =========================================================
void QActive_start(QActive * const me,
QPrioSpec const prioSpec,
QEvtPtr * const qSto, uint_fast16_t const qLen,
void * const stkSto, uint_fast16_t const stkSize,
void const * const par)
{
Q_UNUSED_PAR(stkSto);
Q_UNUSED_PAR(stkSize);
// no per-AO stack needed for this port
QF_CRIT_STAT
QF_CRIT_ENTRY();
Q_REQUIRE_INCRIT(600, stkSto == (void *)0);
QF_CRIT_EXIT();
me->prio = (uint8_t)(prioSpec & 0xFFU); // QF-priority of the AO
me->pthre = 0U; // preemption-threshold (not used in this port)
QActive_register_(me); // register this AO
QEQueue_init(&me->eQueue, qSto, qLen);
// top-most initial tran. (virtual call)
(*me->super.vptr->init)(&me->super, par, me->prio);
QS_FLUSH(); // flush the QS trace buffer to the host
}
//............................................................................
#ifdef QACTIVE_CAN_STOP
void QActive_stop(QActive * const me) {
QActive_unsubscribeAll(me);
// make sure the AO is no longer in "ready set"
QF_CRIT_STAT
QF_CRIT_ENTRY();
QPSet_remove(&QF_readySet_, me->prio);
QF_CRIT_EXIT();
QActive_unregister_(me);
}
#endif
//............................................................................
void QActive_setAttr(QActive *const me, uint32_t attr1, void const *attr2) {
Q_UNUSED_PAR(me);
Q_UNUSED_PAR(attr1);
Q_UNUSED_PAR(attr2);
Q_ERROR_INCRIT(900); // should not be called in this QP port
}
//============================================================================
// NOTE01:
// In Linux, the scheduler policy closest to real-time is the SCHED_FIFO
// policy, available only with superuser privileges. QF_run() attempts to set
// this policy as well as to maximize its priority, so that the ticking
// occurs in the most timely manner (as close to an interrupt as possible).
// However, setting the SCHED_FIFO policy might fail, most probably due to
// insufficient privileges.
//
// NOTE03:
// Any blocking system call, such as clock_nanosleep() system call can
// be interrupted by a signal, such as ^C from the keyboard. In this case this
// QF port breaks out of the event-loop and returns to main() that exits and
// terminates all spawned p-threads.
//
// NOTE04:
// According to the man pages (for pthread_attr_setschedpolicy) the only value
// supported in the Linux p-threads implementation is PTHREAD_SCOPE_SYSTEM,
// meaning that the threads contend for CPU time with all processes running on
// the machine. In particular, thread priorities are interpreted relative to
// the priorities of all other processes on the machine.
//
// This is good, because it seems that if we set the priorities high enough,
// no other process (or thread running within) can gain control over the CPU.
//
// However, QF limits the number of priority levels to QF_MAX_ACTIVE.
// Assuming that a QF application will be real-time, this port reserves the
// three highest p-thread priorities for the ISR-like threads (e.g., I/O),
// and the remaining highest-priorities for the active objects.
//