Quantum Leaps eed870ce9d 5.2.0
2013-12-30 17:37:40 -05:00

433 lines
17 KiB
C

/*****************************************************************************
* Product: "Dining Philosophers Problem" example, cooperative Vanilla kernel
* Last Updated for Version: 5.2.0
* Date of the Last Update: Dec 25, 2013
*
* Q u a n t u m L e a P s
* ---------------------------
* innovating embedded systems
*
* Copyright (C) 2002-2013 Quantum Leaps, LLC. All rights reserved.
*
* This program is open source software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Alternatively, this program may be distributed and modified under the
* terms of Quantum Leaps commercial licenses, which expressly supersede
* the GNU General Public License and are specifically designed for
* licensees interested in retaining the proprietary status of their code.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Contact information:
* Quantum Leaps Web sites: http://www.quantum-leaps.com
* http://www.state-machine.com
* e-mail: info@quantum-leaps.com
*****************************************************************************/
#include "qp_port.h"
#include "dpp.h"
#include "bsp.h"
#include "lm3s_cmsis.h"
#include "display96x16x1.h"
Q_DEFINE_THIS_FILE
/*!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
* Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
* DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
*/
enum KernelUnawareISRs { /* see NOTE00 */
/* ... */
MAX_KERNEL_UNAWARE_CMSIS_PRI /* keep always last */
};
/* "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts */
Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI);
enum KernelAwareISRs {
GPIOPORTA_PRIO = QF_AWARE_ISR_CMSIS_PRI, /* see NOTE00 */
SYSTICK_PRIO,
/* ... */
MAX_KERNEL_AWARE_CMSIS_PRI /* keep always last */
};
/* "kernel-aware" interrupts should not overlap the PendSV priority */
Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS)));
/* ISRs defined in this BSP ------------------------------------------------*/
void SysTick_Handler(void);
void GPIOPortA_IRQHandler(void);
/* Local-scope objects -----------------------------------------------------*/
static unsigned l_rnd; /* random seed */
#define PUSH_BUTTON (1U << 4)
#define USER_LED (1U << 5)
#ifdef Q_SPY
QSTimeCtr QS_tickTime_;
QSTimeCtr QS_tickPeriod_;
static uint8_t l_SysTick_Handler;
static uint8_t l_GPIOPortA_IRQHandler;
#define UART_BAUD_RATE 115200U
#define UART_TXFIFO_DEPTH 16U
#define UART_FR_TXFE 0x00000080U
enum AppRecords { /* application-specific trace records */
PHILO_STAT = QS_USER
};
#endif
/*..........................................................................*/
void SysTick_Handler(void) {
static uint32_t btn_debounced = PUSH_BUTTON;
static uint8_t debounce_state = 0U;
uint32_t btn;
#ifdef Q_SPY
{
uint32_t dummy = SysTick->CTRL; /* clear SysTick_CTRL_COUNTFLAG */
QS_tickTime_ += QS_tickPeriod_; /* account for the clock rollover */
}
#endif
QF_TICK_X(0U, &l_SysTick_Handler); /* process all time events at rate 0 */
/* debounce the USER button... */
btn = GPIOC->DATA_Bits[PUSH_BUTTON]; /* read the push btn */
switch (debounce_state) {
case 0:
if (btn != btn_debounced) {
debounce_state = 1U; /* transition to the next state */
}
break;
case 1:
if (btn != btn_debounced) {
debounce_state = 2U; /* transition to the next state */
}
else {
debounce_state = 0U; /* transition back to state 0 */
}
break;
case 2:
if (btn != btn_debounced) {
debounce_state = 3U; /* transition to the next state */
}
else {
debounce_state = 0U; /* transition back to state 0 */
}
break;
case 3:
if (btn != btn_debounced) {
btn_debounced = btn; /* save the debounced button value */
if (btn == 0U) { /* is the button depressed? */
static QEvt const pauseEvt = { PAUSE_SIG, 0U, 0U};
QF_PUBLISH(&pauseEvt, &l_SysTick_Handler);
}
else {
static QEvt const pauseEvt = { PAUSE_SIG, 0U, 0U};
QF_PUBLISH(&pauseEvt, &l_SysTick_Handler);
}
}
debounce_state = 0U; /* transition back to state 0 */
break;
}
}
/*..........................................................................*/
void GPIOPortA_IRQHandler(void) {
QACTIVE_POST(AO_Table, Q_NEW(QEvt, MAX_PUB_SIG), /* for testing... */
&l_GPIOPortA_IRQHandler);
}
/*..........................................................................*/
void BSP_init(void) {
/* set the system clock as specified in lm3s_config.h (20MHz from PLL) */
SystemInit();
/* enable clock to the peripherals used by the application */
SYSCTL->RCGC2 |= (1 << 0) | (1 << 2); /* enable clock to GPIOA & C */
__NOP(); /* wait after enabling clocks */
__NOP();
__NOP();
/* configure the LED and push button */
GPIOC->DIR |= USER_LED; /* set direction: output */
GPIOC->DEN |= USER_LED; /* digital enable */
GPIOC->DATA_Bits[USER_LED] = 0; /* turn the User LED off */
GPIOC->DIR &= ~PUSH_BUTTON; /* set direction: input */
GPIOC->DEN |= PUSH_BUTTON; /* digital enable */
Display96x16x1Init(1); /* initialize the OLED display */
Display96x16x1StringDraw("Dining Philos", 0, 0);
Display96x16x1StringDraw("0 ,1 ,2 ,3 ,4", 0, 1);
BSP_randomSeed(1234U);
if (QS_INIT((void *)0) == 0) { /* initialize the QS software tracing */
Q_ERROR();
}
QS_OBJ_DICTIONARY(&l_SysTick_Handler);
QS_OBJ_DICTIONARY(&l_GPIOPortA_IRQHandler);
}
/*..........................................................................*/
void BSP_displayPhilStat(uint8_t n, char_t const *stat) {
char str[2];
str[0] = stat[0];
str[1] = '\0';
Display96x16x1StringDraw(str, (3*6*n + 6), 1);
QS_BEGIN(PHILO_STAT, AO_Philo[n]) /* application-specific record begin */
QS_U8(1, n); /* Philosopher number */
QS_STR(stat); /* Philosopher status */
QS_END()
}
/*..........................................................................*/
void BSP_displayPaused(uint8_t paused) {
Display96x16x1StringDraw(paused ? "P" : " ", 15*6, 0);
}
/*..........................................................................*/
uint32_t BSP_random(void) { /* a very cheap pseudo-random-number generator */
/* "Super-Duper" Linear Congruential Generator (LCG)
* LCG(2^32, 3*7*11*13*23, 0, seed)
*/
l_rnd = l_rnd * (3*7*11*13*23);
return l_rnd >> 8;
}
/*..........................................................................*/
void BSP_randomSeed(uint32_t seed) {
l_rnd = seed;
}
/*..........................................................................*/
void BSP_terminate(int16_t result) {
(void)result;
}
/*..........................................................................*/
void QF_onStartup(void) {
/* set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate */
SysTick_Config(SystemFrequency / BSP_TICKS_PER_SEC);
/* assing all priority bits for preemption-prio. and none to sub-prio. */
NVIC_SetPriorityGrouping(0U);
/* set priorities of ALL ISRs used in the system, see NOTE00
*
* !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
* Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
* DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
*/
NVIC_SetPriority(SysTick_IRQn, SYSTICK_PRIO);
NVIC_SetPriority(GPIOPortA_IRQn, GPIOPORTA_PRIO);
/* ... */
/* enable IRQs... */
NVIC_EnableIRQ(GPIOPortA_IRQn);
}
/*..........................................................................*/
void QF_onCleanup(void) {
}
/*..........................................................................*/
void QF_onIdle(void) { /* called with interrupts disabled, see NOTE01 */
/* toggle the User LED on and then off, see NOTE02 */
GPIOC->DATA_Bits[USER_LED] = USER_LED; /* turn the User LED on */
GPIOC->DATA_Bits[USER_LED] = 0; /* turn the User LED off */
#ifdef Q_SPY
QF_INT_ENABLE();
if ((UART0->FR & UART_FR_TXFE) != 0) { /* TX done? */
uint16_t fifo = UART_TXFIFO_DEPTH; /* max bytes we can accept */
uint8_t const *block;
QF_INT_DISABLE();
block = QS_getBlock(&fifo); /* try to get next block to transmit */
QF_INT_ENABLE();
while (fifo-- != 0) { /* any bytes in the block? */
UART0->DR = *block++; /* put into the FIFO */
}
}
#elif defined NDEBUG
/* Put the CPU and peripherals to the low-power mode.
* you might need to customize the clock management for your application,
* see the datasheet for your particular Cortex-M MCU.
*/
QF_CPU_SLEEP(); /* atomically go to sleep and enable interrupts */
#else
QF_INT_ENABLE(); /* just enable interrupts */
#endif
}
/*..........................................................................*/
void Q_onAssert(char const Q_ROM * const file, int_t line) {
assert_failed(file, line);
}
/*..........................................................................*/
/* error routine that is called if the CMSIS library encounters an error */
void assert_failed(char const *file, int line) {
(void)file; /* avoid compiler warning */
(void)line; /* avoid compiler warning */
QF_INT_DISABLE(); /* make sure that all interrupts are disabled */
NVIC_SystemReset(); /* perform system reset */
}
/*--------------------------------------------------------------------------*/
#ifdef Q_SPY
/*..........................................................................*/
uint8_t QS_onStartup(void const *arg) {
static uint8_t qsBuf[2*1024]; /* buffer for Quantum Spy */
uint32_t tmp;
QS_initBuf(qsBuf, sizeof(qsBuf));
/* enable the peripherals used by the UART0 */
SYSCTL->RCGC1 |= (1 << 0); /* enable clock to UART0 */
SYSCTL->RCGC2 |= (1 << 0); /* enable clock to GPIOA */
__NOP(); /* wait after enabling clocks */
__NOP();
__NOP();
/* configure UART0 pins for UART operation */
tmp = (1 << 0) | (1 << 1);
GPIOA->DIR &= ~tmp;
GPIOA->AFSEL |= tmp;
GPIOA->DR2R |= tmp; /* set 2mA drive, DR4R and DR8R are cleared */
GPIOA->SLR &= ~tmp;
GPIOA->ODR &= ~tmp;
GPIOA->PUR &= ~tmp;
GPIOA->PDR &= ~tmp;
GPIOA->DEN |= tmp;
/* configure the UART for the desired baud rate, 8-N-1 operation */
tmp = (((SystemFrequency * 8) / UART_BAUD_RATE) + 1) / 2;
UART0->IBRD = tmp / 64;
UART0->FBRD = tmp % 64;
UART0->LCRH = 0x60; /* configure 8-N-1 operation */
UART0->LCRH |= 0x10;
UART0->CTL |= (1 << 0) | (1 << 8) | (1 << 9);
QS_tickPeriod_ = SystemFrequency / BSP_TICKS_PER_SEC;
QS_tickTime_ = QS_tickPeriod_; /* to start the timestamp at zero */
/* setup the QS filters... */
QS_FILTER_ON(QS_ALL_RECORDS);
// QS_FILTER_OFF(QS_QEP_STATE_EMPTY);
// QS_FILTER_OFF(QS_QEP_STATE_ENTRY);
// QS_FILTER_OFF(QS_QEP_STATE_EXIT);
// QS_FILTER_OFF(QS_QEP_STATE_INIT);
// QS_FILTER_OFF(QS_QEP_INIT_TRAN);
// QS_FILTER_OFF(QS_QEP_INTERN_TRAN);
// QS_FILTER_OFF(QS_QEP_TRAN);
// QS_FILTER_OFF(QS_QEP_IGNORED);
// QS_FILTER_OFF(QS_QF_ACTIVE_ADD);
// QS_FILTER_OFF(QS_QF_ACTIVE_REMOVE);
// QS_FILTER_OFF(QS_QF_ACTIVE_SUBSCRIBE);
// QS_FILTER_OFF(QS_QF_ACTIVE_UNSUBSCRIBE);
// QS_FILTER_OFF(QS_QF_ACTIVE_POST_FIFO);
// QS_FILTER_OFF(QS_QF_ACTIVE_POST_LIFO);
// QS_FILTER_OFF(QS_QF_ACTIVE_GET);
// QS_FILTER_OFF(QS_QF_ACTIVE_GET_LAST);
// QS_FILTER_OFF(QS_QF_EQUEUE_INIT);
// QS_FILTER_OFF(QS_QF_EQUEUE_POST_FIFO);
// QS_FILTER_OFF(QS_QF_EQUEUE_POST_LIFO);
// QS_FILTER_OFF(QS_QF_EQUEUE_GET);
// QS_FILTER_OFF(QS_QF_EQUEUE_GET_LAST);
// QS_FILTER_OFF(QS_QF_MPOOL_INIT);
// QS_FILTER_OFF(QS_QF_MPOOL_GET);
// QS_FILTER_OFF(QS_QF_MPOOL_PUT);
// QS_FILTER_OFF(QS_QF_PUBLISH);
// QS_FILTER_OFF(QS_QF_NEW);
// QS_FILTER_OFF(QS_QF_GC_ATTEMPT);
// QS_FILTER_OFF(QS_QF_GC);
// QS_FILTER_OFF(QS_QF_TICK);
// QS_FILTER_OFF(QS_QF_TIMEEVT_ARM);
// QS_FILTER_OFF(QS_QF_TIMEEVT_AUTO_DISARM);
// QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM_ATTEMPT);
// QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM);
// QS_FILTER_OFF(QS_QF_TIMEEVT_REARM);
// QS_FILTER_OFF(QS_QF_TIMEEVT_POST);
QS_FILTER_OFF(QS_QF_CRIT_ENTRY);
QS_FILTER_OFF(QS_QF_CRIT_EXIT);
QS_FILTER_OFF(QS_QF_ISR_ENTRY);
QS_FILTER_OFF(QS_QF_ISR_EXIT);
return (uint8_t)1; /* return success */
}
/*..........................................................................*/
void QS_onCleanup(void) {
}
/*..........................................................................*/
QSTimeCtr QS_onGetTime(void) { /* invoked with interrupts locked */
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { /* not set? */
return QS_tickTime_ - (QSTimeCtr)SysTick->VAL;
}
else { /* the rollover occured, but the SysTick_ISR did not run yet */
return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL;
}
}
/*..........................................................................*/
void QS_onFlush(void) {
uint16_t fifo = UART_TXFIFO_DEPTH; /* Tx FIFO depth */
uint8_t const *block;
QF_INT_DISABLE();
while ((block = QS_getBlock(&fifo)) != (uint8_t *)0) {
QF_INT_ENABLE();
/* busy-wait until TX FIFO empty */
while ((UART0->FR & UART_FR_TXFE) == 0) {
}
while (fifo-- != 0) { /* any bytes in the block? */
UART0->DR = *block++; /* put into the TX FIFO */
}
fifo = UART_TXFIFO_DEPTH; /* re-load the Tx FIFO depth */
QF_INT_DISABLE();
}
QF_INT_ENABLE();
}
#endif /* Q_SPY */
/*--------------------------------------------------------------------------*/
/*****************************************************************************
* NOTE00:
* The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest
* ISR priority that is disabled by the QF framework. The value is suitable
* for the NVIC_SetPriority() CMSIS function.
*
* Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e.,
* with the numerical values of priorities equal or higher than
* QF_AWARE_ISR_CMSIS_PRI) are allowed to call any QF services. These ISRs
* are "QF-aware".
*
* Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority
* level (i.e., with the numerical values of priorities less than
* QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel.
* Such "QF-unaware" ISRs cannot call any QF services. The only mechanism
* by which a "QF-unaware" ISR can communicate with the QF framework is by
* triggering a "QF-aware" ISR, which can post/publish events.
*
* NOTE01:
* The QF_onIdle() callback is called with interrupts disabled, because the
* determination of the idle condition might change by any interrupt posting
* an event. QF::onIdle() must internally enable interrupts, ideally
* atomically with putting the CPU to the power-saving mode.
*
* NOTE02:
* The User LED is used to visualize the idle loop activity. The brightness
* of the LED is proportional to the frequency of invcations of the idle loop.
* Please note that the LED is toggled with interrupts locked, so no interrupt
* execution time contributes to the brightness of the User LED.
*/