mirror of
https://github.com/QuantumLeaps/qpc.git
synced 2025-01-21 06:53:11 +08:00
498 lines
18 KiB
C
498 lines
18 KiB
C
/*****************************************************************************
|
|
* Product: DPP example, STM32746G-Discovery board, preemptive QK kernel
|
|
* Last Updated for Version: 5.9.0
|
|
* Date of the Last Update: 2017-04-13
|
|
*
|
|
* Q u a n t u m L e a P s
|
|
* ---------------------------
|
|
* innovating embedded systems
|
|
*
|
|
* Copyright (C) Quantum Leaps, LLC. All rights reserved.
|
|
*
|
|
* This program is open source software: you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as published
|
|
* by the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* Alternatively, this program may be distributed and modified under the
|
|
* terms of Quantum Leaps commercial licenses, which expressly supersede
|
|
* the GNU General Public License and are specifically designed for
|
|
* licensees interested in retaining the proprietary status of their code.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Contact information:
|
|
* https://state-machine.com
|
|
* mailto:info@state-machine.com
|
|
*****************************************************************************/
|
|
#include "qpc.h"
|
|
#include "dpp.h"
|
|
#include "bsp.h"
|
|
|
|
/* STM32Cube include files */
|
|
#include "stm32f7xx_hal.h"
|
|
#include "stm32746g_discovery.h"
|
|
/* add other drivers if necessary... */
|
|
|
|
Q_DEFINE_THIS_FILE
|
|
|
|
/*!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
* Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
|
|
* DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
|
|
*/
|
|
enum KernelUnawareISRs { /* see NOTE00 */
|
|
USART1_PRIO,
|
|
/* ... */
|
|
MAX_KERNEL_UNAWARE_CMSIS_PRI /* keep always last */
|
|
};
|
|
/* "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts */
|
|
Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI);
|
|
|
|
enum KernelAwareISRs {
|
|
GPIO_EVEN_PRIO = QF_AWARE_ISR_CMSIS_PRI, /* see NOTE00 */
|
|
SYSTICK_PRIO,
|
|
/* ... */
|
|
MAX_KERNEL_AWARE_CMSIS_PRI /* keep always last */
|
|
};
|
|
/* "kernel-aware" interrupts should not overlap the PendSV priority */
|
|
Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS)));
|
|
|
|
/* ISRs defined in this BSP ------------------------------------------------*/
|
|
void SysTick_Handler(void);
|
|
//void GPIO_EVEN_IRQHandler(void);
|
|
void USART1_IRQHandler(void);
|
|
|
|
/* Local-scope objects -----------------------------------------------------*/
|
|
static uint32_t l_rnd; /* random seed */
|
|
static QMutex l_rndMutex; /* mutex to protect the random seed */
|
|
|
|
#ifdef Q_SPY
|
|
|
|
QSTimeCtr QS_tickTime_;
|
|
QSTimeCtr QS_tickPeriod_;
|
|
|
|
/* QS source IDs */
|
|
static uint8_t const l_SysTick_Handler = (uint8_t)0;
|
|
static uint8_t const l_GPIO_EVEN_IRQHandler = (uint8_t)0;
|
|
static UART_HandleTypeDef l_uartHandle;
|
|
|
|
enum AppRecords { /* application-specific trace records */
|
|
PHILO_STAT = QS_USER,
|
|
COMMAND_STAT
|
|
};
|
|
|
|
#endif
|
|
|
|
/*..........................................................................*/
|
|
void SysTick_Handler(void) {
|
|
/* state of the button debouncing, see below */
|
|
static struct ButtonsDebouncing {
|
|
uint32_t depressed;
|
|
uint32_t previous;
|
|
} buttons = { ~0U, ~0U };
|
|
uint32_t current;
|
|
uint32_t tmp;
|
|
|
|
QK_ISR_ENTRY(); /* inform QK about entering an ISR */
|
|
|
|
#ifdef Q_SPY
|
|
{
|
|
tmp = SysTick->CTRL; /* clear SysTick_CTRL_COUNTFLAG */
|
|
QS_tickTime_ += QS_tickPeriod_; /* account for the clock rollover */
|
|
}
|
|
#endif
|
|
|
|
QF_TICK_X(0U, &l_SysTick_Handler); /* process time events for rate 0 */
|
|
|
|
/* Perform the debouncing of buttons. The algorithm for debouncing
|
|
* adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
|
|
* and Michael Barr, page 71.
|
|
*/
|
|
current = BSP_PB_GetState(BUTTON_KEY); /* read the Key button */
|
|
tmp = buttons.depressed; /* save the debounced depressed buttons */
|
|
buttons.depressed |= (buttons.previous & current); /* set depressed */
|
|
buttons.depressed &= (buttons.previous | current); /* clear released */
|
|
buttons.previous = current; /* update the history */
|
|
tmp ^= buttons.depressed; /* changed debounced depressed */
|
|
if (tmp != 0U) { /* debounced Key button state changed? */
|
|
if (buttons.depressed != 0U) { /* PB0 depressed?*/
|
|
static QEvt const pauseEvt = { PAUSE_SIG, 0U, 0U};
|
|
QF_PUBLISH(&pauseEvt, &l_SysTick_Handler);
|
|
}
|
|
else { /* the button is released */
|
|
static QEvt const serveEvt = { SERVE_SIG, 0U, 0U};
|
|
QF_PUBLISH(&serveEvt, &l_SysTick_Handler);
|
|
}
|
|
}
|
|
|
|
QK_ISR_EXIT(); /* inform QK about exiting an ISR */
|
|
}
|
|
/*..........................................................................*/
|
|
#ifdef Q_SPY
|
|
/*
|
|
* ISR for receiving bytes from the QSPY Back-End
|
|
* NOTE: This ISR is "QF-unaware" meaning that it does not interact with
|
|
* the QF/QK and is not disabled. Such ISRs don't need to call QK_ISR_ENTRY/
|
|
* QK_ISR_EXIT and they cannot post or publish events.
|
|
*/
|
|
void USART1_IRQHandler(void) {
|
|
/* is RX register NOT empty? */
|
|
if ((l_uartHandle.Instance->ISR & USART_ISR_RXNE) != 0) {
|
|
uint32_t b = l_uartHandle.Instance->RDR;
|
|
QS_RX_PUT(b);
|
|
l_uartHandle.Instance->ISR &= ~USART_ISR_RXNE; /* clear interrupt */
|
|
}
|
|
}
|
|
/*..........................................................................*/
|
|
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandle) {
|
|
(void)UartHandle;
|
|
/* dummy implementation needed for STM32Cube */
|
|
}
|
|
#endif
|
|
|
|
/*..........................................................................*/
|
|
void BSP_init(void) {
|
|
RCC_OscInitTypeDef RCC_OscInitStruct;
|
|
RCC_ClkInitTypeDef RCC_ClkInitStruct;
|
|
|
|
SCB_EnableICache(); /* Enable I-Cache */
|
|
SCB_EnableDCache(); /* Enable D-Cache */
|
|
|
|
/* Configure Flash prefetch and Instr. cache through ART accelerator */
|
|
#if (ART_ACCLERATOR_ENABLE != 0)
|
|
__HAL_FLASH_ART_ENABLE();
|
|
#endif /* ART_ACCLERATOR_ENABLE */
|
|
|
|
/* Configure the system clock to 216 MHz... */
|
|
/* Enable HSE Oscillator and activate PLL with HSE as source */
|
|
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
|
|
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
|
|
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
|
|
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
|
|
RCC_OscInitStruct.PLL.PLLM = 25;
|
|
RCC_OscInitStruct.PLL.PLLN = 432;
|
|
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
|
|
RCC_OscInitStruct.PLL.PLLQ = 9;
|
|
Q_ALLEGE(HAL_RCC_OscConfig(&RCC_OscInitStruct) == HAL_OK);
|
|
|
|
/* Activate the OverDrive to reach the 216 MHz Frequency */
|
|
Q_ALLEGE(HAL_PWREx_EnableOverDrive() == HAL_OK);
|
|
|
|
/* Set PLL as system clock source
|
|
* and configure the HCLK, PCLK1 and PCLK2 clocks dividers
|
|
*/
|
|
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK
|
|
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
|
|
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
|
|
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
|
|
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
|
|
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
|
|
Q_ALLEGE(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_7)
|
|
== HAL_OK);
|
|
|
|
/* configure the FPU usage by choosing one of the options... */
|
|
#if 1
|
|
/* OPTION 1:
|
|
* Use the automatic FPU state preservation and the FPU lazy stacking.
|
|
*
|
|
* NOTE:
|
|
* Use the following setting when FPU is used in more than one task or
|
|
* in any ISRs. This setting is the safest and recommended, but requires
|
|
* extra stack space and CPU cycles.
|
|
*/
|
|
FPU->FPCCR |= (1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos);
|
|
#else
|
|
/* OPTION 2:
|
|
* Do NOT to use the automatic FPU state preservation and
|
|
* do NOT to use the FPU lazy stacking.
|
|
*
|
|
* NOTE:
|
|
* Use the following setting when FPU is used in ONE task only and not
|
|
* in any ISR. This setting is very efficient, but if more than one task
|
|
* (or ISR) start using the FPU, this can lead to corruption of the
|
|
* FPU registers. This option should be used with CAUTION.
|
|
*/
|
|
FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos));
|
|
#endif
|
|
|
|
/* Configure LED1 */
|
|
BSP_LED_Init(LED1);
|
|
|
|
/* Configure the User Button in GPIO Mode */
|
|
BSP_PB_Init(BUTTON_KEY, BUTTON_MODE_GPIO);
|
|
|
|
//...
|
|
BSP_randomSeed(1234U);
|
|
|
|
if (QS_INIT((void *)0) == 0) { /* initialize the QS software tracing */
|
|
Q_ERROR();
|
|
}
|
|
QS_OBJ_DICTIONARY(&l_SysTick_Handler);
|
|
QS_OBJ_DICTIONARY(&l_GPIO_EVEN_IRQHandler);
|
|
QS_USR_DICTIONARY(PHILO_STAT);
|
|
QS_USR_DICTIONARY(COMMAND_STAT);
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_displayPhilStat(uint8_t n, char const *stat) {
|
|
if (stat[0] == 'e') {
|
|
BSP_LED_On(LED1);
|
|
}
|
|
else {
|
|
BSP_LED_Off(LED1);
|
|
}
|
|
|
|
QS_BEGIN(PHILO_STAT, AO_Philo[n]) /* application-specific record begin */
|
|
QS_U8(1, n); /* Philosopher number */
|
|
QS_STR(stat); /* Philosopher status */
|
|
QS_END()
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_displayPaused(uint8_t paused) {
|
|
if (paused != 0U) {
|
|
//BSP_LED_On(LED2); not enough LEDs
|
|
}
|
|
else {
|
|
//BSP_LED_Off(LED2); not enough LEDs
|
|
}
|
|
}
|
|
/*..........................................................................*/
|
|
uint32_t BSP_random(void) { /* a very cheap pseudo-random-number generator */
|
|
uint32_t rnd;
|
|
|
|
/* Some flating point code is to exercise the VFP... */
|
|
float volatile x = 3.1415926F;
|
|
x = x + 2.7182818F;
|
|
|
|
QMutex_lock(&l_rndMutex); /* lock the random-seed mutex */
|
|
/* "Super-Duper" Linear Congruential Generator (LCG)
|
|
* LCG(2^32, 3*7*11*13*23, 0, seed)
|
|
*/
|
|
rnd = l_rnd * (3U*7U*11U*13U*23U);
|
|
l_rnd = rnd; /* set for the next time */
|
|
QMutex_unlock(&l_rndMutex); /* unlock the random-seed mutex */
|
|
|
|
return (rnd >> 8);
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_randomSeed(uint32_t seed) {
|
|
l_rnd = seed;
|
|
QMutex_init(&l_rndMutex, N_PHILO); /* ceiling == max Philo priority */
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_terminate(int16_t result) {
|
|
(void)result;
|
|
}
|
|
|
|
/*..........................................................................*/
|
|
void QF_onStartup(void) {
|
|
/* assing all priority bits for preemption-prio. and none to sub-prio. */
|
|
NVIC_SetPriorityGrouping(0U);
|
|
|
|
/* set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate */
|
|
SysTick_Config(SystemCoreClock / BSP_TICKS_PER_SEC);
|
|
|
|
/* set priorities of ALL ISRs used in the system, see NOTE00
|
|
*
|
|
* !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
* Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
|
|
* DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
|
|
*/
|
|
NVIC_SetPriority(USART1_IRQn, USART1_PRIO);
|
|
NVIC_SetPriority(SysTick_IRQn, SYSTICK_PRIO);
|
|
//NVIC_SetPriority(GPIO_EVEN_IRQn, GPIO_EVEN_PRIO);
|
|
/* ... */
|
|
|
|
/* enable IRQs... */
|
|
//NVIC_EnableIRQ(GPIO_EVEN_IRQn);
|
|
#ifdef Q_SPY
|
|
NVIC_EnableIRQ(USART1_IRQn); /* UART1 interrupt used for QS-RX */
|
|
#endif
|
|
}
|
|
/*..........................................................................*/
|
|
void QF_onCleanup(void) {
|
|
}
|
|
/*..........................................................................*/
|
|
void QK_onIdle(void) {
|
|
/* toggle the User LED on and then off, see NOTE01 */
|
|
QF_INT_DISABLE();
|
|
//BSP_LED_On(LED3); not enough LEDs
|
|
//BSP_LED_On(LED3); not enough LEDs
|
|
QF_INT_ENABLE();
|
|
|
|
#ifdef Q_SPY
|
|
QS_rxParse(); /* parse all the received bytes */
|
|
|
|
if ((l_uartHandle.Instance->ISR & UART_FLAG_TXE) != 0U) { /* TXE empty? */
|
|
uint16_t b;
|
|
|
|
QF_INT_DISABLE();
|
|
b = QS_getByte();
|
|
QF_INT_ENABLE();
|
|
|
|
if (b != QS_EOD) { /* not End-Of-Data? */
|
|
l_uartHandle.Instance->TDR = (b & 0xFFU); /* put into TDR */
|
|
}
|
|
}
|
|
#elif defined NDEBUG
|
|
/* Put the CPU and peripherals to the low-power mode.
|
|
* you might need to customize the clock management for your application,
|
|
* see the datasheet for your particular Cortex-M MCU.
|
|
*/
|
|
/* !!!CAUTION!!!
|
|
* The WFI instruction stops the CPU clock, which unfortunately disables
|
|
* the JTAG port, so the ST-Link debugger can no longer connect to the
|
|
* board. For that reason, the call to __WFI() has to be used with CAUTION.
|
|
*
|
|
* NOTE: If you find your board "frozen" like this, strap BOOT0 to VDD and
|
|
* reset the board, then connect with ST-Link Utilities and erase the part.
|
|
* The trick with BOOT(0) is it gets the part to run the System Loader
|
|
* instead of your broken code. When done disconnect BOOT0, and start over.
|
|
*/
|
|
//__WFI(); /* Wait-For-Interrupt */
|
|
#endif
|
|
}
|
|
|
|
/*..........................................................................*/
|
|
void Q_onAssert(char const *module, int loc) {
|
|
/*
|
|
* NOTE: add here your application-specific error handling
|
|
*/
|
|
(void)module;
|
|
(void)loc;
|
|
QS_ASSERTION(module, loc, (uint32_t)10000U); /* report assertion to QS */
|
|
|
|
#ifndef NDEBUG
|
|
/* light up both LEDs */
|
|
BSP_LED_On(LED1);
|
|
/* for debugging, hang on in an endless loop... */
|
|
for (;;) {
|
|
}
|
|
#endif
|
|
|
|
NVIC_SystemReset();
|
|
}
|
|
|
|
/* QS callbacks ============================================================*/
|
|
#ifdef Q_SPY
|
|
/*..........................................................................*/
|
|
uint8_t QS_onStartup(void const *arg) {
|
|
static uint8_t qsTxBuf[2*1024]; /* buffer for QS transmit channel */
|
|
static uint8_t qsRxBuf[100]; /* buffer for QS receive channel */
|
|
|
|
QS_initBuf (qsTxBuf, sizeof(qsTxBuf));
|
|
QS_rxInitBuf(qsRxBuf, sizeof(qsRxBuf));
|
|
|
|
l_uartHandle.Instance = USART1;
|
|
l_uartHandle.Init.BaudRate = 115200;
|
|
l_uartHandle.Init.WordLength = UART_WORDLENGTH_8B;
|
|
l_uartHandle.Init.StopBits = UART_STOPBITS_1;
|
|
l_uartHandle.Init.Parity = UART_PARITY_NONE;
|
|
l_uartHandle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
|
|
l_uartHandle.Init.Mode = UART_MODE_TX_RX;
|
|
l_uartHandle.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
|
|
if (HAL_UART_Init(&l_uartHandle) != HAL_OK) {
|
|
return (uint8_t)0; /* return failure */
|
|
}
|
|
|
|
/* Set UART to receive 1 byte at a time via interrupt */
|
|
HAL_UART_Receive_IT(&l_uartHandle, (uint8_t *)qsRxBuf, 1);
|
|
|
|
QS_tickPeriod_ = SystemCoreClock / BSP_TICKS_PER_SEC;
|
|
QS_tickTime_ = QS_tickPeriod_; /* to start the timestamp at zero */
|
|
|
|
/* setup the QS filters... */
|
|
QS_FILTER_ON(QS_SM_RECORDS);
|
|
QS_FILTER_ON(QS_UA_RECORDS);
|
|
|
|
return (uint8_t)1; /* return success */
|
|
}
|
|
/*..........................................................................*/
|
|
void QS_onCleanup(void) {
|
|
}
|
|
/*..........................................................................*/
|
|
QSTimeCtr QS_onGetTime(void) { /* NOTE: invoked with interrupts DISABLED */
|
|
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { /* not set? */
|
|
return QS_tickTime_ - (QSTimeCtr)SysTick->VAL;
|
|
}
|
|
else { /* the rollover occured, but the SysTick_ISR did not run yet */
|
|
return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL;
|
|
}
|
|
}
|
|
/*..........................................................................*/
|
|
void QS_onFlush(void) {
|
|
uint16_t b;
|
|
|
|
QF_INT_DISABLE();
|
|
while ((b = QS_getByte()) != QS_EOD) { /* while not End-Of-Data... */
|
|
QF_INT_ENABLE();
|
|
/* while TXE not empty */
|
|
while ((l_uartHandle.Instance->ISR & UART_FLAG_TXE) == 0U) {
|
|
}
|
|
l_uartHandle.Instance->TDR = (b & 0xFFU); /* put into TDR */
|
|
QF_INT_DISABLE();
|
|
}
|
|
QF_INT_ENABLE();
|
|
}
|
|
/*..........................................................................*/
|
|
/*! callback function to reset the target (to be implemented in the BSP) */
|
|
void QS_onReset(void) {
|
|
NVIC_SystemReset();
|
|
}
|
|
/*..........................................................................*/
|
|
/*! callback function to execute a user command (to be implemented in BSP) */
|
|
void QS_onCommand(uint8_t cmdId,
|
|
uint32_t param1, uint32_t param2, uint32_t param3)
|
|
{
|
|
void assert_failed(char const *module, int loc);
|
|
(void)cmdId;
|
|
(void)param1;
|
|
(void)param2;
|
|
(void)param3;
|
|
QS_BEGIN(COMMAND_STAT, (void *)1) /* application-specific record begin */
|
|
QS_U8(2, cmdId);
|
|
QS_U32(8, param1);
|
|
QS_END()
|
|
|
|
if (cmdId == 10U) {
|
|
Q_ERROR();
|
|
}
|
|
else if (cmdId == 11U) {
|
|
assert_failed("QS_onCommand", 123);
|
|
}
|
|
}
|
|
|
|
#endif /* Q_SPY */
|
|
/*--------------------------------------------------------------------------*/
|
|
|
|
/*****************************************************************************
|
|
* NOTE00:
|
|
* The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest
|
|
* ISR priority that is disabled by the QF framework. The value is suitable
|
|
* for the NVIC_SetPriority() CMSIS function.
|
|
*
|
|
* Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e.,
|
|
* with the numerical values of priorities equal or higher than
|
|
* QF_AWARE_ISR_CMSIS_PRI) are allowed to call the QK_ISR_ENTRY/QK_ISR_ENTRY
|
|
* macros or any other QF services. These ISRs are "QF-aware".
|
|
*
|
|
* Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority
|
|
* level (i.e., with the numerical values of priorities less than
|
|
* QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel.
|
|
* Such "QF-unaware" ISRs cannot call any QF services. In particular they
|
|
* can NOT call the macros QK_ISR_ENTRY/QK_ISR_ENTRY. The only mechanism
|
|
* by which a "QF-unaware" ISR can communicate with the QF framework is by
|
|
* triggering a "QF-aware" ISR, which can post/publish events.
|
|
*
|
|
* NOTE01:
|
|
* The User LED is used to visualize the idle loop activity. The brightness
|
|
* of the LED is proportional to the frequency of invcations of the idle loop.
|
|
* Please note that the LED is toggled with interrupts locked, so no interrupt
|
|
* execution time contributes to the brightness of the User LED.
|
|
*/
|