mirror of
https://github.com/QuantumLeaps/qpc.git
synced 2025-01-28 07:03:10 +08:00
334 lines
11 KiB
C
334 lines
11 KiB
C
/*****************************************************************************
|
|
* Product: DPP on MSP-EXP430F5529LP, preemptive QK kernel
|
|
* Last updated for version 6.9.1
|
|
* Last updated on 2020-09-22
|
|
*
|
|
* Q u a n t u m L e a P s
|
|
* ------------------------
|
|
* Modern Embedded Software
|
|
*
|
|
* Copyright (C) 2005-2020 Quantum Leaps, LLC. All rights reserved.
|
|
*
|
|
* This program is open source software: you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as published
|
|
* by the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* Alternatively, this program may be distributed and modified under the
|
|
* terms of Quantum Leaps commercial licenses, which expressly supersede
|
|
* the GNU General Public License and are specifically designed for
|
|
* licensees interested in retaining the proprietary status of their code.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <www.gnu.org/licenses/>.
|
|
*
|
|
* Contact information:
|
|
* <www.state-machine.com/licensing>
|
|
* <info@state-machine.com>
|
|
*****************************************************************************/
|
|
#include "qpc.h"
|
|
#include "dpp.h"
|
|
#include "bsp.h"
|
|
|
|
#include <msp430f5529.h> /* MSP430 variant used */
|
|
/* add other drivers if necessary... */
|
|
|
|
Q_DEFINE_THIS_FILE
|
|
|
|
/* random seed */
|
|
static uint32_t l_rnd;
|
|
|
|
#ifdef Q_SPY
|
|
/* UART1 pins TX:P4.4, RX:P4.5 */
|
|
#define TXD (1U << 4)
|
|
#define RXD (1U << 5)
|
|
|
|
QSTimeCtr QS_tickTime_;
|
|
static uint8_t const l_timerA_ISR = 0U;
|
|
|
|
enum AppRecords { /* application-specific trace records */
|
|
PHILO_STAT = QS_USER,
|
|
COMMAND_STAT
|
|
};
|
|
|
|
#endif
|
|
|
|
/* Local-scope objects -----------------------------------------------------*/
|
|
/* 1MHz clock setting, see BSP_init() */
|
|
#define BSP_MCK 1000000U
|
|
#define BSP_SMCLK 1000000U
|
|
|
|
#define LED1 (1U << 0)
|
|
#define LED2 (1U << 7)
|
|
|
|
#define BTN_S1 (1U << 1)
|
|
|
|
|
|
/* ISRs used in this project ===============================================*/
|
|
#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
|
|
__interrupt void TIMER0_A0_ISR(void); /* prototype */
|
|
#pragma vector=TIMER0_A0_VECTOR
|
|
__interrupt void TIMER0_A0_ISR(void)
|
|
#elif defined(__GNUC__)
|
|
__attribute__ ((interrupt(TIMER0_A0_VECTOR)))
|
|
void TIMER0_A0_ISR(void)
|
|
#else
|
|
#error MSP430 compiler not supported!
|
|
#endif
|
|
{
|
|
#ifdef NDEBUG
|
|
__low_power_mode_off_on_exit(); /* see NOTE1 */
|
|
#endif
|
|
|
|
#ifdef Q_SPY
|
|
QS_tickTime_ +=
|
|
(((BSP_SMCLK / 8) + BSP_TICKS_PER_SEC/2) / BSP_TICKS_PER_SEC) + 1;
|
|
#endif
|
|
QK_ISR_ENTRY(); /* inform QK about entering the ISR */
|
|
|
|
QF_TICK_X(0U, (void *)0); /* process all time events at rate 0 */
|
|
|
|
QK_ISR_EXIT(); /* inform QK about exiting the ISR */
|
|
|
|
#ifdef NDEBUG
|
|
__low_power_mode_off_on_exit(); /* turn the low-power mode OFF, NOTE1 */
|
|
#endif
|
|
}
|
|
|
|
|
|
/* BSP functions ===========================================================*/
|
|
void BSP_init(void) {
|
|
WDTCTL = WDTPW | WDTHOLD; /* stop watchdog timer */
|
|
|
|
/* leave the MCK and SMCLK at default DCO setting */
|
|
|
|
P1DIR |= LED1; /* set LED1 pin to output */
|
|
P4DIR |= LED2; /* set LED2 pin to output */
|
|
|
|
if (QS_INIT((void *)0) == 0) { /* initialize the QS software tracing */
|
|
Q_ERROR();
|
|
}
|
|
QS_OBJ_DICTIONARY(&l_timerA_ISR);
|
|
QS_USR_DICTIONARY(PHILO_STAT);
|
|
QS_USR_DICTIONARY(COMMAND_STAT);
|
|
|
|
/* setup the QS filters... */
|
|
QS_GLB_FILTER(QS_SM_RECORDS); /* state machine records */
|
|
QS_GLB_FILTER(QS_AO_RECORDS); /* active object records */
|
|
QS_GLB_FILTER(QS_UA_RECORDS); /* all user records */
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_displayPhilStat(uint8_t n, char const *stat) {
|
|
if (stat[0] == 'h') { /* is Philo hungry? */
|
|
P1OUT |= LED1; /* turn LED1 on */
|
|
}
|
|
else {
|
|
P1OUT &= ~LED1; /* turn LED1 off */
|
|
}
|
|
|
|
QS_BEGIN_ID(PHILO_STAT, AO_Philo[n]->prio) /* app-specific record */
|
|
QS_U8(1, n); /* Philosopher number */
|
|
QS_STR(stat); /* Philosopher status */
|
|
QS_END()
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_displayPaused(uint8_t paused) {
|
|
/* not enouhg LEDs to implement this feature */
|
|
if (paused != 0U) {
|
|
//P1OUT |= LED1;
|
|
}
|
|
else {
|
|
//P1OUT &= ~LED1;
|
|
}
|
|
}
|
|
/*..........................................................................*/
|
|
uint32_t BSP_random(void) { /* a very cheap pseudo-random-number generator */
|
|
/* "Super-Duper" Linear Congruential Generator (LCG)
|
|
* LCG(2^32, 3*7*11*13*23, 0, seed)
|
|
*/
|
|
l_rnd = l_rnd * ((uint32_t)3U*7U*11U*13U*23U);
|
|
|
|
return l_rnd >> 8;
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_randomSeed(uint32_t seed) {
|
|
l_rnd = seed;
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_terminate(int16_t result) {
|
|
(void)result;
|
|
}
|
|
|
|
|
|
/* QF callbacks ============================================================*/
|
|
void QF_onStartup(void) {
|
|
TA0CCTL0 = CCIE; // CCR0 interrupt enabled
|
|
TA0CCR0 = BSP_MCK / BSP_TICKS_PER_SEC;
|
|
TA0CTL = TASSEL_2 + MC_1 + TACLR; // SMCLK, upmode, clear TAR
|
|
}
|
|
/*..........................................................................*/
|
|
void QF_onCleanup(void) {
|
|
}
|
|
/*..........................................................................*/
|
|
void QK_onIdle(void) {
|
|
/* toggle LED2 on and then off, see NOTE2 */
|
|
QF_INT_DISABLE();
|
|
P4OUT |= LED2; /* turn LED2 on */
|
|
P4OUT &= ~LED2; /* turn LED2 off */
|
|
QF_INT_ENABLE();
|
|
|
|
#ifdef Q_SPY
|
|
QS_rxParse(); /* parse all the received bytes */
|
|
|
|
if ((UCA1STAT & UCBUSY) == 0U) { /* TX NOT busy? */
|
|
|
|
uint16_t b;
|
|
|
|
QF_INT_DISABLE();
|
|
b = QS_getByte();
|
|
QF_INT_ENABLE();
|
|
|
|
if (b != QS_EOD) {
|
|
UCA1TXBUF = (uint8_t)b; /* stick the byte to the TX BUF */
|
|
}
|
|
}
|
|
#elif defined NDEBUG
|
|
/* Put the CPU and peripherals to the low-power mode.
|
|
* you might need to customize the clock management for your application,
|
|
* see the datasheet for your particular MSP430 MCU.
|
|
*/
|
|
__low_power_mode_1(); /* enter LPM1; also ENABLES interrupts, see NOTE1 */
|
|
#endif
|
|
}
|
|
|
|
/*..........................................................................*/
|
|
Q_NORETURN Q_onAssert(char_t const * const module, int_t const loc) {
|
|
/*
|
|
* NOTE: add here your application-specific error handling
|
|
*/
|
|
(void)module;
|
|
(void)loc;
|
|
QS_ASSERTION(module, loc, 10000U); /* report assertion to QS */
|
|
|
|
/* write invalid password to WDT: cause a password-validation RESET */
|
|
WDTCTL = 0xDEAD;
|
|
}
|
|
|
|
/* QS callbacks ============================================================*/
|
|
#ifdef Q_SPY
|
|
|
|
#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
|
|
__interrupt void USCI_A1_ISR(void); /* prototype */
|
|
#pragma vector=USCI_A1_VECTOR
|
|
__interrupt void USCI_A1_ISR(void)
|
|
#elif defined(__GNUC__)
|
|
__attribute__ ((interrupt(USCI_A1_VECTOR)))
|
|
void USCI_A1_ISR(void)
|
|
#else
|
|
#error MSP430 compiler not supported!
|
|
#endif
|
|
{
|
|
/* NOTE: no need to call QK_ISR_ENTRY/EXIT */
|
|
if (UCA1IV == 2) {
|
|
uint16_t b = UCA1RXBUF;
|
|
QS_RX_PUT(b);
|
|
}
|
|
}
|
|
/*..........................................................................*/
|
|
uint8_t QS_onStartup(void const *arg) {
|
|
static uint8_t qsBuf[256]; /* buffer for QS; RAM is tight! */
|
|
static uint8_t qsRxBuf[80]; /* buffer for QS receive channel */
|
|
//uint16_t tmp;
|
|
|
|
QS_initBuf(qsBuf, sizeof(qsBuf));
|
|
QS_rxInitBuf(qsRxBuf, sizeof(qsRxBuf));
|
|
|
|
/* USCI setup code... */
|
|
P4SEL |= (RXD | TXD); /* select the UART function for the pins */
|
|
UCA1CTL1 |= UCSWRST; /* reset USCI state machine */
|
|
UCA1CTL1 |= UCSSEL_2; /* choose the SMCLK clock */
|
|
#if 1 /* 9600 baud rate */
|
|
UCA1BR0 = 6; /* 1MHz 9600 (see User's Guide) */
|
|
UCA1BR1 = 0; /* 1MHz 9600 */
|
|
UCA1MCTL = UCBRS_0 | UCBRF_13 | UCOS16; /* modulationUCBRSx=0, UCBRFx=0, oversampling */
|
|
#else /* 115200 baud rate */
|
|
UCA1BR0 = 9; /* 1MHz 115200 (see User's Guide) */
|
|
UCA1BR1 = 0; /* 1MHz 115200 */
|
|
UCA1MCTL |= UCBRS_1 | UCBRF_0; /* modulation UCBRSx=1, UCBRFx=0 */
|
|
#endif
|
|
UCA1CTL1 &= ~UCSWRST; /* initialize USCI state machine */
|
|
UCA1IE |= UCRXIE; /* Enable USCI_A1 RX interrupt */
|
|
|
|
return 1U; /* return success */
|
|
}
|
|
/*..........................................................................*/
|
|
void QS_onCleanup(void) {
|
|
}
|
|
/*..........................................................................*/
|
|
QSTimeCtr QS_onGetTime(void) { /* invoked with interrupts DISABLED */
|
|
if ((TA0CTL & TAIFG) == 0U) { /* interrupt not pending? */
|
|
return QS_tickTime_ + TA0R;
|
|
}
|
|
else { /* the rollover occured, but the timerA_ISR did not run yet */
|
|
return QS_tickTime_
|
|
+ (((BSP_SMCLK/8U) + BSP_TICKS_PER_SEC/2U)/BSP_TICKS_PER_SEC) + 1U
|
|
+ TA0R;
|
|
}
|
|
}
|
|
/*..........................................................................*/
|
|
void QS_onFlush(void) {
|
|
uint16_t b;
|
|
QF_INT_DISABLE();
|
|
while ((b = QS_getByte()) != QS_EOD) { /* next QS byte available? */
|
|
QF_INT_ENABLE();
|
|
while ((UCA1STAT & UCBUSY) != 0U) { /* TX busy? */
|
|
}
|
|
UCA1TXBUF = (uint8_t)b; /* stick the byte to the TX BUF */
|
|
QF_INT_DISABLE();
|
|
}
|
|
QF_INT_ENABLE();
|
|
}
|
|
/*..........................................................................*/
|
|
/*! callback function to reset the target (to be implemented in the BSP) */
|
|
void QS_onReset(void) {
|
|
/* write invalid password to WDT: cause a password-validation RESET */
|
|
WDTCTL = 0xDEAD;
|
|
}
|
|
/*..........................................................................*/
|
|
/*! callback function to execute a user command (to be implemented in BSP) */
|
|
void QS_onCommand(uint8_t cmdId,
|
|
uint32_t param1, uint32_t param2, uint32_t param3)
|
|
{
|
|
(void)cmdId;
|
|
(void)param1;
|
|
(void)param2;
|
|
(void)param3;
|
|
QS_BEGIN_ID(COMMAND_STAT, 0U) /* app-specific record */
|
|
QS_U8(2, cmdId);
|
|
QS_U32(8, param1);
|
|
QS_U32(8, param2);
|
|
QS_U32(8, param3);
|
|
QS_END()
|
|
}
|
|
|
|
#endif /* Q_SPY */
|
|
|
|
/*****************************************************************************
|
|
* NOTE1:
|
|
* With the preemptive QK kernel for MSP430, the idle callback QK::onIdle()
|
|
* will execute only ONCE, if the low-power mode is not explicitly turned OFF
|
|
* in the interrupt. This might or might not be what you want.
|
|
*
|
|
* NOTE2:
|
|
* One of the LEDs is used to visualize the idle loop activity. The brightness
|
|
* of the LED is proportional to the frequency of invocations of the idle loop.
|
|
* Please note that the LED is toggled with interrupts disabled, so no
|
|
* interrupt execution time contributes to the brightness of the User LED.
|
|
*/
|
|
|