mirror of
https://github.com/QuantumLeaps/qpc.git
synced 2025-01-21 06:53:11 +08:00
501 lines
19 KiB
C
501 lines
19 KiB
C
/*****************************************************************************
|
|
* Product: DPP example, EK-TM4C123GXL board, preemptive QXK kernel
|
|
* Last Updated for Version: 5.6.2
|
|
* Date of the Last Update: 2016-03-30
|
|
*
|
|
* Q u a n t u m L e a P s
|
|
* ---------------------------
|
|
* innovating embedded systems
|
|
*
|
|
* Copyright (C) Quantum Leaps, LLC. All rights reserved.
|
|
*
|
|
* This program is open source software: you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as published
|
|
* by the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* Alternatively, this program may be distributed and modified under the
|
|
* terms of Quantum Leaps commercial licenses, which expressly supersede
|
|
* the GNU General Public License and are specifically designed for
|
|
* licensees interested in retaining the proprietary status of their code.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Contact information:
|
|
* http://www.state-machine.com
|
|
* mailto:info@state-machine.com
|
|
*****************************************************************************/
|
|
#include "qpc.h"
|
|
#include "dpp.h"
|
|
#include "bsp.h"
|
|
|
|
#include "TM4C123GH6PM.h" /* the device specific header (TI) */
|
|
#include "rom.h" /* the built-in ROM functions (TI) */
|
|
#include "sysctl.h" /* system control driver (TI) */
|
|
#include "gpio.h" /* GPIO driver (TI) */
|
|
/* add other drivers if necessary... */
|
|
|
|
Q_DEFINE_THIS_FILE
|
|
|
|
/*!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
* Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
|
|
* DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
|
|
*/
|
|
enum KernelUnawareISRs { /* see NOTE00 */
|
|
UART0_PRIO,
|
|
/* ... */
|
|
MAX_KERNEL_UNAWARE_CMSIS_PRI /* keep always last */
|
|
};
|
|
/* "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts */
|
|
Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI);
|
|
|
|
enum KernelAwareISRs {
|
|
GPIOA_PRIO = QF_AWARE_ISR_CMSIS_PRI, /* see NOTE00 */
|
|
SYSTICK_PRIO,
|
|
/* ... */
|
|
MAX_KERNEL_AWARE_CMSIS_PRI /* keep always last */
|
|
};
|
|
/* "kernel-aware" interrupts should not overlap the PendSV priority */
|
|
Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS)));
|
|
|
|
/* ISRs defined in this BSP ------------------------------------------------*/
|
|
void SysTick_Handler(void);
|
|
void GPIOPortA_IRQHandler(void);
|
|
void UART0_IRQHandler(void);
|
|
|
|
/* Local-scope objects -----------------------------------------------------*/
|
|
#define LED_RED (1U << 1)
|
|
#define LED_BLUE (1U << 2)
|
|
#define LED_GREEN (1U << 3)
|
|
|
|
#define BTN_SW1 (1U << 4)
|
|
#define BTN_SW2 (1U << 0)
|
|
|
|
static uint32_t l_rnd; /* random seed */
|
|
static QXMutex l_rndMutex; /* to protect the random number generator */
|
|
|
|
#ifdef Q_SPY
|
|
|
|
QSTimeCtr QS_tickTime_;
|
|
QSTimeCtr QS_tickPeriod_;
|
|
|
|
/* QS source IDs */
|
|
static uint8_t const l_SysTick_Handler = (uint8_t)0;
|
|
static uint8_t const l_GPIOPortA_IRQHandler = (uint8_t)0;
|
|
|
|
#define UART_BAUD_RATE 115200U
|
|
#define UART_FR_TXFE (1U << 7)
|
|
#define UART_FR_RXFE (1U << 4)
|
|
#define UART_TXFIFO_DEPTH 16U
|
|
|
|
enum AppRecords { /* application-specific trace records */
|
|
PHILO_STAT = QS_USER,
|
|
PAUSED_STAT,
|
|
COMMAND_STAT
|
|
};
|
|
|
|
#endif
|
|
|
|
/*..........................................................................*/
|
|
void SysTick_Handler(void) {
|
|
/* state of the button debouncing, see below */
|
|
static struct ButtonsDebouncing {
|
|
uint32_t depressed;
|
|
uint32_t previous;
|
|
} buttons = { ~0U, ~0U };
|
|
uint32_t current;
|
|
uint32_t tmp;
|
|
|
|
QXK_ISR_ENTRY(); /* inform QXK about entering an ISR */
|
|
|
|
#ifdef Q_SPY
|
|
{
|
|
tmp = SysTick->CTRL; /* clear SysTick_CTRL_COUNTFLAG */
|
|
QS_tickTime_ += QS_tickPeriod_; /* account for the clock rollover */
|
|
}
|
|
#endif
|
|
|
|
QF_TICK_X(0U, &l_SysTick_Handler); /* process time events for rate 0 */
|
|
|
|
/* Perform the debouncing of buttons. The algorithm for debouncing
|
|
* adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
|
|
* and Michael Barr, page 71.
|
|
*/
|
|
current = ~GPIOF->DATA_Bits[BTN_SW1 | BTN_SW2]; /* read SW1 and SW2 */
|
|
tmp = buttons.depressed; /* save the debounced depressed buttons */
|
|
buttons.depressed |= (buttons.previous & current); /* set depressed */
|
|
buttons.depressed &= (buttons.previous | current); /* clear released */
|
|
buttons.previous = current; /* update the history */
|
|
tmp ^= buttons.depressed; /* changed debounced depressed */
|
|
if ((tmp & BTN_SW1) != 0U) { /* debounced SW1 state changed? */
|
|
if ((buttons.depressed & BTN_SW1) != 0U) { /* is SW1 depressed? */
|
|
static QEvt const pauseEvt = { PAUSE_SIG, 0U, 0U};
|
|
QF_PUBLISH(&pauseEvt, &l_SysTick_Handler);
|
|
}
|
|
else { /* the button is released */
|
|
static QEvt const serveEvt = { SERVE_SIG, 0U, 0U};
|
|
QF_PUBLISH(&serveEvt, &l_SysTick_Handler);
|
|
}
|
|
}
|
|
|
|
QXK_ISR_EXIT(); /* inform QXK about exiting an ISR */
|
|
}
|
|
/*..........................................................................*/
|
|
void GPIOPortA_IRQHandler(void) {
|
|
QXK_ISR_ENTRY(); /* inform QXK about entering an ISR */
|
|
|
|
QACTIVE_POST(AO_Table, Q_NEW(QEvt, MAX_PUB_SIG), /* for testing... */
|
|
&l_GPIOPortA_IRQHandler);
|
|
|
|
QXK_ISR_EXIT(); /* inform QXK about exiting an ISR */
|
|
}
|
|
/*..........................................................................*/
|
|
#ifdef Q_SPY
|
|
/*
|
|
* ISR for receiving bytes from the QSPY Back-End
|
|
* NOTE: This ISR is "QF-unaware" meaning that it does not interact with
|
|
* the QF/QXK and is never disabled. Such ISRs don't need to call QXK_ISR_ENTRY/
|
|
* QXK_ISR_EXIT and they cannot post or publish events.
|
|
*/
|
|
void UART0_IRQHandler(void) {
|
|
uint32_t status = UART0->RIS; /* get the raw interrupt status */
|
|
UART0->ICR = status; /* clear the asserted interrupts */
|
|
|
|
while ((UART0->FR & UART_FR_RXFE) == 0) { /* while RX FIFO NOT empty */
|
|
uint32_t b = UART0->DR;
|
|
QS_RX_PUT(b);
|
|
}
|
|
}
|
|
#else
|
|
void UART0_IRQHandler(void) {}
|
|
#endif
|
|
|
|
/*..........................................................................*/
|
|
void BSP_init(void) {
|
|
/* NOTE: SystemInit() already called from the startup code
|
|
* but SystemCoreClock needs to be updated
|
|
*/
|
|
SystemCoreClockUpdate();
|
|
|
|
/* NOTE: The VFP (hardware Floating Point) unit is configured by QXK */
|
|
|
|
/* enable clock for to the peripherals used by this application... */
|
|
SYSCTL->RCGCGPIO |= (1U << 5); /* enable Run mode for GPIOF */
|
|
|
|
/* configure the LEDs and push buttons */
|
|
GPIOF->DIR |= (LED_RED | LED_GREEN | LED_BLUE);/* set direction: output */
|
|
GPIOF->DEN |= (LED_RED | LED_GREEN | LED_BLUE); /* digital enable */
|
|
GPIOF->DATA_Bits[LED_RED] = 0U; /* turn the LED off */
|
|
GPIOF->DATA_Bits[LED_GREEN] = 0U; /* turn the LED off */
|
|
GPIOF->DATA_Bits[LED_BLUE] = 0U; /* turn the LED off */
|
|
|
|
/* configure the Buttons */
|
|
GPIOF->DIR &= ~(BTN_SW1 | BTN_SW2); /* set direction: input */
|
|
ROM_GPIOPadConfigSet(GPIOF_BASE, (BTN_SW1 | BTN_SW2),
|
|
GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU);
|
|
|
|
BSP_randomSeed(1234U);
|
|
|
|
if (QS_INIT((void *)0) == 0) { /* initialize the QS software tracing */
|
|
Q_ERROR();
|
|
}
|
|
QS_OBJ_DICTIONARY(&l_SysTick_Handler);
|
|
QS_OBJ_DICTIONARY(&l_GPIOPortA_IRQHandler);
|
|
QS_USR_DICTIONARY(PHILO_STAT);
|
|
QS_USR_DICTIONARY(PAUSED_STAT);
|
|
QS_USR_DICTIONARY(COMMAND_STAT);
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_displayPhilStat(uint8_t n, char const *stat) {
|
|
GPIOF->DATA_Bits[LED_GREEN] = ((stat[0] == 'h') ? 0xFFU : 0U);
|
|
//GPIOF->DATA_Bits[LED_RED] = ((stat[0] == 'e') ? 0xFFU : 0U);
|
|
|
|
QS_BEGIN(PHILO_STAT, AO_Philo[n]) /* application-specific record begin */
|
|
QS_U8(1, n); /* Philosopher number */
|
|
QS_STR(stat); /* Philosopher status */
|
|
QS_END()
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_displayPaused(uint8_t paused) {
|
|
static QEvt const pauseEvt = { PAUSE_SIG, 0U, 0U};
|
|
//GPIOF->DATA_Bits[LED_RED] = ((paused != 0U) ? LED_RED : 0U);
|
|
QXTHREAD_POST_X(XT_Test, &pauseEvt, 1U, (void *)0);
|
|
//QXThread_unblock(XT_Test); /*??? unblock the Test thread */
|
|
|
|
QS_BEGIN(PAUSED_STAT, (void *)0) /* application-specific record begin */
|
|
QS_U8(1, paused); /* Paused status */
|
|
QS_END()
|
|
}
|
|
/*..........................................................................*/
|
|
uint32_t BSP_random(void) { /* a very cheap pseudo-random-number generator */
|
|
uint32_t rnd;
|
|
|
|
/* Some flating point code is to exercise the VFP... */
|
|
float volatile x = 3.1415926F;
|
|
x = x + 2.7182818F;
|
|
|
|
QXMutex_lock(&l_rndMutex); /* lock the shared random seed */
|
|
/* "Super-Duper" Linear Congruential Generator (LCG)
|
|
* LCG(2^32, 3*7*11*13*23, 0, seed)
|
|
*/
|
|
rnd = l_rnd * (3U*7U*11U*13U*23U);
|
|
l_rnd = rnd; /* set for the next time */
|
|
QXMutex_unlock(&l_rndMutex); /* unlock the shared random seed */
|
|
|
|
return (rnd >> 8);
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_randomSeed(uint32_t seed) {
|
|
QXMutex_init(&l_rndMutex, N_PHILO); /* ceiling <== max Philo priority */
|
|
l_rnd = seed;
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_terminate(int16_t result) {
|
|
(void)result;
|
|
}
|
|
|
|
/*..........................................................................*/
|
|
void BSP_wait4SW1(void) {
|
|
while (GPIOF->DATA_Bits[BTN_SW1] != 0) {
|
|
GPIOF->DATA = LED_RED;
|
|
GPIOF->DATA = 0U;
|
|
}
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_ledOn(void) {
|
|
GPIOF->DATA_Bits[LED_RED] = 0xFFU;
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_ledOff(void) {
|
|
GPIOF->DATA_Bits[LED_RED] = 0x00U;
|
|
}
|
|
|
|
/*..........................................................................*/
|
|
void QF_onStartup(void) {
|
|
/* set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate */
|
|
SysTick_Config(SystemCoreClock / BSP_TICKS_PER_SEC);
|
|
|
|
/* assing all priority bits for preemption-prio. and none to sub-prio. */
|
|
NVIC_SetPriorityGrouping(0U);
|
|
|
|
/* set priorities of ALL ISRs used in the system, see NOTE00
|
|
*
|
|
* !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
* Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
|
|
* DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
|
|
*/
|
|
NVIC_SetPriority(UART0_IRQn, UART0_PRIO);
|
|
NVIC_SetPriority(SysTick_IRQn, SYSTICK_PRIO);
|
|
NVIC_SetPriority(GPIOA_IRQn, GPIOA_PRIO);
|
|
/* ... */
|
|
|
|
/* enable IRQs... */
|
|
NVIC_EnableIRQ(GPIOA_IRQn);
|
|
|
|
#ifdef Q_SPY
|
|
NVIC_EnableIRQ(UART0_IRQn); /* UART0 interrupt used for QS-RX */
|
|
#endif
|
|
}
|
|
/*..........................................................................*/
|
|
void QF_onCleanup(void) {
|
|
}
|
|
/*..........................................................................*/
|
|
void QXK_onIdle(void) {
|
|
/* toggle the User LED on and then off, see NOTE01 */
|
|
QF_INT_DISABLE();
|
|
GPIOF->DATA_Bits[LED_BLUE] = 0xFFU; /* turn the Blue LED on */
|
|
GPIOF->DATA_Bits[LED_BLUE] = 0U; /* turn the Blue LED off */
|
|
QF_INT_ENABLE();
|
|
|
|
#ifdef Q_SPY
|
|
QS_rxParse(); /* parse all the received bytes */
|
|
|
|
if ((UART0->FR & UART_FR_TXFE) != 0U) { /* TX done? */
|
|
uint16_t fifo = UART_TXFIFO_DEPTH; /* max bytes we can accept */
|
|
uint8_t const *block;
|
|
|
|
QF_INT_DISABLE();
|
|
block = QS_getBlock(&fifo); /* try to get next block to transmit */
|
|
QF_INT_ENABLE();
|
|
|
|
while (fifo-- != 0) { /* any bytes in the block? */
|
|
UART0->DR = *block++; /* put into the FIFO */
|
|
}
|
|
}
|
|
#elif defined NDEBUG
|
|
/* Put the CPU and peripherals to the low-power mode.
|
|
* you might need to customize the clock management for your application,
|
|
* see the datasheet for your particular Cortex-M3 MCU.
|
|
*/
|
|
__WFI(); /* Wait-For-Interrupt */
|
|
#endif
|
|
}
|
|
|
|
/*..........................................................................*/
|
|
void Q_onAssert(char const *module, int loc) {
|
|
/*
|
|
* NOTE: add here your application-specific error handling
|
|
*/
|
|
(void)module;
|
|
(void)loc;
|
|
QS_ASSERTION(module, loc, (uint32_t)10000U); /* report assertion to QS */
|
|
|
|
#ifndef NDEBUG
|
|
BSP_wait4SW1();
|
|
#endif
|
|
NVIC_SystemReset();
|
|
}
|
|
|
|
/* QS callbacks ============================================================*/
|
|
#ifdef Q_SPY
|
|
/*..........................................................................*/
|
|
uint8_t QS_onStartup(void const *arg) {
|
|
static uint8_t qsTxBuf[2*1024]; /* buffer for QS transmit channel */
|
|
static uint8_t qsRxBuf[100]; /* buffer for QS receive channel */
|
|
uint32_t tmp;
|
|
|
|
QS_initBuf (qsTxBuf, sizeof(qsTxBuf));
|
|
QS_rxInitBuf(qsRxBuf, sizeof(qsRxBuf));
|
|
|
|
/* enable clock for UART0 and GPIOA (used by UART0 pins) */
|
|
SYSCTL->RCGCUART |= (1U << 0); /* enable Run mode for UART0 */
|
|
SYSCTL->RCGCGPIO |= (1U << 0); /* enable Run mode for GPIOA */
|
|
|
|
/* configure UART0 pins for UART operation */
|
|
tmp = (1U << 0) | (1U << 1);
|
|
GPIOA->DIR &= ~tmp;
|
|
GPIOA->SLR &= ~tmp;
|
|
GPIOA->ODR &= ~tmp;
|
|
GPIOA->PUR &= ~tmp;
|
|
GPIOA->PDR &= ~tmp;
|
|
GPIOA->AMSEL &= ~tmp; /* disable analog function on the pins */
|
|
GPIOA->AFSEL |= tmp; /* enable ALT function on the pins */
|
|
GPIOA->DEN |= tmp; /* enable digital I/O on the pins */
|
|
GPIOA->PCTL &= ~0x00U;
|
|
GPIOA->PCTL |= 0x11U;
|
|
|
|
/* configure the UART for the desired baud rate, 8-N-1 operation */
|
|
tmp = (((SystemCoreClock * 8U) / UART_BAUD_RATE) + 1U) / 2U;
|
|
UART0->IBRD = tmp / 64U;
|
|
UART0->FBRD = tmp % 64U;
|
|
UART0->LCRH = (0x3U << 5); /* configure 8-N-1 operation */
|
|
UART0->LCRH |= (0x1U << 4); /* enable FIFOs */
|
|
UART0->CTL = (1U << 0) /* UART enable */
|
|
| (1U << 8) /* UART TX enable */
|
|
| (1U << 9); /* UART RX enable */
|
|
|
|
/* configure UART interrupts (for the RX channel) */
|
|
UART0->IM |= (1U << 4) | (1U << 6); /* enable RX and RX-TO interrupt */
|
|
UART0->IFLS |= (0x2U << 2); /* interrupt on RX FIFO half-full */
|
|
/* NOTE: do not enable the UART0 interrupt yet. Wait till QF_onStartup() */
|
|
|
|
QS_tickPeriod_ = SystemCoreClock / BSP_TICKS_PER_SEC;
|
|
QS_tickTime_ = QS_tickPeriod_; /* to start the timestamp at zero */
|
|
|
|
/* setup the QS filters... */
|
|
QS_FILTER_ON(QS_QEP_STATE_ENTRY);
|
|
QS_FILTER_ON(QS_QEP_STATE_EXIT);
|
|
QS_FILTER_ON(QS_QEP_STATE_INIT);
|
|
QS_FILTER_ON(QS_QEP_INIT_TRAN);
|
|
QS_FILTER_ON(QS_QEP_INTERN_TRAN);
|
|
QS_FILTER_ON(QS_QEP_TRAN);
|
|
QS_FILTER_ON(QS_QEP_IGNORED);
|
|
QS_FILTER_ON(QS_QEP_DISPATCH);
|
|
QS_FILTER_ON(QS_QEP_UNHANDLED);
|
|
|
|
QS_FILTER_ON(PHILO_STAT);
|
|
QS_FILTER_ON(PAUSED_STAT);
|
|
QS_FILTER_ON(COMMAND_STAT);
|
|
|
|
return (uint8_t)1; /* return success */
|
|
}
|
|
/*..........................................................................*/
|
|
void QS_onCleanup(void) {
|
|
}
|
|
/*..........................................................................*/
|
|
QSTimeCtr QS_onGetTime(void) { /* NOTE: invoked with interrupts DISABLED */
|
|
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { /* not set? */
|
|
return QS_tickTime_ - (QSTimeCtr)SysTick->VAL;
|
|
}
|
|
else { /* the rollover occured, but the SysTick_ISR did not run yet */
|
|
return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL;
|
|
}
|
|
}
|
|
/*..........................................................................*/
|
|
void QS_onFlush(void) {
|
|
uint16_t fifo = UART_TXFIFO_DEPTH; /* Tx FIFO depth */
|
|
uint8_t const *block;
|
|
QF_INT_DISABLE();
|
|
while ((block = QS_getBlock(&fifo)) != (uint8_t *)0) {
|
|
QF_INT_ENABLE();
|
|
/* busy-wait as long as TX FIFO has data to transmit */
|
|
while ((UART0->FR & UART_FR_TXFE) == 0) {
|
|
}
|
|
|
|
while (fifo-- != 0U) { /* any bytes in the block? */
|
|
UART0->DR = *block++; /* put into the TX FIFO */
|
|
}
|
|
fifo = UART_TXFIFO_DEPTH; /* re-load the Tx FIFO depth */
|
|
QF_INT_DISABLE();
|
|
}
|
|
QF_INT_ENABLE();
|
|
}
|
|
/*..........................................................................*/
|
|
/*! callback function to reset the target (to be implemented in the BSP) */
|
|
void QS_onReset(void) {
|
|
NVIC_SystemReset();
|
|
}
|
|
/*..........................................................................*/
|
|
/*! callback function to execute a user command (to be implemented in BSP) */
|
|
void QS_onCommand(uint8_t cmdId, uint32_t param) {
|
|
void assert_failed(char const *module, int loc);
|
|
(void)cmdId;
|
|
(void)param;
|
|
QS_BEGIN(COMMAND_STAT, (void *)0) /* application-specific record begin */
|
|
QS_U8(2, cmdId);
|
|
QS_U32(8, param);
|
|
QS_END()
|
|
|
|
if (cmdId == 10U) {
|
|
Q_ERROR();
|
|
}
|
|
else if (cmdId == 11U) {
|
|
assert_failed("QS_onCommand", 123);
|
|
}
|
|
}
|
|
|
|
#endif /* Q_SPY */
|
|
/*--------------------------------------------------------------------------*/
|
|
|
|
/*****************************************************************************
|
|
* NOTE00:
|
|
* The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest
|
|
* ISR priority that is disabled by the QF framework. The value is suitable
|
|
* for the NVIC_SetPriority() CMSIS function.
|
|
*
|
|
* Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e.,
|
|
* with the numerical values of priorities equal or higher than
|
|
* QF_AWARE_ISR_CMSIS_PRI) are allowed to call the QXK_ISR_ENTRY/QXK_ISR_ENTRY
|
|
* macros or any other QF/QXK services. These ISRs are "QF-aware".
|
|
*
|
|
* Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority
|
|
* level (i.e., with the numerical values of priorities less than
|
|
* QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel.
|
|
* Such "QF-unaware" ISRs cannot call any QF/QXK services. In particular they
|
|
* can NOT call the macros QXK_ISR_ENTRY/QXK_ISR_ENTRY. The only mechanism
|
|
* by which a "QF-unaware" ISR can communicate with the QF framework is by
|
|
* triggering a "QF-aware" ISR, which can post/publish events.
|
|
*
|
|
* NOTE01:
|
|
* The User LED is used to visualize the idle loop activity. The brightness
|
|
* of the LED is proportional to the frequency of invcations of the idle loop.
|
|
* Please note that the LED is toggled with interrupts locked, so no interrupt
|
|
* execution time contributes to the brightness of the User LED.
|
|
*/
|