Quantum Leaps 696f5cef7b 4.5.02
2012-08-14 18:07:04 -04:00

1000 lines
31 KiB
C

//*****************************************************************************
// Modified for CMSIS by Quantum Leaps on Mar-04-2010
// www.state-machine.com
//*****************************************************************************
//*****************************************************************************
//
// rit128x96x4.c - Driver for the RIT 128x96x4 graphical OLED display.
//
// Copyright (c) 2007-2008 Luminary Micro, Inc. All rights reserved.
//
// Software License Agreement
//
// Luminary Micro, Inc. (LMI) is supplying this software for use solely and
// exclusively on LMI's microcontroller products.
//
// The software is owned by LMI and/or its suppliers, and is protected under
// applicable copyright laws. All rights are reserved. You may not combine
// this software with "viral" open-source software in order to form a larger
// program. Any use in violation of the foregoing restrictions may subject
// the user to criminal sanctions under applicable laws, as well as to civil
// liability for the breach of the terms and conditions of this license.
//
// THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
// OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
// LMI SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
// CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
//
// This is part of revision 2523 of the Stellaris Peripheral Driver Library.
//
//*****************************************************************************
//*****************************************************************************
//
//! \addtogroup ek_lm3s6965_revc_api
//! @{
//
//*****************************************************************************
#include "lm3s_cmsis.h"
#include "rit128x96x4.h"
//*****************************************************************************
//
// Macros that define the peripheral, port, and pin used for the OLEDDC
// panel control signal.
//
//*****************************************************************************
#define GPIO_OLEDDC_PIN (1 << 7)
#define GPIO_OLEDEN_PIN (1 << 6)
#define GPIO_OLEDFSS_PIN (1 << 3)
//*****************************************************************************
//
// Flag to indicate if SSI port is enabled for display usage.
//
//*****************************************************************************
static volatile unsigned char g_bSSIEnabled = 0;
//*****************************************************************************
//
// Buffer for storing sequences of command and data for the display.
//
//*****************************************************************************
static unsigned char g_pucBuffer[8];
//*****************************************************************************
//
// Define the SSD1329 128x96x4 Remap Setting(s). This will be used in
// several places in the code to switch between vertical and horizontal
// address incrementing. Note that the controller support 128 rows while
// the RIT display only uses 96.
//
// The Remap Command (0xA0) takes one 8-bit parameter. The parameter is
// defined as follows.
//
// Bit 7: Reserved
// Bit 6: Disable(0)/Enable(1) COM Split Odd Even
// When enabled, the COM signals are split Odd on one side, even on
// the other. Otherwise, they are split 0-63 on one side, 64-127 on
// the other.
// Bit 5: Reserved
// Bit 4: Disable(0)/Enable(1) COM Remap
// When Enabled, ROW 0-127 map to COM 127-0 (that is, reverse row order)
// Bit 3: Reserved
// Bit 2: Horizontal(0)/Vertical(1) Address Increment
// When set, data RAM address will increment along the column rather
// than along the row.
// Bit 1: Disable(0)/Enable(1) Nibble Remap
// When enabled, the upper and lower nibbles in the DATA bus for access
// to the data RAM are swapped.
// Bit 0: Disable(0)/Enable(1) Column Address Remap
// When enabled, DATA RAM columns 0-63 are remapped to Segment Columns
// 127-0.
//
//*****************************************************************************
#define RIT_INIT_REMAP 0x52 // app note says 0x51
#define RIT_INIT_OFFSET 0x00
static const unsigned char g_pucRIT128x96x4VerticalInc[] = { 0xA0, 0x56 };
static const unsigned char g_pucRIT128x96x4HorizontalInc[] = { 0xA0, 0x52 };
//*****************************************************************************
//
// A 5x7 font (in a 6x8 cell, where the sixth column is omitted from this
// table) for displaying text on the OLED display. The data is organized as
// bytes from the left column to the right column, with each byte containing
// the top row in the LSB and the bottom row in the MSB.
//
// Note: This is the same font data that is used in the EK-LM3S811
// osram96x16x1 driver. The single bit-per-pixel is expaned in the StringDraw
// function to the appropriate four bit-per-pixel gray scale format.
//
//*****************************************************************************
static const unsigned char g_pucFont[96][5] =
{
{ 0x00, 0x00, 0x00, 0x00, 0x00 }, // " "
{ 0x00, 0x00, 0x4f, 0x00, 0x00 }, // !
{ 0x00, 0x07, 0x00, 0x07, 0x00 }, // "
{ 0x14, 0x7f, 0x14, 0x7f, 0x14 }, // #
{ 0x24, 0x2a, 0x7f, 0x2a, 0x12 }, // $
{ 0x23, 0x13, 0x08, 0x64, 0x62 }, // %
{ 0x36, 0x49, 0x55, 0x22, 0x50 }, // &
{ 0x00, 0x05, 0x03, 0x00, 0x00 }, // '
{ 0x00, 0x1c, 0x22, 0x41, 0x00 }, // (
{ 0x00, 0x41, 0x22, 0x1c, 0x00 }, // )
{ 0x14, 0x08, 0x3e, 0x08, 0x14 }, // *
{ 0x08, 0x08, 0x3e, 0x08, 0x08 }, // +
{ 0x00, 0x50, 0x30, 0x00, 0x00 }, // ,
{ 0x08, 0x08, 0x08, 0x08, 0x08 }, // -
{ 0x00, 0x60, 0x60, 0x00, 0x00 }, // .
{ 0x20, 0x10, 0x08, 0x04, 0x02 }, // /
{ 0x3e, 0x51, 0x49, 0x45, 0x3e }, // 0
{ 0x00, 0x42, 0x7f, 0x40, 0x00 }, // 1
{ 0x42, 0x61, 0x51, 0x49, 0x46 }, // 2
{ 0x21, 0x41, 0x45, 0x4b, 0x31 }, // 3
{ 0x18, 0x14, 0x12, 0x7f, 0x10 }, // 4
{ 0x27, 0x45, 0x45, 0x45, 0x39 }, // 5
{ 0x3c, 0x4a, 0x49, 0x49, 0x30 }, // 6
{ 0x01, 0x71, 0x09, 0x05, 0x03 }, // 7
{ 0x36, 0x49, 0x49, 0x49, 0x36 }, // 8
{ 0x06, 0x49, 0x49, 0x29, 0x1e }, // 9
{ 0x00, 0x36, 0x36, 0x00, 0x00 }, // :
{ 0x00, 0x56, 0x36, 0x00, 0x00 }, // ;
{ 0x08, 0x14, 0x22, 0x41, 0x00 }, // <
{ 0x14, 0x14, 0x14, 0x14, 0x14 }, // =
{ 0x00, 0x41, 0x22, 0x14, 0x08 }, // >
{ 0x02, 0x01, 0x51, 0x09, 0x06 }, // ?
{ 0x32, 0x49, 0x79, 0x41, 0x3e }, // @
{ 0x7e, 0x11, 0x11, 0x11, 0x7e }, // A
{ 0x7f, 0x49, 0x49, 0x49, 0x36 }, // B
{ 0x3e, 0x41, 0x41, 0x41, 0x22 }, // C
{ 0x7f, 0x41, 0x41, 0x22, 0x1c }, // D
{ 0x7f, 0x49, 0x49, 0x49, 0x41 }, // E
{ 0x7f, 0x09, 0x09, 0x09, 0x01 }, // F
{ 0x3e, 0x41, 0x49, 0x49, 0x7a }, // G
{ 0x7f, 0x08, 0x08, 0x08, 0x7f }, // H
{ 0x00, 0x41, 0x7f, 0x41, 0x00 }, // I
{ 0x20, 0x40, 0x41, 0x3f, 0x01 }, // J
{ 0x7f, 0x08, 0x14, 0x22, 0x41 }, // K
{ 0x7f, 0x40, 0x40, 0x40, 0x40 }, // L
{ 0x7f, 0x02, 0x0c, 0x02, 0x7f }, // M
{ 0x7f, 0x04, 0x08, 0x10, 0x7f }, // N
{ 0x3e, 0x41, 0x41, 0x41, 0x3e }, // O
{ 0x7f, 0x09, 0x09, 0x09, 0x06 }, // P
{ 0x3e, 0x41, 0x51, 0x21, 0x5e }, // Q
{ 0x7f, 0x09, 0x19, 0x29, 0x46 }, // R
{ 0x46, 0x49, 0x49, 0x49, 0x31 }, // S
{ 0x01, 0x01, 0x7f, 0x01, 0x01 }, // T
{ 0x3f, 0x40, 0x40, 0x40, 0x3f }, // U
{ 0x1f, 0x20, 0x40, 0x20, 0x1f }, // V
{ 0x3f, 0x40, 0x38, 0x40, 0x3f }, // W
{ 0x63, 0x14, 0x08, 0x14, 0x63 }, // X
{ 0x07, 0x08, 0x70, 0x08, 0x07 }, // Y
{ 0x61, 0x51, 0x49, 0x45, 0x43 }, // Z
{ 0x00, 0x7f, 0x41, 0x41, 0x00 }, // [
{ 0x02, 0x04, 0x08, 0x10, 0x20 }, // "\"
{ 0x00, 0x41, 0x41, 0x7f, 0x00 }, // ]
{ 0x04, 0x02, 0x01, 0x02, 0x04 }, // ^
{ 0x40, 0x40, 0x40, 0x40, 0x40 }, // _
{ 0x00, 0x01, 0x02, 0x04, 0x00 }, // `
{ 0x20, 0x54, 0x54, 0x54, 0x78 }, // a
{ 0x7f, 0x48, 0x44, 0x44, 0x38 }, // b
{ 0x38, 0x44, 0x44, 0x44, 0x20 }, // c
{ 0x38, 0x44, 0x44, 0x48, 0x7f }, // d
{ 0x38, 0x54, 0x54, 0x54, 0x18 }, // e
{ 0x08, 0x7e, 0x09, 0x01, 0x02 }, // f
{ 0x0c, 0x52, 0x52, 0x52, 0x3e }, // g
{ 0x7f, 0x08, 0x04, 0x04, 0x78 }, // h
{ 0x00, 0x44, 0x7d, 0x40, 0x00 }, // i
{ 0x20, 0x40, 0x44, 0x3d, 0x00 }, // j
{ 0x7f, 0x10, 0x28, 0x44, 0x00 }, // k
{ 0x00, 0x41, 0x7f, 0x40, 0x00 }, // l
{ 0x7c, 0x04, 0x18, 0x04, 0x78 }, // m
{ 0x7c, 0x08, 0x04, 0x04, 0x78 }, // n
{ 0x38, 0x44, 0x44, 0x44, 0x38 }, // o
{ 0x7c, 0x14, 0x14, 0x14, 0x08 }, // p
{ 0x08, 0x14, 0x14, 0x18, 0x7c }, // q
{ 0x7c, 0x08, 0x04, 0x04, 0x08 }, // r
{ 0x48, 0x54, 0x54, 0x54, 0x20 }, // s
{ 0x04, 0x3f, 0x44, 0x40, 0x20 }, // t
{ 0x3c, 0x40, 0x40, 0x20, 0x7c }, // u
{ 0x1c, 0x20, 0x40, 0x20, 0x1c }, // v
{ 0x3c, 0x40, 0x30, 0x40, 0x3c }, // w
{ 0x44, 0x28, 0x10, 0x28, 0x44 }, // x
{ 0x0c, 0x50, 0x50, 0x50, 0x3c }, // y
{ 0x44, 0x64, 0x54, 0x4c, 0x44 }, // z
{ 0x00, 0x08, 0x36, 0x41, 0x00 }, // {
{ 0x00, 0x00, 0x7f, 0x00, 0x00 }, // |
{ 0x00, 0x41, 0x36, 0x08, 0x00 }, // }
{ 0x02, 0x01, 0x02, 0x04, 0x02 }, // ~
{ 0x00, 0x00, 0x00, 0x00, 0x00 }
};
//*****************************************************************************
//
// The sequence of commands used to initialize the SSD1329 controller. Each
// command is described as follows: there is a byte specifying the number of
// bytes in the command sequence, followed by that many bytes of command data.
// Note: This initialization sequence is derived from RIT App Note for
// the P14201. Values used are from the RIT app note, except where noted.
//
//*****************************************************************************
static const unsigned char g_pucRIT128x96x4Init[] =
{
//
// Unlock commands
//
3, 0xFD, 0x12, 0xe3,
//
// Display off
//
2, 0xAE, 0xe3,
//
// Icon off
//
3, 0x94, 0, 0xe3,
//
// Multiplex ratio
//
3, 0xA8, 95, 0xe3,
//
// Contrast
//
3, 0x81, 0xb7, 0xe3,
//
// Pre-charge current
//
3, 0x82, 0x3f, 0xe3,
//
// Display Re-map
//
3, 0xA0, RIT_INIT_REMAP, 0xe3,
//
// Display Start Line
//
3, 0xA1, 0, 0xe3,
//
// Display Offset
//
3, 0xA2, RIT_INIT_OFFSET, 0xe3,
//
// Display Mode Normal
//
2, 0xA4, 0xe3,
//
// Phase Length
//
3, 0xB1, 0x11, 0xe3,
//
// Frame frequency
//
3, 0xB2, 0x23, 0xe3,
//
// Front Clock Divider
//
3, 0xB3, 0xe2, 0xe3,
//
// Set gray scale table. App note uses default command:
// 2, 0xB7, 0xe3
// This gray scale attempts some gamma correction to reduce the
// the brightness of the low levels.
//
17, 0xB8, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 19, 22, 26, 30, 0xe3,
//
// Second pre-charge period. App note uses value 0x04.
//
3, 0xBB, 0x01, 0xe3,
//
// Pre-charge voltage
//
3, 0xBC, 0x3f, 0xe3,
//
// Display ON
//
2, 0xAF, 0xe3,
};
//*****************************************************************************
//
//! \internal
//!
//! Write a sequence of command bytes to the SSD1329 controller.
//!
//! The data is written in a polled fashion; this function will not return
//! until the entire byte sequence has been written to the controller.
//!
//! \return None.
//
//*****************************************************************************
static void
RITWriteCommand(const unsigned char *pucBuffer, unsigned long ulCount)
{
volatile unsigned long ulTemp;
//
// Return if SSI port is not enabled for RIT display.
//
if(!g_bSSIEnabled)
{
return;
}
//
// Clear the command/control bit to enable command mode.
//
GPIOC->DATA_Bits[GPIO_OLEDDC_PIN] = 0;
//
// Loop while there are more bytes left to be transferred.
//
while(ulCount != 0)
{
//
// Write the next byte to the controller.
//
while ((SSI0->SR & (1 << 1)) == 0)
{
}
SSI0->DR = *pucBuffer++; // Write the data to the SSI
//
// Dummy read to drain the fifo and time the GPIO signal.
//
while ((SSI0->SR & (1 << 2)) == 0)
{
}
ulTemp = SSI0->DR; // Read data from SSI
ulCount--; // Decrement the BYTE counter.
}
}
//*****************************************************************************
//
//! \internal
//!
//! Write a sequence of data bytes to the SSD1329 controller.
//!
//! The data is written in a polled fashion; this function will not return
//! until the entire byte sequence has been written to the controller.
//!
//! \return None.
//
//*****************************************************************************
static void
RITWriteData(const unsigned char *pucBuffer, unsigned long ulCount)
{
volatile unsigned long ulTemp;
//
// Return if SSI port is not enabled for RIT display.
//
if(!g_bSSIEnabled)
{
return;
}
//
// Set the command/control bit to enable data mode.
//
GPIOC->DATA_Bits[GPIO_OLEDDC_PIN] = GPIO_OLEDDC_PIN;
//
// Loop while there are more bytes left to be transferred.
//
while(ulCount != 0)
{
//
// Write the next byte to the controller.
//
while ((SSI0->SR & (1 << 1)) == 0)
{
}
SSI0->DR = *pucBuffer++; // Write the data to the SSI
//
// Dummy read to drain the fifo and time the GPIO signal.
//
while ((SSI0->SR & (1 << 2)) == 0)
{
}
ulTemp = SSI0->DR; // Read data from SSI
//
// Decrement the BYTE counter.
//
ulCount--;
}
}
//*****************************************************************************
//
//! Clears the OLED display.
//!
//! This function will clear the display RAM. All pixels in the display will
//! be turned off.
//!
//! This function is contained in <tt>rit128x96x4.c</tt>, with
//! <tt>rit128x96x4.h</tt> containing the API definition for use by
//! applications.
//!
//! \return None.
//
//*****************************************************************************
void
RIT128x96x4Clear(void)
{
static const unsigned char pucCommand1[] = { 0x15, 0, 63 };
static const unsigned char pucCommand2[] = { 0x75, 0, 127 };
unsigned long ulRow, ulColumn;
//
// Clear out the buffer used for sending bytes to the display.
//
*(unsigned long *)&g_pucBuffer[0] = 0;
*(unsigned long *)&g_pucBuffer[4] = 0;
//
// Set the window to fill the entire display.
//
RITWriteCommand(pucCommand1, sizeof(pucCommand1));
RITWriteCommand(pucCommand2, sizeof(pucCommand2));
RITWriteCommand(g_pucRIT128x96x4HorizontalInc,
sizeof(g_pucRIT128x96x4HorizontalInc));
//
// Loop through the rows
//
for(ulRow = 0; ulRow < 96; ulRow++)
{
//
// Loop through the columns. Each byte is two pixels,
// and the buffer hold 8 bytes, so 16 pixels are cleared
// at a time.
//
for(ulColumn = 0; ulColumn < 128; ulColumn += 8 * 2)
{
//
// Write 8 clearing bytes to the display, which will
// clear 16 pixels across.
//
RITWriteData(g_pucBuffer, sizeof(g_pucBuffer));
}
}
}
//*****************************************************************************
//
//! Displays a string on the OLED display.
//!
//! \param pcStr is a pointer to the string to display.
//! \param ulX is the horizontal position to display the string, specified in
//! columns from the left edge of the display.
//! \param ulY is the vertical position to display the string, specified in
//! rows from the top edge of the display.
//! \param ucLevel is the 4-bit gray scale value to be used for displayed text.
//!
//! This function will draw a string on the display. Only the ASCII characters
//! between 32 (space) and 126 (tilde) are supported; other characters will
//! result in random data being draw on the display (based on whatever appears
//! before/after the font in memory). The font is mono-spaced, so characters
//! such as ``i'' and ``l'' have more white space around them than characters
//! such as ``m'' or ``w''.
//!
//! If the drawing of the string reaches the right edge of the display, no more
//! characters will be drawn. Therefore, special care is not required to avoid
//! supplying a string that is ``too long'' to display.
//!
//! This function is contained in <tt>rit128x96x4.c</tt>, with
//! <tt>rit128x96x4.h</tt> containing the API definition for use by
//! applications.
//!
//! \note Because the OLED display packs 2 pixels of data in a single byte, the
//! parameter \e ulX must be an even column number (for example, 0, 2, 4, and
//! so on).
//!
//! \return None.
//
//*****************************************************************************
void
RIT128x96x4StringDraw(const char *pcStr, unsigned long ulX,
unsigned long ulY, unsigned char ucLevel)
{
unsigned long ulIdx1, ulIdx2;
unsigned char ucTemp;
//
// Check the arguments.
//
//ASSERT(ulX < 128);
//ASSERT((ulX & 1) == 0);
//ASSERT(ulY < 96);
//ASSERT(ucLevel < 16);
//
// Setup a window starting at the specified column and row, ending
// at the right edge of the display and 8 rows down (single character row).
//
g_pucBuffer[0] = 0x15;
g_pucBuffer[1] = ulX / 2;
g_pucBuffer[2] = 63;
RITWriteCommand(g_pucBuffer, 3);
g_pucBuffer[0] = 0x75;
g_pucBuffer[1] = ulY;
g_pucBuffer[2] = ulY + 7;
RITWriteCommand(g_pucBuffer, 3);
RITWriteCommand(g_pucRIT128x96x4VerticalInc,
sizeof(g_pucRIT128x96x4VerticalInc));
//
// Loop while there are more characters in the string.
//
while(*pcStr != 0)
{
//
// Get a working copy of the current character and convert to an
// index into the character bit-map array.
//
ucTemp = *pcStr;
ucTemp &= 0x7F;
if(ucTemp < ' ')
{
ucTemp = ' ';
}
else
{
ucTemp -= ' ';
}
//
// Build and display the character buffer.
//
for(ulIdx1 = 0; ulIdx1 < 6; ulIdx1 += 2)
{
//
// Convert two columns of 1-bit font data into a single data
// byte column of 4-bit font data.
//
for(ulIdx2 = 0; ulIdx2 < 8; ulIdx2++)
{
g_pucBuffer[ulIdx2] = 0;
if(g_pucFont[ucTemp][ulIdx1] & (1 << ulIdx2))
{
g_pucBuffer[ulIdx2] = (ucLevel << 4) & 0xf0;
}
if((ulIdx1 < 4) &&
(g_pucFont[ucTemp][ulIdx1 + 1] & (1 << ulIdx2)))
{
g_pucBuffer[ulIdx2] |= (ucLevel << 0) & 0x0f;
}
}
//
// Send this byte column to the display.
//
RITWriteData(g_pucBuffer, 8);
ulX += 2;
//
// Return if the right side of the display has been reached.
//
if(ulX == 128)
{
return;
}
}
//
// Advance to the next character.
//
pcStr++;
}
}
//*****************************************************************************
//
//! Displays an image on the OLED display.
//!
//! \param pucImage is a pointer to the image data.
//! \param ulX is the horizontal position to display this image, specified in
//! columns from the left edge of the display.
//! \param ulY is the vertical position to display this image, specified in
//! rows from the top of the display.
//! \param ulWidth is the width of the image, specified in columns.
//! \param ulHeight is the height of the image, specified in rows.
//!
//! This function will display a bitmap graphic on the display. Because of the
//! format of the display RAM, the starting column (\e ulX) and the number of
//! columns (\e ulWidth) must be an integer multiple of two.
//!
//! The image data is organized with the first row of image data appearing left
//! to right, followed immediately by the second row of image data. Each byte
//! contains the data for two columns in the current row, with the leftmost
//! column being contained in bits 7:4 and the rightmost column being contained
//! in bits 3:0.
//!
//! For example, an image six columns wide and seven scan lines tall would
//! be arranged as follows (showing how the twenty one bytes of the image would
//! appear on the display):
//!
//! \verbatim
//! +-------------------+-------------------+-------------------+
//! | Byte 0 | Byte 1 | Byte 2 |
//! +---------+---------+---------+---------+---------+---------+
//! | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
//! +---------+---------+---------+---------+---------+---------+
//! | Byte 3 | Byte 4 | Byte 5 |
//! +---------+---------+---------+---------+---------+---------+
//! | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
//! +---------+---------+---------+---------+---------+---------+
//! | Byte 6 | Byte 7 | Byte 8 |
//! +---------+---------+---------+---------+---------+---------+
//! | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
//! +---------+---------+---------+---------+---------+---------+
//! | Byte 9 | Byte 10 | Byte 11 |
//! +---------+---------+---------+---------+---------+---------+
//! | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
//! +---------+---------+---------+---------+---------+---------+
//! | Byte 12 | Byte 13 | Byte 14 |
//! +---------+---------+---------+---------+---------+---------+
//! | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
//! +---------+---------+---------+---------+---------+---------+
//! | Byte 15 | Byte 16 | Byte 17 |
//! +---------+---------+---------+---------+---------+---------+
//! | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
//! +---------+---------+---------+---------+---------+---------+
//! | Byte 18 | Byte 19 | Byte 20 |
//! +---------+---------+---------+---------+---------+---------+
//! | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
//! +---------+---------+---------+---------+---------+---------+
//! \endverbatim
//!
//! This function is contained in <tt>rit128x96x4.c</tt>, with
//! <tt>rit128x96x4.h</tt> containing the API definition for use by
//! applications.
//!
//! \return None.
//
//*****************************************************************************
void
RIT128x96x4ImageDraw(const unsigned char *pucImage, unsigned long ulX,
unsigned long ulY, unsigned long ulWidth,
unsigned long ulHeight)
{
//
// Check the arguments.
//
//ASSERT(ulX < 128);
//ASSERT((ulX & 1) == 0);
//ASSERT(ulY < 96);
//ASSERT((ulX + ulWidth) <= 128);
//ASSERT((ulY + ulHeight) <= 96);
//ASSERT((ulWidth & 1) == 0);
//
// Setup a window starting at the specified column and row, and ending
// at the column + width and row+height.
//
g_pucBuffer[0] = 0x15;
g_pucBuffer[1] = ulX / 2;
g_pucBuffer[2] = (ulX + ulWidth - 2) / 2;
RITWriteCommand(g_pucBuffer, 3);
g_pucBuffer[0] = 0x75;
g_pucBuffer[1] = ulY;
g_pucBuffer[2] = ulY + ulHeight - 1;
RITWriteCommand(g_pucBuffer, 3);
RITWriteCommand(g_pucRIT128x96x4HorizontalInc,
sizeof(g_pucRIT128x96x4HorizontalInc));
//
// Loop while there are more rows to display.
//
while(ulHeight--)
{
//
// Write this row of image data.
//
RITWriteData(pucImage, (ulWidth / 2));
//
// Advance to the next row of the image.
//
pucImage += (ulWidth / 2);
}
}
//*****************************************************************************
//
//! Enable the SSI component of the OLED display driver.
//!
//! \param ulFrequency specifies the SSI Clock Frequency to be used.
//!
//! This function initializes the SSI interface to the OLED display.
//!
//! This function is contained in <tt>rit128x96x4.c</tt>, with
//! <tt>rit128x96x4.h</tt> containing the API definition for use by
//! applications.
//!
//! \return None.
//
//*****************************************************************************
void
RIT128x96x4Enable(unsigned long ulFrequency)
{
unsigned long ulTemp;
unsigned long ulPreDiv;
unsigned long ulSCR;
//
// Disable the SSI port.
//
SSI0->CR1 &= ~(1 << 1);
//
// Configure the SSI0 port for master mode.
//
SSI0->CR1 = 0;
ulTemp = SystemFrequency / ulFrequency;
ulPreDiv = 0;
do {
ulPreDiv += 2;
ulSCR = (ulTemp / ulPreDiv) - 1;
}
while (ulSCR > 255);
SSI0->CPSR = ulPreDiv;
SSI0->CR0 = (ulSCR << 8) | (1 << 6) | (8 - 1);
//
// (Re)Enable SSI control of the FSS pin.
//
GPIOA->DIR &= ~GPIO_OLEDFSS_PIN;
GPIOA->AFSEL |= GPIO_OLEDFSS_PIN;
GPIOA->DR8R |= GPIO_OLEDFSS_PIN; // 8mA strength
GPIOA->ODR &= ~GPIO_OLEDFSS_PIN;
GPIOA->PUR |= GPIO_OLEDFSS_PIN;
GPIOA->PDR &= ~GPIO_OLEDFSS_PIN;
GPIOA->DEN |= GPIO_OLEDFSS_PIN;
//
// Enable the SSI port.
//
SSI0->CR1 |= (1 << 1);
//
// Drain the receive fifo.
//
while((SSI0->SR & (1 << 2)) != 0)
{
}
ulTemp = SSI0->DR;
//
// Indicate that the RIT driver can use the SSI Port.
//
g_bSSIEnabled = 1;
}
//*****************************************************************************
//
//! Enable the SSI component of the OLED display driver.
//!
//! This function initializes the SSI interface to the OLED display.
//!
//! This function is contained in <tt>rit128x96x4.c</tt>, with
//! <tt>rit128x96x4.h</tt> containing the API definition for use by
//! applications.
//!
//! \return None.
//
//*****************************************************************************
void
RIT128x96x4Disable(void)
{
volatile unsigned long ulTemp;
//
// Indicate that the RIT driver can no longer use the SSI Port.
//
g_bSSIEnabled = 0;
//
// Drain the receive fifo.
//
while((SSI0->SR & (1 << 2)) != 0)
{
}
ulTemp = SSI0->DR;
//
// Disable the SSI port.
//
SSI0->CR1 &= ~(1 << 1);
//
// Disable SSI control of the FSS pin.
//
GPIOA->DIR |= GPIO_OLEDFSS_PIN;
GPIOA->AFSEL &= ~GPIO_OLEDFSS_PIN;
GPIOA->DR8R |= GPIO_OLEDFSS_PIN; // 8mA strength
GPIOA->ODR &= ~GPIO_OLEDFSS_PIN;
GPIOA->PUR |= GPIO_OLEDFSS_PIN;
GPIOA->PDR &= ~GPIO_OLEDFSS_PIN;
GPIOA->DEN |= GPIO_OLEDFSS_PIN;
GPIOA->AMSEL &= ~GPIO_OLEDFSS_PIN;
GPIOA->DATA_Bits[GPIO_OLEDFSS_PIN] = GPIO_OLEDFSS_PIN;
}
//*****************************************************************************
//
//! Initialize the OLED display.
//!
//! \param ulFrequency specifies the SSI Clock Frequency to be used.
//!
//! This function initializes the SSI interface to the OLED display and
//! configures the SSD1329 controller on the panel.
//!
//! This function is contained in <tt>rit128x96x4.c</tt>, with
//! <tt>rit128x96x4.h</tt> containing the API definition for use by
//! applications.
//!
//! \return None.
//
//*****************************************************************************
void
RIT128x96x4Init(unsigned long ulFrequency)
{
unsigned long ulPins;
unsigned long ulIdx;
//
// Enable the SSI0 and GPIO port blocks as they are needed by this driver.
//
SYSCTL->RCGC1 |= (1 << 4); /* enable clock to SSI0 */
SYSCTL->RCGC2 |= (1 << 0); /* enable clock to GPIOA */
SYSCTL->RCGC2 |= (1 << 2); /* enable clock to GPIOC */
//
// Configure the SSI0CLK and SSIOTX pins for SSI operation.
//
ulPins = (1 << 2) | (1 << 3) | (1 << 5);
GPIOA->DIR &= ~ulPins;
GPIOA->AFSEL |= ulPins;
GPIOA->DR8R |= ulPins; // 8mA strength
GPIOA->ODR &= ~ulPins;
GPIOA->PUR |= ulPins;
GPIOA->PDR &= ~ulPins;
GPIOA->DEN |= ulPins;
GPIOA->AMSEL &= ~ulPins;
//
// Configure the GPIO port pin used as a D/Cn signal for OLED device,
// and the port pin used to enable power to the OLED panel.
//
ulPins = GPIO_OLEDDC_PIN | GPIO_OLEDEN_PIN;
GPIOC->DIR |= ulPins;
GPIOC->AFSEL &= ~ulPins;
GPIOC->DR8R |= ulPins; // 8mA strength
GPIOC->ODR &= ~ulPins;
GPIOC->PUR &= ~ulPins;
GPIOC->PDR &= ~ulPins;
GPIOC->DEN |= ulPins;
GPIOC->AMSEL &= ~ulPins;
GPIOC->DATA_Bits[ulPins] = ulPins;
//
// Configure and enable the SSI0 port for master mode.
//
RIT128x96x4Enable(ulFrequency);
//
// Clear the frame buffer.
//
RIT128x96x4Clear();
//
// Initialize the SSD1329 controller. Loop through the initialization
// sequence array, sending each command "string" to the controller.
//
for(ulIdx = 0; ulIdx < sizeof(g_pucRIT128x96x4Init);
ulIdx += g_pucRIT128x96x4Init[ulIdx] + 1)
{
//
// Send this command.
//
RITWriteCommand(g_pucRIT128x96x4Init + ulIdx + 1,
g_pucRIT128x96x4Init[ulIdx] - 1);
}
}
//*****************************************************************************
//
//! Turns on the OLED display.
//!
//! This function will turn on the OLED display, causing it to display the
//! contents of its internal frame buffer.
//!
//! This function is contained in <tt>rit128x96x4.c</tt>, with
//! <tt>rit128x96x4.h</tt> containing the API definition for use by
//! applications.
//!
//! \return None.
//
//*****************************************************************************
void
RIT128x96x4DisplayOn(void)
{
unsigned long ulIdx;
//
// Initialize the SSD1329 controller. Loop through the initialization
// sequence array, sending each command "string" to the controller.
//
for(ulIdx = 0; ulIdx < sizeof(g_pucRIT128x96x4Init);
ulIdx += g_pucRIT128x96x4Init[ulIdx] + 1)
{
//
// Send this command.
//
RITWriteCommand(g_pucRIT128x96x4Init + ulIdx + 1,
g_pucRIT128x96x4Init[ulIdx] - 1);
}
}
//*****************************************************************************
//
//! Turns off the OLED display.
//!
//! This function will turn off the OLED display. This will stop the scanning
//! of the panel and turn off the on-chip DC-DC converter, preventing damage to
//! the panel due to burn-in (it has similar characters to a CRT in this
//! respect).
//!
//! This function is contained in <tt>rit128x96x4.c</tt>, with
//! <tt>rit128x96x4.h</tt> containing the API definition for use by
//! applications.
//!
//! \return None.
//
//*****************************************************************************
void
RIT128x96x4DisplayOff(void)
{
static const unsigned char pucCommand1[] =
{
0xAE, 0xe3
};
//
// Put the display to sleep.
//
RITWriteCommand(pucCommand1, sizeof(pucCommand1));
}
//*****************************************************************************
//
// Close the Doxygen group.
//! @}
//
//*****************************************************************************