mirror of
https://github.com/QuantumLeaps/qpc.git
synced 2025-01-21 06:53:11 +08:00
386 lines
15 KiB
C
386 lines
15 KiB
C
/*****************************************************************************
|
|
* Product: DPP example, NUCLEO-L053R8 board, cooperative QV kernel
|
|
* Last Updated for Version: 5.5.0
|
|
* Date of the Last Update: 2015-08-20
|
|
*
|
|
* Q u a n t u m L e a P s
|
|
* ---------------------------
|
|
* innovating embedded systems
|
|
*
|
|
* Copyright (C) Quantum Leaps, LLC. All rights reserved.
|
|
*
|
|
* This program is open source software: you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as published
|
|
* by the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* Alternatively, this program may be distributed and modified under the
|
|
* terms of Quantum Leaps commercial licenses, which expressly supersede
|
|
* the GNU General Public License and are specifically designed for
|
|
* licensees interested in retaining the proprietary status of their code.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Contact information:
|
|
* http://www.state-machine.com
|
|
* mailto:info@state-machine.com
|
|
*****************************************************************************/
|
|
#include "qpc.h"
|
|
#include "dpp.h"
|
|
#include "bsp.h"
|
|
|
|
#include "stm32l0xx.h" /* CMSIS-compliant header file for the MCU used */
|
|
/* add other drivers if necessary... */
|
|
|
|
Q_DEFINE_THIS_FILE
|
|
|
|
/*!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
* Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
|
|
* DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
|
|
*/
|
|
enum KernelAwareISRs {
|
|
GPIOPORTA_PRIO = QF_AWARE_ISR_CMSIS_PRI, /* see NOTE00 */
|
|
SYSTICK_PRIO,
|
|
/* ... */
|
|
MAX_KERNEL_AWARE_CMSIS_PRI /* keep always last */
|
|
};
|
|
/* "kernel-aware" interrupts should not overlap the PendSV priority */
|
|
Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS)));
|
|
|
|
void SysTick_Handler(void);
|
|
|
|
/* Local-scope defines -----------------------------------------------------*/
|
|
/* LED pins available on the board (just one user LED LD2--Green on PA.5) */
|
|
#define LED_LD2 (1U << 5)
|
|
|
|
/* Button pins available on the board (just one user Button B1 on PC.13) */
|
|
#define BTN_B1 (1U << 13)
|
|
|
|
|
|
static uint32_t l_rnd; /* random seed */
|
|
|
|
#ifdef Q_SPY
|
|
QSTimeCtr QS_tickTime_;
|
|
QSTimeCtr QS_tickPeriod_;
|
|
|
|
/* event-source identifiers used for tracing */
|
|
static uint8_t const l_SysTick_Handler = 0U;
|
|
|
|
enum AppRecords { /* application-specific trace records */
|
|
PHILO_STAT = QS_USER
|
|
};
|
|
|
|
#endif
|
|
|
|
/* ISRs used in the application ==========================================*/
|
|
void SysTick_Handler(void) { /* system clock tick ISR */
|
|
/* state of the button debouncing, see below */
|
|
static struct ButtonsDebouncing {
|
|
uint32_t depressed;
|
|
uint32_t previous;
|
|
} buttons = { ~0U, ~0U };
|
|
uint32_t current;
|
|
uint32_t tmp;
|
|
|
|
#ifdef Q_SPY
|
|
{
|
|
tmp = SysTick->CTRL; /* clear CTRL_COUNTFLAG */
|
|
QS_tickTime_ += QS_tickPeriod_; /* account for the clock rollover */
|
|
}
|
|
#endif
|
|
|
|
QF_TICK_X(0U, &l_SysTick_Handler); /* process time events for rate 0 */
|
|
|
|
/* get state of the user button */
|
|
/* Perform the debouncing of buttons. The algorithm for debouncing
|
|
* adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
|
|
* and Michael Barr, page 71.
|
|
*/
|
|
current = ~GPIOC->IDR; /* read Port C with the state of Button B1 */
|
|
tmp = buttons.depressed; /* save the debounced depressed buttons */
|
|
buttons.depressed |= (buttons.previous & current); /* set depressed */
|
|
buttons.depressed &= (buttons.previous | current); /* clear released */
|
|
buttons.previous = current; /* update the history */
|
|
tmp ^= buttons.depressed; /* changed debounced depressed */
|
|
if ((tmp & BTN_B1) != 0U) { /* debounced B1 state changed? */
|
|
if ((buttons.depressed & BTN_B1) != 0U) { /* is B1 depressed? */
|
|
static QEvt const pauseEvt = { PAUSE_SIG, 0U, 0U};
|
|
QF_PUBLISH(&pauseEvt, &l_SysTick_Handler);
|
|
}
|
|
else { /* the button is released */
|
|
static QEvt const serveEvt = { SERVE_SIG, 0U, 0U};
|
|
QF_PUBLISH(&serveEvt, &l_SysTick_Handler);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* BSP functions ===========================================================*/
|
|
void BSP_init(void) {
|
|
/* NOTE: SystemInit() already called from the startup code
|
|
* but SystemCoreClock needs to be updated
|
|
*/
|
|
SystemCoreClockUpdate();
|
|
|
|
/* enable GPIOA clock port for the LED LD2 */
|
|
RCC->IOPENR |= (1U << 0);
|
|
|
|
/* configure LED (PA.5) pin as push-pull output, no pull-up, pull-down */
|
|
GPIOA->MODER &= ~((3U << 2*5));
|
|
GPIOA->MODER |= ((1U << 2*5));
|
|
GPIOA->OTYPER &= ~((1U << 5));
|
|
GPIOA->OSPEEDR &= ~((3U << 2*5));
|
|
GPIOA->OSPEEDR |= ((1U << 2*5));
|
|
GPIOA->PUPDR &= ~((3U << 2*5));
|
|
|
|
/* enable GPIOC clock port for the Button B1 */
|
|
RCC->IOPENR |= (1U << 2);
|
|
|
|
/* Configure Button (PC.13) pins as input, no pull-up, pull-down */
|
|
GPIOC->MODER &= ~(3UL << 2*13);
|
|
GPIOC->OSPEEDR &= ~(3UL << 2*13);
|
|
GPIOC->OSPEEDR |= (1UL << 2*13);
|
|
GPIOC->PUPDR &= ~(3UL << 2*13);
|
|
|
|
BSP_randomSeed(1234U); /* seed the random number generator */
|
|
|
|
/* initialize the QS software tracing... */
|
|
if (QS_INIT((void *)0) == 0) {
|
|
Q_ERROR();
|
|
}
|
|
QS_OBJ_DICTIONARY(&l_SysTick_Handler);
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_displayPhilStat(uint8_t n, char const *stat) {
|
|
if (stat[0] == 'h') {
|
|
GPIOA->BSRR |= LED_LD2; /* turn LED on */
|
|
}
|
|
else {
|
|
GPIOA->BSRR |= (LED_LD2 << 16); /* turn LED off */
|
|
}
|
|
|
|
QS_BEGIN(PHILO_STAT, AO_Philo[n]) /* application-specific record begin */
|
|
QS_U8(1, n); /* Philosopher number */
|
|
QS_STR(stat); /* Philosopher status */
|
|
QS_END()
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_displayPaused(uint8_t paused) {
|
|
/* not enough LEDs to implement this feature */
|
|
if (paused != (uint8_t)0) {
|
|
//GPIOA->BSRR |= (LED_LD2); /* turn LED[n] on */
|
|
}
|
|
else {
|
|
//GPIOA->BSRR |= (LED_LD2 << 16); /* turn LED[n] off */
|
|
}
|
|
}
|
|
/*..........................................................................*/
|
|
uint32_t BSP_random(void) { /* a very cheap pseudo-random-number generator */
|
|
/* "Super-Duper" Linear Congruential Generator (LCG)
|
|
* LCG(2^32, 3*7*11*13*23, 0, seed)
|
|
*/
|
|
l_rnd = l_rnd * (3U*7U*11U*13U*23U);
|
|
return l_rnd >> 8;
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_randomSeed(uint32_t seed) {
|
|
l_rnd = seed;
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_terminate(int16_t result) {
|
|
(void)result;
|
|
}
|
|
|
|
/* QF callbacks ============================================================*/
|
|
void QF_onStartup(void) {
|
|
/* set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate */
|
|
SysTick_Config(SystemCoreClock / BSP_TICKS_PER_SEC);
|
|
|
|
/* set priorities of ALL ISRs used in the system, see NOTE00
|
|
*
|
|
* !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
* Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
|
|
* DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
|
|
*/
|
|
NVIC_SetPriority(SysTick_IRQn, SYSTICK_PRIO);
|
|
/* ... */
|
|
|
|
/* enable IRQs... */
|
|
}
|
|
/*..........................................................................*/
|
|
void QF_onCleanup(void) {
|
|
}
|
|
/*..........................................................................*/
|
|
void QV_onIdle(void) { /* called with interrupts disabled, see NOTE01 */
|
|
|
|
/* toggle an LED on and then off (not enough LEDs, see NOTE02) */
|
|
//GPIOA->BSRR |= (LED_LD2); /* turn LED[n] on */
|
|
//GPIOA->BSRR |= (LED_LD2 << 16); /* turn LED[n] off */
|
|
|
|
#ifdef Q_SPY
|
|
QF_INT_ENABLE();
|
|
if ((USART2->ISR & 0x0080U) != 0) { /* is TXE empty? */
|
|
uint16_t b;
|
|
|
|
QF_INT_DISABLE();
|
|
b = QS_getByte();
|
|
QF_INT_ENABLE();
|
|
|
|
if (b != QS_EOD) { /* not End-Of-Data? */
|
|
USART2->TDR = (b & 0xFFU); /* put into the DR register */
|
|
}
|
|
}
|
|
#elif defined NDEBUG
|
|
/* Put the CPU and peripherals to the low-power mode.
|
|
* you might need to customize the clock management for your application,
|
|
* see the datasheet for your particular Cortex-M MCU.
|
|
*/
|
|
/* !!!CAUTION!!!
|
|
* The QF_CPU_SLEEP() contains the WFI instruction, which stops the CPU
|
|
* clock, which unfortunately disables the JTAG port, so the ST-Link
|
|
* debugger can no longer connect to the board. For that reason, the call
|
|
* to QF_CPU_SLEEP() has to be used with CAUTION.
|
|
*/
|
|
/* NOTE: If you find your board "frozen" like this, strap BOOT0 to VDD and
|
|
* reset the board, then connect with ST-Link Utilities and erase the part.
|
|
* The trick with BOOT(0) is it gets the part to run the System Loader
|
|
* instead of your broken code. When done disconnect BOOT0, and start over.
|
|
*/
|
|
//QV_CPU_SLEEP(); /* atomically go to sleep and enable interrupts */
|
|
QF_INT_ENABLE(); /* for now, just enable interrupts */
|
|
#else
|
|
QF_INT_ENABLE(); /* just enable interrupts */
|
|
#endif
|
|
}
|
|
|
|
/*..........................................................................*/
|
|
void Q_onAssert(char const *module, int loc) {
|
|
/*
|
|
* NOTE: add here your application-specific error handling
|
|
*/
|
|
(void)module;
|
|
(void)loc;
|
|
QS_ASSERTION(module, loc, (uint32_t)10000U); /* report assertion to QS */
|
|
NVIC_SystemReset();
|
|
}
|
|
|
|
/* QS callbacks ============================================================*/
|
|
#ifdef Q_SPY
|
|
/*..........................................................................*/
|
|
#define __DIV(__PCLK, __BAUD) (((__PCLK / 4) *25)/(__BAUD))
|
|
#define __DIVMANT(__PCLK, __BAUD) (__DIV(__PCLK, __BAUD)/100)
|
|
#define __DIVFRAQ(__PCLK, __BAUD) \
|
|
(((__DIV(__PCLK, __BAUD) - (__DIVMANT(__PCLK, __BAUD) * 100)) \
|
|
* 16 + 50) / 100)
|
|
#define __USART_BRR(__PCLK, __BAUD) \
|
|
((__DIVMANT(__PCLK, __BAUD) << 4)|(__DIVFRAQ(__PCLK, __BAUD) & 0x0F))
|
|
|
|
/*..........................................................................*/
|
|
uint8_t QS_onStartup(void const *arg) {
|
|
static uint8_t qsBuf[2*1024]; /* buffer for Quantum Spy */
|
|
|
|
(void)arg; /* avoid the "unused parameter" compiler warning */
|
|
QS_initBuf(qsBuf, sizeof(qsBuf));
|
|
|
|
/* enable peripheral clock for USART2 */
|
|
RCC->IOPENR |= ( 1ul << 0); /* Enable GPIOA clock */
|
|
RCC->APB1ENR |= ( 1ul << 17); /* Enable USART#2 clock */
|
|
|
|
/* Configure PA3 to USART2_RX, PA2 to USART2_TX */
|
|
GPIOA->AFR[0] &= ~((15ul << 4* 3) | (15ul << 4* 2) );
|
|
GPIOA->AFR[0] |= (( 4ul << 4* 3) | ( 4ul << 4* 2) );
|
|
GPIOA->MODER &= ~(( 3ul << 2* 3) | ( 3ul << 2* 2) );
|
|
GPIOA->MODER |= (( 2ul << 2* 3) | ( 2ul << 2* 2) );
|
|
|
|
USART2->BRR = __USART_BRR(SystemCoreClock, 115200ul); /* baud rate */
|
|
USART2->CR3 = 0x0000; /* no flow control */
|
|
USART2->CR2 = 0x0000; /* 1 stop bit */
|
|
USART2->CR1 = ((1ul << 2) | /* enable RX */
|
|
(1ul << 3) | /* enable TX */
|
|
(0ul << 12) | /* 8 data bits */
|
|
(0ul << 28) | /* 8 data bits */
|
|
(1ul << 0) ); /* enable USART */
|
|
|
|
QS_tickPeriod_ = SystemCoreClock / BSP_TICKS_PER_SEC;
|
|
QS_tickTime_ = QS_tickPeriod_; /* to start the timestamp at zero */
|
|
|
|
/* setup the QS filters... */
|
|
QS_FILTER_ON(QS_QEP_STATE_ENTRY);
|
|
QS_FILTER_ON(QS_QEP_STATE_EXIT);
|
|
QS_FILTER_ON(QS_QEP_STATE_INIT);
|
|
QS_FILTER_ON(QS_QEP_INIT_TRAN);
|
|
QS_FILTER_ON(QS_QEP_INTERN_TRAN);
|
|
QS_FILTER_ON(QS_QEP_TRAN);
|
|
QS_FILTER_ON(QS_QEP_IGNORED);
|
|
QS_FILTER_ON(QS_QEP_DISPATCH);
|
|
QS_FILTER_ON(QS_QEP_UNHANDLED);
|
|
|
|
QS_FILTER_ON(PHILO_STAT);
|
|
|
|
return (uint8_t)1; /* return success */
|
|
}
|
|
/*..........................................................................*/
|
|
void QS_onCleanup(void) {
|
|
}
|
|
/*..........................................................................*/
|
|
QSTimeCtr QS_onGetTime(void) { /* NOTE: invoked with interrupts DISABLED */
|
|
if ((SysTick->CTRL & 0x00010000) == 0) { /* COUNT no set? */
|
|
return QS_tickTime_ - (QSTimeCtr)SysTick->VAL;
|
|
}
|
|
else { /* the rollover occured, but the SysTick_ISR did not run yet */
|
|
return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL;
|
|
}
|
|
}
|
|
/*..........................................................................*/
|
|
void QS_onFlush(void) {
|
|
uint16_t b;
|
|
|
|
QF_INT_DISABLE();
|
|
while ((b = QS_getByte()) != QS_EOD) { /* while not End-Of-Data... */
|
|
QF_INT_ENABLE();
|
|
while ((USART2->ISR & 0x0080U) == 0U) { /* while TXE not empty */
|
|
}
|
|
USART2->TDR = (b & 0xFFU); /* put into the DR register */
|
|
}
|
|
QF_INT_ENABLE();
|
|
}
|
|
#endif /* Q_SPY */
|
|
/*--------------------------------------------------------------------------*/
|
|
|
|
/*****************************************************************************
|
|
* NOTE00:
|
|
* The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest
|
|
* ISR priority that is disabled by the QF framework. The value is suitable
|
|
* for the NVIC_SetPriority() CMSIS function.
|
|
*
|
|
* Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e.,
|
|
* with the numerical values of priorities equal or higher than
|
|
* QF_AWARE_ISR_CMSIS_PRI) are allowed to call any QF services. These ISRs
|
|
* are "QF-aware".
|
|
*
|
|
* Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority
|
|
* level (i.e., with the numerical values of priorities less than
|
|
* QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel.
|
|
* Such "QF-unaware" ISRs cannot call any QF services. The only mechanism
|
|
* by which a "QF-unaware" ISR can communicate with the QF framework is by
|
|
* triggering a "QF-aware" ISR, which can post/publish events.
|
|
*
|
|
* NOTE01:
|
|
* The QV_onIdle() callback is called with interrupts disabled, because the
|
|
* determination of the idle condition might change by any interrupt posting
|
|
* an event. QV_onIdle() must internally enable interrupts, ideally
|
|
* atomically with putting the CPU to the power-saving mode.
|
|
*
|
|
* NOTE02:
|
|
* The User LED is used to visualize the idle loop activity. The brightness
|
|
* The User LED is used to visualize the idle loop activity. The brightness
|
|
* of the LED is proportional to the frequency of invcations of the idle loop.
|
|
* Please note that the LED is toggled with interrupts locked, so no interrupt
|
|
* execution time contributes to the brightness of the User LED.
|
|
*/
|