qpc/ports/arm-cm/qxk/iar/qxk_port.s
Quantum Leaps 8d7ae9806f 6.0.3
2017-12-12 17:04:57 -05:00

651 lines
26 KiB
ArmAsm

;*****************************************************************************
; Product: QXK port to ARM Cortex-M (M0,M0+,M3,M4,M7), IAR-ARM assembler
; Last Updated for Version: 6.0.3
; Date of the Last Update: 2017-12-08
;
; Q u a n t u m L e a P s
; ---------------------------
; innovating embedded systems
;
; Copyright (C) Quantum Leaps, LLC. All rights reserved.
;
; This program is open source software: you can redistribute it and/or
; modify it under the terms of the GNU General Public License as published
; by the Free Software Foundation, either version 3 of the License, or
; (at your option) any later version.
;
; Alternatively, this program may be distributed and modified under the
; terms of Quantum Leaps commercial licenses, which expressly supersede
; the GNU General Public License and are specifically designed for
; licensees interested in retaining the proprietary status of their code.
;
; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; GNU General Public License for more details.
;
; You should have received a copy of the GNU General Public License
; along with this program. If not, see <http://www.gnu.org/licenses/>.
;
; Contact information:
; https://state-machine.com
; mailto:info@state-machine.com
;*****************************************************************************
PUBLIC QXK_init ; initialze the QXK kernel
PUBLIC QXK_stackInit_ ; initialize the stack of an extended thread
PUBLIC PendSV_Handler ; CMSIS-compliant PendSV exception name
PUBLIC NMI_Handler ; CMSIS-compliant NMI exception name
#if (__CORE__ == __ARM6M__) ; Cortex-M0/M0+/M1 ?
PUBLIC QF_qlog2 ; Hand-optimized quick LOG2 in assembly
#endif ; Cortex-M0/M0+/M1
EXTERN QXK_attr_ ; QXK attribute structure
EXTERN QXK_activate_ ; external reference
EXTERN QXK_threadRet_ ; return from a thread function
; NOTE: keep in synch with QF_BASEPRI value defined in "qf_port.h" !!!
QF_BASEPRI EQU (0xFF >> 2)
; NOTE: keep in synch with the QXK_Attr struct in "qxk.h" !!!
QXK_CURR EQU 0
QXK_NEXT EQU 4
QXK_ACT_PRIO EQU 8
; NOTE: keep in synch with the QMActive struct in "qf.h/qxk.h" !!!
QMACTIVE_OSOBJ EQU 28
QMACTIVE_PRIO EQU 36
RSEG CODE:CODE:NOROOT(2)
THUMB
PRESERVE8 ; this code preserves 8-byte stack alignment
ALIGNROM 2 ; ensures alignment at 2^2 boundary
;*****************************************************************************
; The QXK_init() function sets the priority of PendSV to 0xFF (lowest urgency).
; For Cortex-M3/4/7, it also sets priorities of all other exceptions and IRQs
; to the safe value. All this is performed in a nestable critical section.
;*****************************************************************************
QXK_init:
MRS r0,PRIMASK ; store the state of the PRIMASK
MOV r12,r0 ; r12 := PRIMASK
CPSID i ; PRIMASK := 1
#if (__CORE__ == __ARM6M__) ; Cortex-M0/M0+/M1 ?
LDR r3,=0xE000ED18 ; System Handler Priority Register
LDR r2,[r3,#8] ; r2 := SYSPRI3
MOVS r1,#0xFF
LSLS r1,r1,#16
ORRS r2,r1
STR r2,[r3,#8] ; SYSPRI3 := r2, PendSV <- 0xFF
#else ; Cortex-M3/M4/..
; NOTE:
; On Cortex-M3/M4/M7.., this QXK port disables interrupts by means of
; the BASEPRI register. However, this method cannot disable interrupt
; priority zero, which is the default for all interrupts out of reset.
; The following code changes the SysTick priority and all IRQ priorities
; to the safe value QF_BASEPRI, wich the QF critical section can disable.
; This avoids breaching of the QF critical sections in case the
; application programmer forgets to explicitly set priorities of all
; "kernel aware" interrupts.
; set all prioriy bytes to QF_BASEPRI in r1
MOVS r1,#QF_BASEPRI
LSLS r1,r1,#8
ORRS r1,r1,#QF_BASEPRI
LSLS r1,r1,#8
ORRS r1,r1,#QF_BASEPRI
LSLS r1,r1,#8
ORRS r1,r1,#QF_BASEPRI
LDR r3,=0xE000ED18 ; System Handler Priority Register
LDR r2,[r3] ; r2 := SYSPRI1
ORRS r2,r1 ; r2 |= "all values to QF_BASEPRI"
STR r2,[r3] ; SYSPRI1 |= r2, Usage-fault/Bus-fault/Mem-fault
LDR r2,[r3,#4] ; r2 := SYSPRI2
ORRS r2,r1 ; r2 |= "all values to QF_BASEPRI"
STR r2,[r3,#4] ; SYSPRI2 := r2, SVCall
LDR r2,[r3,#8] ; r2 := SYSPRI3
ORRS r1,r1,#(0xFF << 16) ; r1 |= 0xFF for PendSV
ORRS r2,r1
STR r2,[r3,#8] ; SYSPRI3 |= r2, SysTick/PendSV/Debug
; set again all prioriy bytes to QF_BASEPRI in r1
MOVS r1,#QF_BASEPRI
LSLS r1,r1,#8
ORRS r1,r1,#QF_BASEPRI
LSLS r1,r1,#8
ORRS r1,r1,#QF_BASEPRI
LSLS r1,r1,#8
ORRS r1,r1,#QF_BASEPRI
LDR r2,=0xE000E400 ; NVIC_PRI0 register
LDR r3,=0xE000E004 ; Interrupt Controller Type Register (ICTR)
LDR r3,[r3]
ANDS r3,r3,#7 ; r3 := ICTR[0:2] (INTLINESNUM)
LSLS r3,r3,#3
ADDS r3,r3,#8 ; r3 == (# NVIC_PRIO registers)/4
; loop over all implemented NVIC_PRIO registers for IRQs...
QXK_init_irq:
SUBS r3,r3,#1
STR r1,[r2,r3,LSL #2] ; NVIC_PRI0[r3] := r1
CMP r3,#0
BNE QXK_init_irq
#endif ; Cortex-M3/M4/M7
MOV r0,r12 ; r0 := original PRIMASK
MSR PRIMASK,r0 ; PRIMASK := r0
BX lr ; return to the caller
;*****************************************************************************
; The PendSV_Handler exception handler is used for handling context switch
; and asynchronous preemption in QXK. The use of the PendSV exception is
; the recommended and most efficient method for performing context switches
; with ARM Cortex-M.
;
; The PendSV exception should have the lowest priority in the whole system
; (0xFF, see QXK_init). All other exceptions and interrupts should have higher
; priority. For example, for NVIC with 2 priority bits all interrupts and
; exceptions must have numerical value of priority lower than 0xC0. In this
; case the interrupt priority levels available to your applications are (in
; the order from the lowest urgency to the highest urgency): 0x80, 0x40, 0x00.
;
; Also, *all* "kernel aware" ISRs in the QXK application must call the
; QXK_ISR_EXIT() macro, which triggers PendSV when it detects a need for
; a context switch or asynchronous preemption.
;
; Due to tail-chaining and its lowest priority, the PendSV exception will be
; entered immediately after the exit from the *last* nested interrupt (or
; exception). In QXK, this is exactly the time when the QXK activator needs to
; handle the asynchronous preemption.
;*****************************************************************************
PendSV_Handler:
; Prepare some constants (an address and a bitmask) before entering
; a critical section...
LDR r3,=QXK_attr_
LDR r2,=0xE000ED04 ; Interrupt Control and State Register
MOVS r1,#1
LSLS r1,r1,#27 ; r0 := (1 << 27) (UNPENDSVSET bit)
; <<<<<<<<<<<<<<<<<<<<<<< CRITICAL SECTION BEGIN <<<<<<<<<<<<<<<<<<<<<<<<<
#if (__CORE__ == __ARM6M__) ; Cortex-M0/M0+/M1 ?
CPSID i ; disable interrupts (set PRIMASK)
#else ; M3/M4/M7
MOVS r0,#QF_BASEPRI
CPSID i ; selectively disable interrutps with BASEPRI
MSR BASEPRI,r0 ; apply the workaround the Cortex-M7 erraturm
CPSIE i ; 837070, see ARM-EPM-064408.
#endif ; M3/M4/M7
; The PendSV exception handler can be preempted by an interrupt,
; which might pend PendSV exception again. The following write to
; ICSR[27] un-pends any such spurious instance of PendSV.
STR r1,[r2] ; ICSR[27] := 1 (unpend PendSV)
; Check QXK_attr_.next, which contains the pointer to the next thread
; to run, which is set in QXK_ISR_EXIT(). This pointer must not be NULL.
LDR r0,[r3,#QXK_NEXT] ; r1 := QXK_attr_.next
CMP r0,#0 ; is (QXK_attr_.next == 0)?
BEQ PendSV_return ; branch if (QXK_attr_.next == 0)
; Load pointers into registers...
MOV r12,r0 ; save QXK_attr_.next in r12
LDR r2,[r0,#QMACTIVE_OSOBJ] ; r2 := QXK_attr_.next->osObject
LDR r1,[r3,#QXK_CURR] ; r1 := QXK_attr_.curr
CMP r1,#0 ; (QXK_attr_.curr != 0)?
BNE PendSV_save_ex ; branch if (current thread is extended)
CMP r2,#0 ; (QXK_attr_.next->osObject != 0)?
BNE PendSV_save_ao ; branch if (next tread is extended)
PendSV_activate:
#ifdef __ARMVFP__ ; if VFP available...
PUSH {r0,lr} ; ...push lr (EXC_RETURN) plus stack-aligner
#endif ; VFP available
; The QXK activator must be called in a thread context, while this code
; executes in the handler contex of the PendSV exception. The switch
; to the Thread mode is accomplished by returning from PendSV using
; a fabricated exception stack frame, where the return address is
; QXK_activate_().
;
; NOTE: the QXK activator is called with interrupts DISABLED and also
; it returns with interrupts DISABLED.
MOVS r3,#1
LSLS r3,r3,#24 ; r3 := (1 << 24), set the T bit (new xpsr)
LDR r2,=QXK_activate_ ; address of QXK_activate_
SUBS r2,r2,#1 ; align Thumb-address at halfword (new pc)
LDR r1,=Thread_ret ; return address after the call (new lr)
SUB sp,sp,#(8*4) ; reserve space for exception stack frame
ADD r0,sp,#(5*4) ; r0 := 5 registers below the top of stack
STM r0!,{r1-r3} ; save xpsr,pc,lr
MOVS r0,#6
MVNS r0,r0 ; r0 := ~6 == 0xFFFFFFF9
BX r0 ; exception-return to the QXK activator
;=========================================================================
; Saving AO-thread before crossing to eXtended-thread
; expected register contents:
; r0 -> QXK_attr_.next
; r1 -> QXK_attr_.curr
; r2 -> QXK_attr_.next->osObject (SP)
; r3 -> &QXK_attr_
; r12 -> QXK_attr_.next
PendSV_save_ao:
#if (__CORE__ == __ARM6M__) ; Cortex-M0/M0+/M1 ?
SUB sp,sp,#(8*4) ; make room for 8 registers r4-r11
MOV r0,sp ; r0 := temporary stack pointer
STMIA r0!,{r4-r7} ; save the low registers
MOV r4,r8 ; move the high registers to low registers...
MOV r5,r9
MOV r6,r10
MOV r7,r11
STMIA r0!,{r4-r7} ; save the high registers
MOV r0,r12 ; restore QXK_attr_.next in r0
#else ; M3/M4/M7
PUSH {r4-r11} ; save r4-r11 on top of the exception frame
#ifdef __ARMVFP__ ; if VFP available...
TST lr,#(1 << 4) ; is it return with the VFP exception frame?
IT EQ ; if lr[4] is zero...
VSTMDBEQ sp!,{s16-s31} ; ... save VFP registers s16..s31
PUSH {r0,lr} ; save the "aligner" and the EXC_RETURN value
#endif ; VFP available
#endif ; M3/M4/M7
CMP r2,#0
BNE PendSV_restore_ex ; branch if (QXK_attr_.next->osObject != 0)
; otherwise continue to restoring next AO-thread...
;-------------------------------------------------------------------------
; Restoring AO-thread after crossing from eXtended-thread
; expected register contents:
; r1 -> QXK_attr_.curr
; r2 -> QXK_attr_.next->osObject (SP)
; r3 -> &QXK_attr_
; r12 -> QXK_attr_.next
PendSV_restore_ao:
MOVS r0,#0
STR r0,[r3,#QXK_CURR] ; QXK_attr_.curr := 0
; don't clear QXK_attr_.next, as it might be needed for AO activation
#if (__CORE__ == __ARM6M__) ; Cortex-M0/M0+/M1 ?
MOV r0,sp ; r0 := top of stack
MOV r1,r0
ADDS r1,r1,#(4*4) ; point r1 to the 4 high registers r7-r11
LDMIA r1!,{r4-r7} ; pop the 4 high registers into low registers
MOV r8,r4 ; move low registers into high registers
MOV r9,r5
MOV r10,r6
MOV r11,r7
LDMIA r0!,{r4-r7} ; pop the low registers
ADD sp,sp,#(8*4) ; remove 8 registers from the stack
MOVS r1,#6
MVNS r1,r1 ; r2 := ~6 == 0xFFFFFFF9
MOV lr,r1 ; make sure MSP is used
#else ; M3/M4/M7
#ifdef __ARMVFP__ ; if VFP available...
POP {r0,lr} ; restore alighner and EXC_RETURN into lr
TST lr,#(1 << 4) ; is it return to the VFP exception frame?
IT EQ ; if EXC_RETURN[4] is zero...
VLDMIAEQ sp!,{s16-s31} ; ... restore VFP registers s16..s31
#else
BIC lr,lr,#(1 << 2) ; make sure MSP is used
#endif ; VFP available
POP {r4-r11} ; restore r4-r11 from the next thread's stack
#endif ; M3/M4/M7
MOV r0,r12 ; r0 := QXK_attr_.next
MOVS r1,#QMACTIVE_PRIO ; r1 := offset of .next into QActive
LDRB r0,[r0,r1] ; r0 := QXK_attr_.next->prio
LDRB r1,[r3,#QXK_ACT_PRIO] ; r1 := QXK_attr_.actPrio
CMP r1,r0
BCC PendSV_activate ; if (next->prio > topPrio) activate the next AO
; otherwise no activation needed...
MOVS r0,#0
STR r0,[r3,#QXK_NEXT] ; QXK_attr_.next := 0 (clear the next)
; re-enable interrupts and return from PendSV
PendSV_return:
#if (__CORE__ == __ARM6M__) ; Cortex-M0/M0+/M1 ?
CPSIE i ; enable interrupts (clear PRIMASK)
#else ; M3/M4/M7
MOVS r0,#0
MSR BASEPRI,r0 ; enable interrupts (clear BASEPRI)
#endif ; M3/M4/M7
; >>>>>>>>>>>>>>>>>>>>>>>> CRITICAL SECTION END >>>>>>>>>>>>>>>>>>>>>>>>>>
BX lr ; return to the preempted AO-thread
;-------------------------------------------------------------------------
; Saving extended-thread before crossing to AO-thread
; expected register contents:
; r0 -> QXK_attr_.next
; r1 -> QXK_attr_.curr
; r2 -> QXK_attr_.next->osObject (SP)
; r3 -> &QXK_attr_
; r12 -> QXK_attr_.next
PendSV_save_ex:
MRS r0,PSP ; r0 := Process Stack Pointer
#if (__CORE__ == __ARM6M__) ; Cortex-M0/M0+/M1 ?
SUBS r0,r0,#(8*4) ; make room for 8 registers r4-r11
MOVS r1,r0 ; r1 := temporary PSP (do not clobber r0!)
STMIA r1!,{r4-r7} ; save the low registers
MOV r4,r8 ; move the high registers to low registers...
MOV r5,r9
MOV r6,r10
MOV r7,r11
STMIA r1!,{r4-r7} ; save the high registers
; NOTE: at this point r0 holds the top of stack
LDR r1,[r3,#QXK_CURR] ; r1 := QXK_attr_.curr (restore value)
#else ; M3/M4/M7
ISB ; reset pipeline after fetching PSP
STMDB r0!,{r4-r11} ; save r4-r11 on top of the exception frame
#ifdef __ARMVFP__ ; if VFP available...
TST lr,#(1 << 4) ; is it return with the VFP exception frame?
IT EQ ; if lr[4] is zero...
VSTMDBEQ r0!,{s16-s31} ; ... save VFP registers s16..s31
STMDB r0!,{r1,lr} ; save the "aligner" and the EXC_RETURN value
#endif ; VFP available
#endif ; M3/M4/M7
; store the SP of the current extended-thread
STR r0,[r1,#QMACTIVE_OSOBJ] ; QXK_attr_.curr->osObject := r0
MOV r0,r12 ; QXK_attr_.next (restore value)
CMP r2,#0
BEQ PendSV_restore_ao ; branch if (QXK_attr_.next->osObject == 0)
; otherwise continue to restoring next extended-thread...
;-------------------------------------------------------------------------
; Restoring extended-thread after crossing from AO-thread
; expected register contents:
; r0 -> QXK_attr_.next
; r1 -> QXK_attr_.curr
; r2 -> QXK_attr_.next->osObject (SP)
; r3 -> &QXK_attr_
; r12 -> QXK_attr_.next
PendSV_restore_ex:
STR r0,[r3,#QXK_CURR] ; QXK_attr_.curr := r0 (QXK_attr_.next)
MOVS r0,#0
STR r0,[r3,#QXK_NEXT] ; QXK_attr_.next := 0
; exit the critical section
#if (__CORE__ == __ARM6M__) ; Cortex-M0/M0+/M1 ?
CPSIE i ; enable interrupts (clear PRIMASK)
MOVS r0,r2 ; r2 := top of stack
ADDS r0,r0,#(4*4) ; point r0 to the 4 high registers r7-r11
LDMIA r0!,{r4-r7} ; pop the 4 high registers into low registers
MOV r8,r4 ; move low registers into high registers
MOV r9,r5
MOV r10,r6
MOV r11,r7
LDMIA r2!,{r4-r7} ; pop the low registers
MOVS r2,r0 ; r2 := holds the new top of stack
MOVS r1,#2
MVNS r1,r1 ; r1 := ~2 == 0xFFFFFFFD
MOV lr,r1 ; make sure PSP is used
#else ; M3/M4/M7
MOVS r1,#0
MSR BASEPRI,r1 ; enable interrupts (clear BASEPRI)
#ifdef __ARMVFP__ ; if VFP available...
LDMIA r2!,{r1,lr} ; restore aligner and EXC_RETURN into lr
TST lr,#(1 << 4) ; is it return to the VFP exception frame?
IT EQ ; if lr[4] is zero...
VLDMIAEQ r2!,{s16-s31} ; ... restore VFP registers s16..s31
#else
ORR lr,lr,#(1 << 2) ; make sure PSP is used
#endif ; VFP available
LDMIA r2!,{r4-r11} ; restore r4-r11 from the next thread's stack
#endif ; M3/M4/M7
; set the PSP to the next thread's SP
MSR PSP,r2 ; Process Stack Pointer := r2
BX lr ; return to the next extended-thread
;*****************************************************************************
; Thread_ret is a helper function executed when the QXK activator returns.
;
; NOTE: Thread_ret does not execute in the PendSV context!
; NOTE: Thread_ret executes entirely with interrupts DISABLED.
;*****************************************************************************
REQUIRE Thread_ret ; forces (THUMB) symbol to be referenced
Thread_ret:
; After the QXK activator returns, we need to resume the preempted
; thread. However, this must be accomplished by a return-from-exception,
; while we are still in the thread context. The switch to the exception
; contex is accomplished by triggering the NMI exception.
; NOTE: The NMI exception is triggered with nterrupts DISABLED,
; because QK activator disables interrutps before return.
; before triggering the NMI exception, make sure that the
; VFP stack frame will NOT be used...
#ifdef __ARMVFP__ ; if VFP available...
MRS r0,CONTROL ; r0 := CONTROL
BICS r0,r0,#4 ; r0 := r0 & ~4 (FPCA bit)
MSR CONTROL,r0 ; CONTROL := r0 (clear CONTROL[2] FPCA bit)
ISB ; ISB after MSR CONTROL (ARM AN 321, Sect.4.16)
#endif ; VFP available
; trigger NMI to return to preempted task...
; NOTE: The NMI exception is triggered with nterrupts DISABLED
LDR r0,=0xE000ED04 ; Interrupt Control and State Register
MOVS r1,#1
LSLS r1,r1,#31 ; r1 := (1 << 31) (NMI bit)
STR r1,[r0] ; ICSR[31] := 1 (pend NMI)
B . ; wait for preemption by NMI
;*****************************************************************************
; The NMI_Handler exception handler is used for returning back to the
; interrupted task. The NMI exception simply removes its own interrupt
; stack frame from the stack and returns to the preempted task using the
; interrupt stack frame that must be at the top of the stack.
;
; NOTE: The NMI exception is entered with interrupts DISABLED, so it needs
; to re-enable interrupts before it returns to the preempted task.
;*****************************************************************************
NMI_Handler:
ADD sp,sp,#(8*4) ; remove one 8-register exception frame
#if (__CORE__ == __ARM6M__) ; Cortex-M0/M0+/M1 ?
CPSIE i ; enable interrupts (clear PRIMASK)
BX lr ; return to the preempted task
#else ; M3/M4/M7
MOVS r0,#0
MSR BASEPRI,r0 ; enable interrupts (clear BASEPRI)
#ifdef __ARMVFP__ ; if VFP available...
POP {r0,pc} ; pop stack "aligner" and EXC_RETURN to PC
#else ; no VFP
BX lr ; return to the preempted task
#endif ; no VFP
#endif ; M3/M4/M7
;*****************************************************************************
; Initialize the private stack of a QXK thread.
;
; NOTE: the function aligns the stack to the 8-byte boundary for
; compatibility with the AAPCS. Additionally, the function pre-fills
; the stack with the known bit pattern (0xDEADBEEF).
;
; The C signature:
; void QXK_stackInit_(void *act, QActionHandler thread,
; void *stkSto, uint_fast16_t stkSize);
;
; NOTE: QXK_stackInit_() must be called before the QF is made
; aware of this QXK thread. In that case there can be no external
; communication with this thread, so no critical section is needed.
;*****************************************************************************
QXK_stackInit_:
; assignment of parameters (AAPCS)
; r0 - QMActive pointer (act)
; r1 - thread routine
; r2 - begining of stack
; r3 - size of stack [bytes]
MOV r12,r0 ; temporarily save r0 in r12 (act)
STR r1,[r0,#QMACTIVE_OSOBJ] ; temporarily save the thread routine
ADDS r3,r2,r3 ; r3 := end of stack (top of stack)
; round up the beginning of stack to the 8-byte boundary
; r2 := (((r2 -1) >> 3) + 1) << 3;
SUBS r0,r2,#1
LSRS r0,r0,#3
ADDS r0,r0,#1
LSLS r2,r0,#3
; round down the end of stack to the 8-byte boundary
; r3 := (r3 >> 3) << 3;
LSRS r0,r3,#3
LSLS r3,r0,#3
; make room for the thread's stack frame...
SUBS r3,r3,#(16*4) ; r3 := top of the 16-register stack frame
#ifdef __ARMVFP__ ; if VFP available...
SUBS r3,r3,#(2*4) ; r3 := top of the 18-register stack frame
#endif ; VFP available
; pre-fill the unused part of the stack with 0xDEADBEEF...................
LDR r0,=0xDEADBEEF
MOV r1,r0
QXK_stackInit_fill:
STMIA r2!,{r0,r1}
CMP r2,r3
BLT.N QXK_stackInit_fill
; prepare the standard exception (without VFP) stack frame................
MOV r0,r12 ; restore r0 from r12 (act)
LDR r1,[r0,#QMACTIVE_OSOBJ] ; restore the thread routine
STR r3,[r0,#QMACTIVE_OSOBJ] ; act->osObject := top of stack
#ifdef __ARMVFP__ ; if VFP available...
MOVS r2,#0
STMIA r3!,{r2} ; stack "aligner"
; synthesize EXC_RETURN for return to Thread mode with no FPU-state
MOVS r2,#2
MVNS r2,r2 ; r2 := ~2 == 0xFFFFFFFD
STMIA r3!,{r2} ; save EXC_RETURN
#endif ; VFP available
MOVS r2,#0x04
STMIA r3!,{r2} ; r4
MOVS r2,#0x05
STMIA r3!,{r2} ; r5
MOVS r2,#0x06
STMIA r3!,{r2} ; r6
MOVS r2,#0x07
STMIA r3!,{r2} ; r7
MOVS r2,#0x08
STMIA r3!,{r2} ; r8
MOVS r2,#0x09
STMIA r3!,{r2} ; r9
MOVS r2,#0x0A
STMIA r3!,{r2} ; r10
MOVS r2,#0x0B
STMIA r3!,{r2} ; r11
STMIA r3!,{r0} ; r0 (argument to thread routine, me pointer)
MOVS r2,#0x01
STMIA r3!,{r2} ; r1
MOVS r2,#0x02
STMIA r3!,{r2} ; r2
MOVS r2,#0x03
STMIA r3!,{r2} ; r3
MOVS r2,#0x0C
STMIA r3!,{r2} ; r12
LDR r2,=QXK_threadRet_
STMIA r3!,{r2} ; LR (return address)
STMIA r3!,{r1} ; PC (entry point, thread routine)
MOVS r2,#1
LSLS r2,r2,#24 ; r2 := 0x01000000
STMIA r3!,{r2} ; xPSR
BX lr ; return to the caller
ALIGNROM 2 ; ensures alignment at 2^2 boundary
#if (__CORE__ == __ARM6M__) ; Cortex-M0/M0+/M1 ?
;*****************************************************************************
; Hand-optimized quick LOG2 in assembly for Cortex-M0/M0+/M1(v6-M, v6S-M)
; This function returns (log2(x) + 1). For the corner case of x==0, the
; function returns 0 immediately.
; C prototype:
; uint_fast8_t QF_qlog2(uint32_t x);
;*****************************************************************************
QF_qlog2:
CMP r0,#0
BEQ.N QF_qlog2_4
MOVS r1,#0
LSRS r2,r0,#16
BEQ.N QF_qlog2_1
MOVS r1,#16
MOVS r0,r2
QF_qlog2_1:
LSRS r2,r0,#8
BEQ.N QF_qlog2_2
ADDS r1,r1,#8
MOVS r0,r2
QF_qlog2_2:
LSRS r2,r0,#4
BEQ.N QF_qlog2_3
ADDS r1,r1,#4
MOVS r0,r2
QF_qlog2_3:
LDR r2,=QF_qlog2_LUT
LDRB r0,[r2,r0]
ADDS r0,r1,r0
QF_qlog2_4:
BX lr ; return to the caller
ALIGNROM 2 ; ensures alignment at 2^2 boundary
RSEG LOG2LUT:DATA(2) ; data section aligned at 2^2 boundary
DATA
QF_qlog2_LUT:
DC8 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
#endif ; M0/M0+/M1
END