Quantum Leaps e163baf967 5.1.1
2013-10-10 19:59:51 -04:00

1168 lines
36 KiB
C

//*****************************************************************************
// Modified for CMSIS by Quantum Leaps on Feb-17-2010
// www.state-machine.com
//*****************************************************************************
//*****************************************************************************
//
// display96x16x1.c - Driver for the 96x16 monochrome graphical OLED
// displays used on the ek-lm3s811 board.
//
// Copyright (c) 2006-2010 Texas Instruments Incorporated. All rights reserved.
// Software License Agreement
//
// Texas Instruments (TI) is supplying this software for use solely and
// exclusively on TI's microcontroller products. The software is owned by
// TI and/or its suppliers, and is protected under applicable copyright
// laws. You may not combine this software with "viral" open-source
// software in order to form a larger program.
//
// THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS.
// NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT
// NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY
// CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
// DAMAGES, FOR ANY REASON WHATSOEVER.
//
// This is part of revision 5570 of the EK-LM3S811 Firmware Package.
//
//*****************************************************************************
//*****************************************************************************
//
//! \addtogroup display_api
//! @{
//
//*****************************************************************************
#include <stdint.h>
#include "lm3s_cmsis.h"
#include "display96x16x1.h"
//*****************************************************************************
// NOTE:
//
// This driver supports both the OSRAM/SSD0303 display used on the original
// ek-lm3s811 boards (orange display) and also the RIT/SSD1300 display
// used on later boards (blue display). It determines which display is in use
// by looking at bit 12 of register DID1 which is set for all later kits but
// not the original version. This bit is specific to eval kits. If you wish to
// use this driver on your own production board, build with #define OSRAM_ONLY
// or #define RIT_ONLY to select support for a single display and remove the
// DID1 check.
//
//*****************************************************************************
//*****************************************************************************
//
// The I2C slave address of the SSD controllers on the OLED displays.
//
//*****************************************************************************
#define SSD_ADDR 0x3d
//*****************************************************************************
//
// I2C Master commands.
//
//*****************************************************************************
#define I2C_MASTER_CMD_SINGLE_SEND 0x00000007
#define I2C_MASTER_CMD_SINGLE_RECEIVE 0x00000007
#define I2C_MASTER_CMD_BURST_SEND_START 0x00000003
#define I2C_MASTER_CMD_BURST_SEND_CONT 0x00000001
#define I2C_MASTER_CMD_BURST_SEND_FINISH 0x00000005
#define I2C_MASTER_CMD_BURST_SEND_ERROR_STOP 0x00000004
#define I2C_MASTER_CMD_BURST_RECEIVE_START 0x0000000b
#define I2C_MASTER_CMD_BURST_RECEIVE_CONT 0x00000009
#define I2C_MASTER_CMD_BURST_RECEIVE_FINISH 0x00000005
#define I2C_MASTER_CMD_BURST_RECEIVE_ERROR_STOP 0x00000005
//*****************************************************************************
//
// A 5x7 font (in a 6x8 cell, where the sixth column is omitted from this
// table) for displaying text on the OLED display. The data is organized as
// bytes from the left column to the right column, with each byte containing
// the top row in the LSB and the bottom row in the MSB.
//
//*****************************************************************************
static uint8_t const g_pucFont[95][5] =
{
{ 0x00, 0x00, 0x00, 0x00, 0x00 }, // " "
{ 0x00, 0x00, 0x4f, 0x00, 0x00 }, // !
{ 0x00, 0x07, 0x00, 0x07, 0x00 }, // "
{ 0x14, 0x7f, 0x14, 0x7f, 0x14 }, // #
{ 0x24, 0x2a, 0x7f, 0x2a, 0x12 }, // $
{ 0x23, 0x13, 0x08, 0x64, 0x62 }, // %
{ 0x36, 0x49, 0x55, 0x22, 0x50 }, // &
{ 0x00, 0x05, 0x03, 0x00, 0x00 }, // '
{ 0x00, 0x1c, 0x22, 0x41, 0x00 }, // (
{ 0x00, 0x41, 0x22, 0x1c, 0x00 }, // )
{ 0x14, 0x08, 0x3e, 0x08, 0x14 }, // *
{ 0x08, 0x08, 0x3e, 0x08, 0x08 }, // +
{ 0x00, 0x50, 0x30, 0x00, 0x00 }, // ,
{ 0x08, 0x08, 0x08, 0x08, 0x08 }, // -
{ 0x00, 0x60, 0x60, 0x00, 0x00 }, // .
{ 0x20, 0x10, 0x08, 0x04, 0x02 }, // /
{ 0x3e, 0x51, 0x49, 0x45, 0x3e }, // 0
{ 0x00, 0x42, 0x7f, 0x40, 0x00 }, // 1
{ 0x42, 0x61, 0x51, 0x49, 0x46 }, // 2
{ 0x21, 0x41, 0x45, 0x4b, 0x31 }, // 3
{ 0x18, 0x14, 0x12, 0x7f, 0x10 }, // 4
{ 0x27, 0x45, 0x45, 0x45, 0x39 }, // 5
{ 0x3c, 0x4a, 0x49, 0x49, 0x30 }, // 6
{ 0x01, 0x71, 0x09, 0x05, 0x03 }, // 7
{ 0x36, 0x49, 0x49, 0x49, 0x36 }, // 8
{ 0x06, 0x49, 0x49, 0x29, 0x1e }, // 9
{ 0x00, 0x36, 0x36, 0x00, 0x00 }, // :
{ 0x00, 0x56, 0x36, 0x00, 0x00 }, // ;
{ 0x08, 0x14, 0x22, 0x41, 0x00 }, // <
{ 0x14, 0x14, 0x14, 0x14, 0x14 }, // =
{ 0x00, 0x41, 0x22, 0x14, 0x08 }, // >
{ 0x02, 0x01, 0x51, 0x09, 0x06 }, // ?
{ 0x32, 0x49, 0x79, 0x41, 0x3e }, // @
{ 0x7e, 0x11, 0x11, 0x11, 0x7e }, // A
{ 0x7f, 0x49, 0x49, 0x49, 0x36 }, // B
{ 0x3e, 0x41, 0x41, 0x41, 0x22 }, // C
{ 0x7f, 0x41, 0x41, 0x22, 0x1c }, // D
{ 0x7f, 0x49, 0x49, 0x49, 0x41 }, // E
{ 0x7f, 0x09, 0x09, 0x09, 0x01 }, // F
{ 0x3e, 0x41, 0x49, 0x49, 0x7a }, // G
{ 0x7f, 0x08, 0x08, 0x08, 0x7f }, // H
{ 0x00, 0x41, 0x7f, 0x41, 0x00 }, // I
{ 0x20, 0x40, 0x41, 0x3f, 0x01 }, // J
{ 0x7f, 0x08, 0x14, 0x22, 0x41 }, // K
{ 0x7f, 0x40, 0x40, 0x40, 0x40 }, // L
{ 0x7f, 0x02, 0x0c, 0x02, 0x7f }, // M
{ 0x7f, 0x04, 0x08, 0x10, 0x7f }, // N
{ 0x3e, 0x41, 0x41, 0x41, 0x3e }, // O
{ 0x7f, 0x09, 0x09, 0x09, 0x06 }, // P
{ 0x3e, 0x41, 0x51, 0x21, 0x5e }, // Q
{ 0x7f, 0x09, 0x19, 0x29, 0x46 }, // R
{ 0x46, 0x49, 0x49, 0x49, 0x31 }, // S
{ 0x01, 0x01, 0x7f, 0x01, 0x01 }, // T
{ 0x3f, 0x40, 0x40, 0x40, 0x3f }, // U
{ 0x1f, 0x20, 0x40, 0x20, 0x1f }, // V
{ 0x3f, 0x40, 0x38, 0x40, 0x3f }, // W
{ 0x63, 0x14, 0x08, 0x14, 0x63 }, // X
{ 0x07, 0x08, 0x70, 0x08, 0x07 }, // Y
{ 0x61, 0x51, 0x49, 0x45, 0x43 }, // Z
{ 0x00, 0x7f, 0x41, 0x41, 0x00 }, // [
{ 0x02, 0x04, 0x08, 0x10, 0x20 }, // "\"
{ 0x00, 0x41, 0x41, 0x7f, 0x00 }, // ]
{ 0x04, 0x02, 0x01, 0x02, 0x04 }, // ^
{ 0x40, 0x40, 0x40, 0x40, 0x40 }, // _
{ 0x00, 0x01, 0x02, 0x04, 0x00 }, // `
{ 0x20, 0x54, 0x54, 0x54, 0x78 }, // a
{ 0x7f, 0x48, 0x44, 0x44, 0x38 }, // b
{ 0x38, 0x44, 0x44, 0x44, 0x20 }, // c
{ 0x38, 0x44, 0x44, 0x48, 0x7f }, // d
{ 0x38, 0x54, 0x54, 0x54, 0x18 }, // e
{ 0x08, 0x7e, 0x09, 0x01, 0x02 }, // f
{ 0x0c, 0x52, 0x52, 0x52, 0x3e }, // g
{ 0x7f, 0x08, 0x04, 0x04, 0x78 }, // h
{ 0x00, 0x44, 0x7d, 0x40, 0x00 }, // i
{ 0x20, 0x40, 0x44, 0x3d, 0x00 }, // j
{ 0x7f, 0x10, 0x28, 0x44, 0x00 }, // k
{ 0x00, 0x41, 0x7f, 0x40, 0x00 }, // l
{ 0x7c, 0x04, 0x18, 0x04, 0x78 }, // m
{ 0x7c, 0x08, 0x04, 0x04, 0x78 }, // n
{ 0x38, 0x44, 0x44, 0x44, 0x38 }, // o
{ 0x7c, 0x14, 0x14, 0x14, 0x08 }, // p
{ 0x08, 0x14, 0x14, 0x18, 0x7c }, // q
{ 0x7c, 0x08, 0x04, 0x04, 0x08 }, // r
{ 0x48, 0x54, 0x54, 0x54, 0x20 }, // s
{ 0x04, 0x3f, 0x44, 0x40, 0x20 }, // t
{ 0x3c, 0x40, 0x40, 0x20, 0x7c }, // u
{ 0x1c, 0x20, 0x40, 0x20, 0x1c }, // v
{ 0x3c, 0x40, 0x30, 0x40, 0x3c }, // w
{ 0x44, 0x28, 0x10, 0x28, 0x44 }, // x
{ 0x0c, 0x50, 0x50, 0x50, 0x3c }, // y
{ 0x44, 0x64, 0x54, 0x4c, 0x44 }, // z
{ 0x00, 0x08, 0x36, 0x41, 0x00 }, // {
{ 0x00, 0x00, 0x7f, 0x00, 0x00 }, // |
{ 0x00, 0x41, 0x36, 0x08, 0x00 }, // }
{ 0x02, 0x01, 0x02, 0x04, 0x02 }, // ~
};
//*****************************************************************************
//
// The sequence of commands used to initialize the SSD0303 controller found on
// the OSRAM displays used with earlier ek-lm3s811 boards. Each command is
// described as follows: there is a byte specifying the number of bytes in the
// I2C transfer, followed by that many bytes of command data.
//
//*****************************************************************************
#ifndef RIT_ONLY
static uint8_t const g_pucOSRAMInit[] =
{
//
// Turn off the panel
//
0x04, 0x80, 0xae, 0x80, 0xe3,
//
// Set lower column address
//
0x04, 0x80, 0x04, 0x80, 0xe3,
//
// Set higher column address
//
0x04, 0x80, 0x12, 0x80, 0xe3,
//
// Set contrast control register
//
0x06, 0x80, 0x81, 0x80, 0x2b, 0x80, 0xe3,
//
// Set segment re-map
//
0x04, 0x80, 0xa1, 0x80, 0xe3,
//
// Set display start line
//
0x04, 0x80, 0x40, 0x80, 0xe3,
//
// Set display offset
//
0x06, 0x80, 0xd3, 0x80, 0x00, 0x80, 0xe3,
//
// Set multiplex ratio
//
0x06, 0x80, 0xa8, 0x80, 0x0f, 0x80, 0xe3,
//
// Set the display to normal mode
//
0x04, 0x80, 0xa4, 0x80, 0xe3,
//
// Non-inverted display
//
0x04, 0x80, 0xa6, 0x80, 0xe3,
//
// Set the page address
//
0x04, 0x80, 0xb0, 0x80, 0xe3,
//
// Set COM output scan direction
//
0x04, 0x80, 0xc8, 0x80, 0xe3,
//
// Set display clock divide ratio/oscillator frequency
//
0x06, 0x80, 0xd5, 0x80, 0x72, 0x80, 0xe3,
//
// Enable mono mode
//
0x06, 0x80, 0xd8, 0x80, 0x00, 0x80, 0xe3,
//
// Set pre-charge period
//
0x06, 0x80, 0xd9, 0x80, 0x22, 0x80, 0xe3,
//
// Set COM pins hardware configuration
//
0x06, 0x80, 0xda, 0x80, 0x12, 0x80, 0xe3,
//
// Set VCOM deslect level
//
0x06, 0x80, 0xdb, 0x80, 0x0f, 0x80, 0xe3,
//
// Set DC-DC on
//
0x06, 0x80, 0xad, 0x80, 0x8b, 0x80, 0xe3,
//
// Turn on the panel
//
0x04, 0x80, 0xaf, 0x80, 0xe3,
};
#endif
//*****************************************************************************
//
// The sequence of commands used to initialize the SSD1300 controller as found
// on the RIT displays used with later ek-lm3s811 boards.
//
//*****************************************************************************
#ifndef OSRAM_ONLY
static uint8_t const g_pucRITInit[] =
{
//New Display display
//
// Turn off the panel
//
0x04, 0x80, 0xae, 0x80, 0xe3,
//
// Internal dc/dc on/off
//
0x06, 0x80, 0xad, 0x80, 0x8a, 0x80, 0xe3,
//
// Multiplex ratio
//
0x06, 0x80, 0xa8, 0x80, 0x1f, 0x80, 0xe3,
//
// COM out scan direction
//
0x04, 0x80, 0xc8, 0x80, 0xe3,
//
// Segment map
//
0x04, 0x80, 0xa0, 0x80, 0xe3,
//
// Set area color mode
//
0x04, 0x80, 0xd8, 0x80, 0xe3,
//
// Low power save mode
//
0x04, 0x80, 0x05, 0x80, 0xe3,
//
// Start line
//
0x04, 0x80, 0x40, 0x80, 0xe3,
//
// Contrast setting
//
0x06, 0x80, 0x81, 0x80, 0x5d, 0x80, 0xe3,
//
// Pre-charge/discharge
//
0x06, 0x80, 0xd9, 0x80, 0x11, 0x80, 0xe3,
//
// Set display clock
//
0x06, 0x80, 0xd5, 0x80, 0x01, 0x80, 0xe3,
//
// Display offset
//
0x06, 0x80, 0xd3, 0x80, 0x00, 0x80, 0xe3,
//
// Display off
//
0x04, 0x80, 0xaf, 0x80, 0xe3,
};
#endif
//*****************************************************************************
//
// Macro used to select the appropriate display initialization commands.
//
//*****************************************************************************
#ifdef OSRAM_ONLY
#define g_pucDisplayInit g_pucOSRAMInit
#define SIZE_INIT_CMDS (sizeof(g_pucOSRAMInit))
#else
#ifdef RIT_ONLY
#define g_pucDisplayInit g_pucRITInit
#define SIZE_INIT_CMDS (sizeof(g_pucRITInit))
#else
#define g_pucDisplayInit (g_ucDisplayIsRIT ? g_pucRITInit : g_pucOSRAMInit)
#define SIZE_INIT_CMDS (g_ucDisplayIsRIT ? sizeof(g_pucRITInit) : \
sizeof(g_pucOSRAMInit))
#endif
#endif
//*****************************************************************************
//
// The sequence of commands used to set the cursor to the first column of the
// first and second rows of the display for each of the supported displays.
//
//*****************************************************************************
#ifndef RIT_ONLY
static uint8_t const g_pucOSRAMRow1[] =
{
0xb0, 0x80, 0x04, 0x80, 0x12, 0x40
};
static uint8_t const g_pucOSRAMRow2[] =
{
0xb1, 0x80, 0x04, 0x80, 0x12, 0x40
};
#endif
#ifndef OSRAM_ONLY
static uint8_t const g_pucRITRow1[] =
{
0xb0, 0x80, 0x04, 0x80, 0x10, 0x40
};
static uint8_t const g_pucRITRow2[] =
{
0xb1, 0x80, 0x04, 0x80, 0x10, 0x40
};
#endif
//*****************************************************************************
//
// The number of bytes in the cursor row command.
//
//*****************************************************************************
#define SIZE_CURSOR_ROW_COMMAND 6
//*****************************************************************************
//
// Macros used to select the appropriate cursor row setting commands.
//
//*****************************************************************************
#ifdef OSRAM_ONLY
#define g_pucRow1 g_pucOSRAMRow1
#define g_pucRow2 g_pucOSRAMRow2
#else
#ifdef RIT_ONLY
#define g_pucRow1 g_pucRITRow1
#define g_pucRow2 g_pucRITRow2
#else
#define g_pucRow1 (g_ucDisplayIsRIT ? g_pucRITRow1 : g_pucOSRAMRow1)
#define g_pucRow2 (g_ucDisplayIsRIT ? g_pucRITRow2 : g_pucOSRAMRow2)
#endif
#endif
//*****************************************************************************
//
// The number of non-displayed columns to the left of the display area.
//
//*****************************************************************************
#ifdef OSRAM_ONLY
//
// If built for the OSRAM display only, there are 4 non-displayed columns.
//
#define g_ucColumnAdjust 36
#else
#ifdef RIT_ONLY
//
// If built for the OSRAM display only, there are 36 non-displayed columns.
//
#define g_ucColumnAdjust 4
#else
//
// If built to sense the display type and handle whichever is found, we allocate
// variables to store the number of non-displayed columns and a flag indicating
// which display is in use.
//
static uint8_t g_ucDisplayIsRIT;
static uint8_t g_ucColumnAdjust;
#endif
#endif
//*****************************************************************************
//
// The inter-byte delay required by the display OLED controller.
//
//*****************************************************************************
static unsigned long g_ulDelay;
//*****************************************************************************
#if defined ( __CC_ARM )
static void __asm SysCtlDelay(unsigned long ulCount) {
SysCtlDelay_loop
SUBS r0,#1
BNE SysCtlDelay_loop
BX lr
}
#elif defined ( __ICCARM__ )
static void SysCtlDelay(uint32_t ulCount) {
__asm("SysCtlDelay_loop: \n\t"
" subs r0,#1 \n\t"
" bne.n SysCtlDelay_loop \n\t"
" bx lr");
}
#elif defined ( __GNUC__ )
static void SysCtlDelay(uint32_t ulCount) {
__asm("SysCtlDelay_loop: \n\t"
" subs r0, #1 \n\t"
" bne.n SysCtlDelay_loop \n\t"
" bx lr");
}
#endif
//*****************************************************************************
//
//! \internal
//!
//! Start a transfer to the SSD0303 or SSD1300 controller.
//!
//! \param ucChar is the first byte to be written to the controller.
//!
//! This function will start a transfer to the display controller via the I2C
//! bus.
//!
//! The data is written in a polled fashion; this function will not return
//! until the byte has been written to the controller.
//!
//! \return None.
//
//*****************************************************************************
static void
Display96x16x1WriteFirst(uint8_t ucChar)
{
//
// Set the slave address.
//
I2C0_MASTER->MSA = (SSD_ADDR << 1);
//
// Write the first byte to the controller.
//
I2C0_MASTER->MDR = ucChar;
//
// Start the transfer.
//
I2C0_MASTER->MCS = I2C_MASTER_CMD_BURST_SEND_START;
}
//*****************************************************************************
//
//! \internal
//!
//! Write a byte to the SSD0303 or SSD1300 controller.
//!
//! \param ucChar is the byte to be transmitted to the controller.
//!
//! This function continues a transfer to the display controller by writing
//! another byte over the I2C bus. This must only be called after calling
//! Display96x16x1WriteFirst(), but before calling Display96x16x1WriteFinal().
//!
//! The data is written in a polled faashion; this function will not return
//! until the byte has been written to the controller.
//!
//! \return None.
//
//*****************************************************************************
static void
Display96x16x1WriteByte(uint8_t ucChar)
{
//
// Wait until the current byte has been transferred.
//
while(I2C0_MASTER->MRIS == 0)
{
}
//
// Provide the required inter-byte delay.
//
SysCtlDelay(g_ulDelay);
//
// Write the next byte to the controller.
//
I2C0_MASTER->MDR = ucChar;
//
// Continue the transfer.
//
I2C0_MASTER->MCS = I2C_MASTER_CMD_BURST_SEND_CONT;
}
//*****************************************************************************
//
//! \internal
//!
//! Write a sequence of bytes to the SSD0303 or SD1300 controller.
//!
//! This function continues a transfer to the display controller by writing a
//! sequence of bytes over the I2C bus. This must only be called after calling
//! Display96x16x1WriteFirst(), but before calling Display96x16x1WriteFinal().
//!
//! The data is written in a polled fashion; this function will not return
//! until the entire byte sequence has been written to the controller.
//!
//! \return None.
//
//*****************************************************************************
static void
Display96x16x1WriteArray(uint8_t const *pucBuffer, uint32_t ulCount)
{
//
// Loop while there are more bytes left to be transferred.
//
while(ulCount != 0)
{
//
// Wait until the current byte has been transferred.
//
while(I2C0_MASTER->MRIS == 0)
{
}
//
// Provide the required inter-byte delay.
//
SysCtlDelay(g_ulDelay);
//
// Write the next byte to the controller.
//
I2C0_MASTER->MDR = *pucBuffer++;
ulCount--;
//
// Continue the transfer.
//
I2C0_MASTER->MCS = I2C_MASTER_CMD_BURST_SEND_CONT;
}
}
//*****************************************************************************
//
//! \internal
//!
//! Finish a transfer to the SSD0303 or SD1300 controller.
//!
//! \param ucChar is the final byte to be written to the controller.
//!
//! This function will finish a transfer to the display controller via the I2C
//! bus. This must only be called after calling Display96x16x1WriteFirst().
//!
//! The data is written in a polled fashion; this function will not return
//! until the byte has been written to the controller.
//!
//! \return None.
//
//*****************************************************************************
static void
Display96x16x1WriteFinal(uint8_t ucChar)
{
//
// Wait until the current byte has been transferred.
//
while(I2C0_MASTER->MRIS == 0)
{
}
//
// Provide the required inter-byte delay.
//
SysCtlDelay(g_ulDelay);
//
// Write the final byte to the controller.
//
I2C0_MASTER->MDR = ucChar;
//
// Finish the transfer.
//
I2C0_MASTER->MCS = I2C_MASTER_CMD_BURST_SEND_FINISH;
//
// Wait until the final byte has been transferred.
//
while(I2C0_MASTER->MRIS == 0)
{
}
//
// Provide the required inter-byte delay.
//
SysCtlDelay(g_ulDelay);
}
//*****************************************************************************
//
//! Clears the OLED display.
//!
//! This function will clear the display. All pixels in the display will be
//! turned off.
//!
//! \return None.
//
//*****************************************************************************
void
Display96x16x1Clear(void)
{
uint32_t ulIdx;
//
// Move the display cursor to the first column of the first row.
//
Display96x16x1WriteFirst(0x80);
Display96x16x1WriteArray(g_pucRow1, SIZE_CURSOR_ROW_COMMAND);
//
// Fill this row with zeros.
//
for(ulIdx = 0; ulIdx < 95; ulIdx++)
{
Display96x16x1WriteByte(0x00);
}
Display96x16x1WriteFinal(0x00);
//
// Move the display cursor to the first column of the second row.
//
Display96x16x1WriteFirst(0x80);
Display96x16x1WriteArray(g_pucRow2, SIZE_CURSOR_ROW_COMMAND);
//
// Fill this row with zeros.
//
for(ulIdx = 0; ulIdx < 95; ulIdx++)
{
Display96x16x1WriteByte(0x00);
}
Display96x16x1WriteFinal(0x00);
}
//*****************************************************************************
//
//! Displays a string on the OLED display.
//!
//! \param pcStr is a pointer to the string to display.
//! \param ulX is the horizontal position to display the string, specified in
//! columns from the left edge of the display.
//! \param ulY is the vertical position to display the string, specified in
//! eight scan line blocks from the top of the display (that is, only 0 and 1
//! are valid).
//!
//! This function will draw a string on the display. Only the ASCII characters
//! between 32 (space) and 126 (tilde) are supported; other characters will
//! result in random data being draw on the display (based on whatever appears
//! before/after the font in memory). The font is mono-spaced, so characters
//! such as ``i'' and ``l'' have more white space around them than characters
//! such as ``m'' or ``w''.
//!
//! If the drawing of the string reaches the right edge of the display, no more
//! characters will be drawn. Therefore, special care is not required to avoid
//! supplying a string that is ``too long'' to display.
//!
//! \return None.
//
//*****************************************************************************
void
Display96x16x1StringDraw(const char *pcStr, uint32_t ulX, uint32_t ulY)
{
//
// Move the display cursor to the requested position on the display.
//
Display96x16x1WriteFirst(0x80);
Display96x16x1WriteByte((ulY == 0) ? 0xb0 : 0xb1);
Display96x16x1WriteByte(0x80);
Display96x16x1WriteByte((ulX + g_ucColumnAdjust) & 0x0f);
Display96x16x1WriteByte(0x80);
Display96x16x1WriteByte(0x10 | (((ulX + g_ucColumnAdjust) >> 4) & 0x0f));
Display96x16x1WriteByte(0x40);
//
// Loop while there are more characters in the string.
//
while(*pcStr != 0)
{
//
// See if there is enough space on the display for this entire
// character.
//
if(ulX <= 90)
{
//
// Write the contents of this character to the display.
//
Display96x16x1WriteArray(g_pucFont[*pcStr - ' '], 5);
//
// See if this is the last character to display (either because the
// right edge has been reached or because there are no more
// characters).
//
if((ulX == 90) || (pcStr[1] == 0))
{
//
// Write the final column of the display.
//
Display96x16x1WriteFinal(0x00);
//
// The string has been displayed.
//
return;
}
//
// Write the inter-character padding column.
//
Display96x16x1WriteByte(0x00);
}
else
{
//
// Write the portion of the character that will fit onto the
// display.
//
Display96x16x1WriteArray(g_pucFont[*pcStr - ' '], 95 - ulX);
Display96x16x1WriteFinal(g_pucFont[*pcStr - ' '][95 - ulX]);
//
// The string has been displayed.
//
return;
}
//
// Advance to the next character.
//
pcStr++;
//
// Increment the X coordinate by the six columns that were just
// written.
//
ulX += 6;
}
}
//*****************************************************************************
//
//! Displays an image on the OLED display.
//!
//! \param pucImage is a pointer to the image data.
//! \param ulX is the horizontal position to display this image, specified in
//! columns from the left edge of the display.
//! \param ulY is the vertical position to display this image, specified in
//! eight scan line blocks from the top of the display (that is, only 0 and 1
//! are valid).
//! \param ulWidth is the width of the image, specified in columns.
//! \param ulHeight is the height of the image, specified in eight row blocks
//! (that is, only 1 and 2 are valid).
//!
//! This function will display a bitmap graphic on the display. The image to
//! be displayed must be a multiple of eight scan lines high (that is, one row)
//! and will be drawn at a vertical position that is a multiple of eight scan
//! lines (that is, scan line zero or scan line eight, corresponding to row
//! zero or row one).
//!
//! The image data is organized with the first row of image data appearing left
//! to right, followed immediately by the second row of image data. Each byte
//! contains the data for the eight scan lines of the column, with the top scan
//! line being in the least significant bit of the byte and the bottom scan
//! line being in the most significant bit of the byte.
//!
//! For example, an image four columns wide and sixteen scan lines tall would
//! be arranged as follows (showing how the eight bytes of the image would
//! appear on the display):
//!
//! \verbatim
//! +-------+ +-------+ +-------+ +-------+
//! | | 0 | | | 0 | | | 0 | | | 0 |
//! | B | 1 | | B | 1 | | B | 1 | | B | 1 |
//! | y | 2 | | y | 2 | | y | 2 | | y | 2 |
//! | t | 3 | | t | 3 | | t | 3 | | t | 3 |
//! | e | 4 | | e | 4 | | e | 4 | | e | 4 |
//! | | 5 | | | 5 | | | 5 | | | 5 |
//! | 0 | 6 | | 1 | 6 | | 2 | 6 | | 3 | 6 |
//! | | 7 | | | 7 | | | 7 | | | 7 |
//! +-------+ +-------+ +-------+ +-------+
//!
//! +-------+ +-------+ +-------+ +-------+
//! | | 0 | | | 0 | | | 0 | | | 0 |
//! | B | 1 | | B | 1 | | B | 1 | | B | 1 |
//! | y | 2 | | y | 2 | | y | 2 | | y | 2 |
//! | t | 3 | | t | 3 | | t | 3 | | t | 3 |
//! | e | 4 | | e | 4 | | e | 4 | | e | 4 |
//! | | 5 | | | 5 | | | 5 | | | 5 |
//! | 4 | 6 | | 5 | 6 | | 6 | 6 | | 7 | 6 |
//! | | 7 | | | 7 | | | 7 | | | 7 |
//! +-------+ +-------+ +-------+ +-------+
//! \endverbatim
//!
//! \return None.
//
//*****************************************************************************
void
Display96x16x1ImageDraw(const uint8_t *pucImage, uint32_t ulX,
uint32_t ulY, uint32_t ulWidth,
uint32_t ulHeight)
{
//
// The first few columns of the LCD buffer are not displayed, so increment
// the X coorddinate by this amount to account for the non-displayed frame
// buffer memory.
//
ulX += g_ucColumnAdjust;
//
// Loop while there are more rows to display.
//
while(ulHeight--)
{
//
// Write the starting address within this row.
//
Display96x16x1WriteFirst(0x80);
Display96x16x1WriteByte((ulY == 0) ? 0xb0 : 0xb1);
Display96x16x1WriteByte(0x80);
Display96x16x1WriteByte(ulX & 0x0f);
Display96x16x1WriteByte(0x80);
Display96x16x1WriteByte(0x10 | ((ulX >> 4) & 0x0f));
Display96x16x1WriteByte(0x40);
//
// Write this row of image data.
//
Display96x16x1WriteArray(pucImage, ulWidth - 1);
Display96x16x1WriteFinal(pucImage[ulWidth - 1]);
//
// Advance to the next row of the image.
//
pucImage += ulWidth;
ulY++;
}
}
//*****************************************************************************
//
//! Initialize the OLED display.
//!
//! \param bFast is a boolean that is \e true if the I2C interface should be
//! run at 400 kbps and \e false if it should be run at 100 kbps.
//!
//! This function initializes the I2C interface to the OLED display and
//! configures the SSD0303 or SSD1300 controller on the panel.
//!
//! \return None.
//
//*****************************************************************************
void
Display96x16x1Init(uint8_t bFast)
{
uint32_t ulTmp;
//
// Enable the I2C and GPIO port B blocks as they are needed by this driver.
//
SYSCTL->RCGC1 |= (1 << 12); /* enable clock to I2C0 */
SYSCTL->RCGC2 |= (1 << 1); /* enable clock to GPIOB */
#if (!(defined OSRAM_ONLY) && !(defined RIT_ONLY))
//
// Read SysCtl DID1 register to determine whether this is an older board
// with the OSRAM display or a newer one with the RIT model.
//
g_ucDisplayIsRIT = (SYSCTL->DID1 & (1 << 12)) ? 1 : 0;
//
// Set the correct number of non-displayed columns given the display type
// we are using.
//
g_ucColumnAdjust = g_ucDisplayIsRIT ? 4 : 36;
#endif
//
// If using the RIT display, we need to enable power by pulling PD7 high.
//
#ifndef OSRAM_ONLY
#ifndef RIT_ONLY
if(g_ucDisplayIsRIT)
{
#endif
SYSCTL->RCGC2 |= (1 << 3); /* enable clock to GPIOD */
SysCtlDelay(1); /* wait a tiny bit after enabling clocks */
GPIOD->DIR |= (1 << 7); /* set GPIOD-pin7 direction to output */
GPIOD->DATA_Bits[1 << 7] = (1 << 7); /* drive GPIOD-pin7 high */
#ifndef RIT_ONLY
}
#endif
#endif
//
// Configure the I2C SCL and SDA pins for I2C operation.
//
ulTmp = (1 << 2) | (1 << 3);
GPIOB->DIR &= ~ulTmp;
GPIOB->AFSEL |= ulTmp;
GPIOB->DR2R |= ulTmp; /* set 2mA drive, DR4R and DR8R are cleared */
GPIOB->SLR &= ~ulTmp;
GPIOB->ODR |= ulTmp;
GPIOB->PUR |= ulTmp; /* set weak pull-up; PDR is cleared */
GPIOB->DEN |= ulTmp;
GPIOB->AMSEL &= ~ulTmp;
//
// Initialize the I2C master.
//
I2C0_MASTER->MCR |= (1 << 4); /* I2C master enable */
if (bFast) {
ulTmp = 400000;
}
else {
ulTmp = 100000;
}
I2C0_MASTER->MTPR = ((SystemFrequency + (2 * 10 * ulTmp) - 1)
/ (2 * 10 * ulTmp)) - 1;
//
// Compute the inter-byte delay for the display controller. This delay is
// dependent upon the I2C bus clock rate; the slower the clock the longer
// the delay required.
//
// The derivation of this formula is based on a measured delay of
// SysCtlDelay(1700) for a 100 kHz I2C bus with the CPU running at 50 MHz
// (referred to as C). To scale this to the delay for a different CPU
// speed (since this is just a CPU-based delay loop) is:
//
// f(CPU)
// C * ----------
// 50,000,000
//
// To then scale this to the actual I2C rate (since it won't always be
// precisely 100 kHz):
//
// f(CPU) 100,000
// C * ---------- * -------
// 50,000,000 f(I2C)
//
// This equation will give the inter-byte delay required for any
// configuration of the I2C master. But, as arranged it is impossible to
// directly compute in 32-bit arithmetic (without loosing a lot of
// accuracy). So, the equation is simplified.
//
// Since f(I2C) is generated by dividing down from f(CPU), replace it with
// the equivalent (where TPR is the value programmed into the Master Timer
// Period Register of the I2C master, with the 1 added back):
//
// 100,000
// f(CPU) -------
// C * ---------- * f(CPU)
// 50,000,000 ------------
// 2 * 10 * TPR
//
// Inverting the dividend in the last term:
//
// f(CPU) 100,000 * 2 * 10 * TPR
// C * ---------- * ----------------------
// 50,000,000 f(CPU)
//
// The f(CPU) now cancels out.
//
// 100,000 * 2 * 10 * TPR
// C * ----------------------
// 50,000,000
//
// Since there are no clock frequencies left in the equation, this equation
// also works for 400 kHz bus operation as well, since the 100,000 in the
// numerator becomes 400,000 but C is 1/4, which cancel out each other.
// Reducing the constants gives:
//
// TPR TPR TPR
// C * --- = 1700 * --- = 340 * --- = 68 * TPR
// 25 25 5
//
// Note that the constant C is actually a bit larger than it needs to be in
// order to provide some safety margin.
//
g_ulDelay = 68 * (I2C0_MASTER->MTPR + 1);
//
// Initialize the display controller. Loop through the initialization
// sequence doing a single I2C transfer for each command.
//
for(ulTmp = 0; ulTmp < SIZE_INIT_CMDS; ulTmp += g_pucDisplayInit[ulTmp] + 1)
{
//
// Send this command.
//
Display96x16x1WriteFirst(g_pucDisplayInit[ulTmp + 1]);
Display96x16x1WriteArray(g_pucDisplayInit + ulTmp + 2,
g_pucDisplayInit[ulTmp] - 2);
Display96x16x1WriteFinal(g_pucDisplayInit[ulTmp
+ g_pucDisplayInit[ulTmp]]);
}
//
// Clear the frame buffer.
//
Display96x16x1Clear();
}
//*****************************************************************************
//
//! Turns on the OLED display.
//!
//! This function will turn on the OLED display, causing it to display the
//! contents of its internal frame buffer.
//!
//! \return None.
//
//*****************************************************************************
void
Display96x16x1DisplayOn(void)
{
uint32_t ulIdx;
//
// Re-initialize the display controller. Loop through the initialization
// sequence doing a single I2C transfer for each command.
//
for(ulIdx = 0; ulIdx < SIZE_INIT_CMDS;
ulIdx += g_pucDisplayInit[ulIdx] + 1)
{
//
// Send this command.
//
Display96x16x1WriteFirst(g_pucDisplayInit[ulIdx + 1]);
Display96x16x1WriteArray(g_pucDisplayInit + ulIdx + 2,
g_pucDisplayInit[ulIdx] - 2);
Display96x16x1WriteFinal(g_pucDisplayInit[ulIdx + g_pucDisplayInit[ulIdx]]);
}
}
//*****************************************************************************
//
//! Turns off the OLED display.
//!
//! This function will turn off the OLED display. This will stop the scanning
//! of the panel and turn off the on-chip DC-DC converter, preventing damage to
//! the panel due to burn-in (it has similar characters to a CRT in this
//! respect).
//!
//! \return None.
//
//*****************************************************************************
void
Display96x16x1DisplayOff(void)
{
//
// Turn off the DC-DC converter and the display.
//
Display96x16x1WriteFirst(0x80);
Display96x16x1WriteByte(0xae);
Display96x16x1WriteByte(0x80);
Display96x16x1WriteByte(0xad);
Display96x16x1WriteByte(0x80);
Display96x16x1WriteFinal(0x8a);
}
//*****************************************************************************
//
// Close the Doxygen group.
//! @}
//
//*****************************************************************************