Quantum Leaps 72c46c2993 5.3.0
2014-04-06 11:43:13 -04:00

408 lines
16 KiB
C

/*****************************************************************************
* Product: "Dining Philosophers Problem" example, cooperative Vanilla kernel
* Last Updated for Version: 5.0.0
* Date of the Last Update: Aug 26, 2013
*
* Q u a n t u m L e a P s
* ---------------------------
* innovating embedded systems
*
* Copyright (C) 2002-2013 Quantum Leaps, LLC. All rights reserved.
*
* This program is open source software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Alternatively, this program may be distributed and modified under the
* terms of Quantum Leaps commercial licenses, which expressly supersede
* the GNU General Public License and are specifically designed for
* licensees interested in retaining the proprietary status of their code.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Contact information:
* Quantum Leaps Web sites: http://www.quantum-leaps.com
* http://www.state-machine.com
* e-mail: info@quantum-leaps.com
*****************************************************************************/
#include "qp_port.h"
#include "dpp.h"
#include "bsp.h"
#include "tm4c_cmsis.h"
#include "sysctl.h"
#include "gpio.h"
#include "rom.h"
Q_DEFINE_THIS_FILE
enum ISR_Priorities { /* ISR priorities starting from the highest urgency */
GPIOPORTA_PRIO,
SYSTICK_PRIO,
/* ... */
};
/* Local-scope objects -----------------------------------------------------*/
static unsigned l_rnd; /* random seed */
#define LED_RED (1U << 1)
#define LED_GREEN (1U << 3)
#define LED_BLUE (1U << 2)
#define USR_SW1 (1U << 4)
#define USR_SW2 (1U << 0)
#ifdef Q_SPY
QSTimeCtr QS_tickTime_;
QSTimeCtr QS_tickPeriod_;
static uint8_t l_SysTick_Handler;
static uint8_t l_GPIOPortA_IRQHandler;
#define UART_BAUD_RATE 115200U
#define UART_FR_TXFE 0x80U
#define UART_TXFIFO_DEPTH 16U
enum AppRecords { /* application-specific trace records */
PHILO_STAT = QS_USER
};
#endif
/*..........................................................................*/
void SysTick_Handler(void) {
static uint32_t btn_debounced = USR_SW1;
static uint8_t debounce_state = 0U;
uint32_t btn;
#ifdef Q_SPY
{
uint32_t dummy = SysTick->CTRL; /* clear SysTick_CTRL_COUNTFLAG */
QS_tickTime_ += QS_tickPeriod_; /* account for the clock rollover */
}
#endif
QF_TICK(&l_SysTick_Handler); /* process all armed time events */
/* debounce the SW1 button... */
btn = GPIOF->DATA_Bits[USR_SW1]; /* read the push btn */
switch (debounce_state) {
case 0:
if (btn != btn_debounced) {
debounce_state = 1U; /* transition to the next state */
}
break;
case 1:
if (btn != btn_debounced) {
debounce_state = 2U; /* transition to the next state */
}
else {
debounce_state = 0U; /* transition back to state 0 */
}
break;
case 2:
if (btn != btn_debounced) {
debounce_state = 3U; /* transition to the next state */
}
else {
debounce_state = 0U; /* transition back to state 0 */
}
break;
case 3:
if (btn != btn_debounced) {
btn_debounced = btn; /* save the debounced button value */
if (btn == 0U) { /* is the button depressed? */
static QEvt const pauseEvt = { PAUSE_SIG, 0U, 0U};
QF_PUBLISH(&pauseEvt, &l_SysTick_Handler);
}
else {
static QEvt const pauseEvt = { PAUSE_SIG, 0U, 0U};
QF_PUBLISH(&pauseEvt, &l_SysTick_Handler);
}
}
debounce_state = 0U; /* transition back to state 0 */
break;
}
}
/*..........................................................................*/
void GPIOPortA_IRQHandler(void) {
QACTIVE_POST(AO_Table, Q_NEW(QEvt, MAX_PUB_SIG), /* for testing... */
&l_GPIOPortA_IRQHandler);
}
/*..........................................................................*/
void BSP_init(void) {
/* Enable the floating-point unit */
SCB->CPACR |= (0xFU << 20);
/* Enable lazy stacking for interrupt handlers. This allows FPU
* instructions to be used within interrupt handlers, but at the
* expense of extra stack and CPU usage.
*/
FPU->FPCCR |= (1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos);
/* Set the clocking to run directly from the crystal */
ROM_SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC
| SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);
/* enable clock to the peripherals used by the application */
SYSCTL->RCGC2 |= (1U << 5); /* enable clock to GPIOF */
asm(" MOV R0,R0"); /* wait after enabling clocks */
asm(" MOV R0,R0"); /* wait after enabling clocks */
asm(" MOV R0,R0"); /* wait after enabling clocks */
/* configure the LEDs and push buttons */
GPIOF->DIR |= (LED_RED | LED_GREEN | LED_BLUE);/* set direction: output */
GPIOF->DEN |= (LED_RED | LED_GREEN | LED_BLUE); /* digital enable */
GPIOF->DATA_Bits[LED_RED] = 0; /* turn the LED off */
GPIOF->DATA_Bits[LED_GREEN] = 0; /* turn the LED off */
GPIOF->DATA_Bits[LED_BLUE] = 0; /* turn the LED off */
/* configure the User Switches */
GPIOF->DIR &= ~(USR_SW1 | USR_SW2); /* set direction: input */
ROM_GPIOPadConfigSet(GPIO_PORTF_BASE, (USR_SW1 | USR_SW2),
GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU);
BSP_randomSeed(1234U);
if (QS_INIT((void *)0) == 0) { /* initialize the QS software tracing */
Q_ERROR();
}
QS_OBJ_DICTIONARY(&l_SysTick_Handler);
QS_OBJ_DICTIONARY(&l_GPIOPortA_IRQHandler);
}
/*..........................................................................*/
void BSP_displayPhilStat(uint8_t n, char const *stat) {
GPIOF->DATA_Bits[LED_BLUE] = ((stat[0] == 'e') ? LED_BLUE : 0U);
QS_BEGIN(PHILO_STAT, AO_Philo[n]) /* application-specific record begin */
QS_U8(1, n); /* Philosopher number */
QS_STR(stat); /* Philosopher status */
QS_END()
}
/*..........................................................................*/
void BSP_displayPaused(uint8_t paused) {
GPIOF->DATA_Bits[LED_RED] = ((paused != 0U) ? LED_RED : 0U);
}
/*..........................................................................*/
uint32_t BSP_random(void) { /* a very cheap pseudo-random-number generator */
float volatile x = 3.1415926F;
x = x + 2.7182818F;
/* "Super-Duper" Linear Congruential Generator (LCG)
* LCG(2^32, 3*7*11*13*23, 0, seed)
*/
l_rnd = l_rnd * (3U*7U*11U*13U*23U);
return l_rnd >> 8;
}
/*..........................................................................*/
void BSP_randomSeed(uint32_t seed) {
l_rnd = seed;
}
/*..........................................................................*/
void BSP_terminate(int16_t result) {
(void)result;
}
/*..........................................................................*/
void QF_onStartup(void) {
/* set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate */
SysTick_Config(ROM_SysCtlClockGet() / BSP_TICKS_PER_SEC);
/* set priorities of all interrupts in the system... */
NVIC_SetPriority(SysTick_IRQn, SYSTICK_PRIO);
NVIC_SetPriority(GPIOPortA_IRQn, GPIOPORTA_PRIO);
NVIC_EnableIRQ(GPIOPortA_IRQn);
}
/*..........................................................................*/
void QF_onCleanup(void) {
}
/*..........................................................................*/
void QF_onIdle(void) { /* entered with interrupts DISABLED, see NOTE01 */
/* toggle the Green LED on and then off, see NOTE02 */
GPIOF->DATA_Bits[LED_GREEN] = LED_GREEN; /* turn the Green LED on */
GPIOF->DATA_Bits[LED_GREEN] = 0; /* turn the Green LED off */
float volatile x = 3.1415926F;
x = x + 2.7182818F;
#ifdef Q_SPY
QF_INT_ENABLE();
if ((UART0->FR & UART_FR_TXFE) != 0) { /* TX done? */
uint16_t fifo = UART_TXFIFO_DEPTH; /* max bytes we can accept */
uint8_t const *block;
QF_INT_DISABLE();
block = QS_getBlock(&fifo); /* try to get next block to transmit */
QF_INT_ENABLE();
while (fifo-- != 0) { /* any bytes in the block? */
UART0->DR = *block++; /* put into the FIFO */
}
}
#elif defined NDEBUG
/* Put the CPU and peripherals to the low-power mode.
* you might need to customize the clock management for your application,
* see the datasheet for your particular Cortex-M3 MCU.
*/
asm(" WFI"); /* Wait-For-Interrupt */
#endif
QF_INT_ENABLE(); /* always enable interrupts */
}
/*..........................................................................*/
void Q_onAssert(char const Q_ROM * const file, int line) {
(void)file; /* avoid compiler warning */
(void)line; /* avoid compiler warning */
QF_INT_DISABLE(); /* make sure that all interrupts are disabled */
for (;;) { /* NOTE: replace the loop with reset for final version */
}
}
/*..........................................................................*/
/* error routine that is called if the CMSIS library encounters an error */
void assert_failed(char const *file, int line) {
Q_onAssert(file, line);
}
/*--------------------------------------------------------------------------*/
#ifdef Q_SPY
/*..........................................................................*/
uint8_t QS_onStartup(void const *arg) {
static uint8_t qsBuf[2*1024]; /* buffer for Quantum Spy */
uint32_t tmp;
QS_initBuf(qsBuf, sizeof(qsBuf));
/* enable the peripherals used by the UART0 */
SYSCTL->RCGC1 |= (1U << 0); /* enable clock to UART0 */
SYSCTL->RCGC2 |= (1U << 0); /* enable clock to GPIOA */
asm(" MOV R0,R0"); /* wait after enabling clocks */
asm(" MOV R0,R0"); /* wait after enabling clocks */
asm(" MOV R0,R0"); /* wait after enabling clocks */
/* configure UART0 pins for UART operation */
tmp = (1U << 0) | (1U << 1);
GPIOA->DIR &= ~tmp;
GPIOA->AFSEL |= tmp;
GPIOA->DR2R |= tmp; /* set 2mA drive, DR4R and DR8R are cleared */
GPIOA->SLR &= ~tmp;
GPIOA->ODR &= ~tmp;
GPIOA->PUR &= ~tmp;
GPIOA->PDR &= ~tmp;
GPIOA->DEN |= tmp;
/* configure the UART for the desired baud rate, 8-N-1 operation */
tmp = (((ROM_SysCtlClockGet() * 8U) / UART_BAUD_RATE) + 1U) / 2U;
UART0->IBRD = tmp / 64U;
UART0->FBRD = tmp % 64U;
UART0->LCRH = 0x60U; /* configure 8-N-1 operation */
UART0->LCRH |= 0x10U;
UART0->CTL |= (1U << 0) | (1U << 8) | (1U << 9);
QS_tickPeriod_ = ROM_SysCtlClockGet() / BSP_TICKS_PER_SEC;
QS_tickTime_ = QS_tickPeriod_; /* to start the timestamp at zero */
/* setup the QS filters... */
QS_FILTER_ON(QS_ALL_RECORDS);
// QS_FILTER_OFF(QS_QEP_STATE_ENTRY);
// QS_FILTER_OFF(QS_QEP_STATE_EXIT);
// QS_FILTER_OFF(QS_QEP_STATE_INIT);
// QS_FILTER_OFF(QS_QEP_TRAN_HIST);
// QS_FILTER_OFF(QS_QEP_INTERN_TRAN);
// QS_FILTER_OFF(QS_QEP_TRAN);
// QS_FILTER_OFF(QS_QEP_IGNORED);
// QS_FILTER_OFF(QS_QF_ACTIVE_ADD);
// QS_FILTER_OFF(QS_QF_ACTIVE_REMOVE);
// QS_FILTER_OFF(QS_QF_ACTIVE_SUBSCRIBE);
// QS_FILTER_OFF(QS_QF_ACTIVE_UNSUBSCRIBE);
// QS_FILTER_OFF(QS_QF_ACTIVE_POST_FIFO);
// QS_FILTER_OFF(QS_QF_ACTIVE_POST_LIFO);
// QS_FILTER_OFF(QS_QF_ACTIVE_GET);
// QS_FILTER_OFF(QS_QF_ACTIVE_GET_LAST);
// QS_FILTER_OFF(QS_QF_EQUEUE_INIT);
// QS_FILTER_OFF(QS_QF_EQUEUE_POST_FIFO);
// QS_FILTER_OFF(QS_QF_EQUEUE_POST_LIFO);
// QS_FILTER_OFF(QS_QF_EQUEUE_GET);
// QS_FILTER_OFF(QS_QF_EQUEUE_GET_LAST);
// QS_FILTER_OFF(QS_QF_MPOOL_INIT);
// QS_FILTER_OFF(QS_QF_MPOOL_GET);
// QS_FILTER_OFF(QS_QF_MPOOL_PUT);
// QS_FILTER_OFF(QS_QF_PUBLISH);
// QS_FILTER_OFF(QS_QF_NEW);
// QS_FILTER_OFF(QS_QF_GC_ATTEMPT);
// QS_FILTER_OFF(QS_QF_GC);
// QS_FILTER_OFF(QS_QF_TICK);
// QS_FILTER_OFF(QS_QF_TIMEEVT_ARM);
// QS_FILTER_OFF(QS_QF_TIMEEVT_AUTO_DISARM);
// QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM_ATTEMPT);
// QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM);
// QS_FILTER_OFF(QS_QF_TIMEEVT_REARM);
// QS_FILTER_OFF(QS_QF_TIMEEVT_POST);
QS_FILTER_OFF(QS_QF_CRIT_ENTRY);
QS_FILTER_OFF(QS_QF_CRIT_EXIT);
QS_FILTER_OFF(QS_QF_ISR_ENTRY);
QS_FILTER_OFF(QS_QF_ISR_EXIT);
return (uint8_t)1; /* return success */
}
/*..........................................................................*/
void QS_onCleanup(void) {
}
/*..........................................................................*/
QSTimeCtr QS_onGetTime(void) { /* invoked with interrupts locked */
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { /* not set? */
return QS_tickTime_ - (QSTimeCtr)SysTick->VAL;
}
else { /* the rollover occured, but the SysTick_ISR did not run yet */
return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL;
}
}
/*..........................................................................*/
void QS_onFlush(void) {
uint16_t fifo = UART_TXFIFO_DEPTH; /* Tx FIFO depth */
uint8_t const *block;
QF_INT_DISABLE();
while ((block = QS_getBlock(&fifo)) != (uint8_t *)0) {
QF_INT_ENABLE();
/* busy-wait until TX FIFO empty */
while ((UART0->FR & UART_FR_TXFE) == 0) {
}
while (fifo-- != 0) { /* any bytes in the block? */
UART0->DR = *block++; /* put into the TX FIFO */
}
fifo = UART_TXFIFO_DEPTH; /* re-load the Tx FIFO depth */
QF_INT_DISABLE();
}
QF_INT_ENABLE();
}
#endif /* Q_SPY */
/*--------------------------------------------------------------------------*/
/*****************************************************************************
* NOTE01:
* The QF_onIdle() callback is called with interrupts disabled, because the
* determination of the idle condition might change by any interrupt posting
* an event. QF_onIdle() must internally enable interrupts, ideally atomically
* with putting the CPU to the power-saving mode.
*
* NOTE02:
* The Green LED is used to visualize the idle loop activity. The brightness
* of the LED is proportional to the frequency of invocations of the idle loop.
* Please note that the LED is toggled with interrupts disabled, so no
* interrupt execution time contributes to the brightness of the Green LED.
*/