Quantum Leaps 28ef7ac6ce 5.9.0
2017-05-17 13:16:32 -04:00

516 lines
19 KiB
C

/*****************************************************************************
* Product: DPP example, NXP mbed-LPC1768 board, coopearative QV kernel
* Last Updated for Version: 5.6.5
* Date of the Last Update: 2016-07-05
*
* Q u a n t u m L e a P s
* ---------------------------
* innovating embedded systems
*
* Copyright (C) Quantum Leaps, LLC. All rights reserved.
*
* This program is open source software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Alternatively, this program may be distributed and modified under the
* terms of Quantum Leaps commercial licenses, which expressly supersede
* the GNU General Public License and are specifically designed for
* licensees interested in retaining the proprietary status of their code.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Contact information:
* https://state-machine.com
* mailto:info@state-machine.com
*****************************************************************************/
#include "qpc.h"
#include "dpp.h"
#include "bsp.h"
#include "LPC17xx.h" /* CMSIS-compliant header file for the MCU used */
/* add other drivers if necessary... */
Q_DEFINE_THIS_FILE
/*!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
* Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
* DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
*/
enum KernelUnawareISRs { /* see NOTE00 */
/* ... */
MAX_KERNEL_UNAWARE_CMSIS_PRI /* keep always last */
};
/* "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts */
Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI);
enum KernelAwareISRs {
EINT0_PRIO = QF_AWARE_ISR_CMSIS_PRI, /* see NOTE00 */
SYSTICK_PRIO,
/* ... */
MAX_KERNEL_AWARE_CMSIS_PRI /* keep always last */
};
/* "kernel-aware" interrupts should not overlap the PendSV priority */
Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS)));
/* ISRs defined in this BSP ------------------------------------------------*/
void SysTick_Handler(void);
void EINT0_IRQHandler(void);
/* Local-scope objects -----------------------------------------------------*/
/* LEDs available on the board */
#define LED_1 (1U << 18) /* P1.18 */
#define LED_2 (1U << 20) /* P1.20 */
#define LED_3 (1U << 21) /* P1.21 */
#define LED_4 (1U << 23) /* P1.23 */
/* Push-Button wired externally to DIP8 (P0.6) */
#define BTN_EXT (1U << 6) /* P0.6 */
static uint32_t l_rnd; /* random seed */
#ifdef Q_SPY
QSTimeCtr QS_tickTime_;
QSTimeCtr QS_tickPeriod_;
/* event-source identifiers used for tracing */
static uint8_t l_SysTick_Handler;
static uint8_t l_EINT0_IRQHandler;
#define UART_BAUD_RATE 115200U
#define UART_FR_TXFE 0x80U
#define UART_TXFIFO_DEPTH 16U
enum AppRecords { /* application-specific trace records */
PHILO_STAT = QS_USER
};
#endif
/* ISRs used in the application ==========================================*/
void SysTick_Handler(void) {
/* state of the button debouncing, see below */
static struct ButtonsDebouncing {
uint32_t depressed;
uint32_t previous;
} buttons = { ~0U, ~0U };
uint32_t current;
uint32_t tmp;
#ifdef Q_SPY
{
tmp = SysTick->CTRL; /* clear CTRL_COUNTFLAG */
QS_tickTime_ += QS_tickPeriod_; /* account for the clock rollover */
}
#endif
QF_TICK_X(0U, &l_SysTick_Handler); /* process time events for rate 0 */
/* get state of the buttons */
/* Perform the debouncing of buttons. The algorithm for debouncing
* adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
* and Michael Barr, page 71.
*/
current = ~LPC_GPIO0->FIOPIN; /* read P0 with the state of the Buttons */
tmp = buttons.depressed; /* save the debounced depressed buttons */
buttons.depressed |= (buttons.previous & current); /* set depressed */
buttons.depressed &= (buttons.previous | current); /* clear released */
buttons.previous = current; /* update the history */
tmp ^= buttons.depressed; /* changed debounced depressed */
if ((tmp & BTN_EXT) != 0U) { /* debounced BTN_EXT state changed? */
if ((buttons.depressed & BTN_EXT) != 0U) { /* is BTN_EXT depressed? */
static QEvt const pauseEvt = { PAUSE_SIG, 0U, 0U};
QF_PUBLISH(&pauseEvt, &l_SysTick_Handler);
}
else { /* the button is released */
static QEvt const serveEvt = { SERVE_SIG, 0U, 0U};
QF_PUBLISH(&serveEvt, &l_SysTick_Handler);
}
}
}
/*..........................................................................*/
void EINT0_IRQHandler(void) {
QACTIVE_POST(AO_Table, Q_NEW(QEvt, MAX_PUB_SIG), /* for testing... */
&l_EINT0_IRQHandler);
}
/* BSP functions ===========================================================*/
void BSP_init(void) {
/* NOTE: SystemInit() has been already called from the startup code
* but SystemCoreClock needs to be updated
*/
SystemCoreClockUpdate();
/* turn the GPIO clock on */
LPC_SC->PCONP |= (1U << 15);
/* setup the GPIO pin functions for the LEDs... */
LPC_PINCON->PINSEL3 &= ~(3U << 4); /* LED_1: function P1.18 to GPIO */
LPC_PINCON->PINSEL3 &= ~(3U << 8); /* LED_2: function P1.20 to GPIO */
LPC_PINCON->PINSEL3 &= ~(3U << 10); /* LED_3: function P1.21 to GPIO */
LPC_PINCON->PINSEL3 &= ~(3U << 14); /* LED_4: function P1.23 to GPIO */
/* Set GPIO-P1 LED pins to output */
LPC_GPIO1->FIODIR |= (LED_1 | LED_2 | LED_3 | LED_4);
/* setup the GPIO pin function for the Button... */
LPC_PINCON->PINSEL0 &= ~(3U << 12); /* function P0.6 to GPIO, pull-up */
/* Set GPIO-P0 Button pin as input */
LPC_GPIO0->FIODIR &= ~BTN_EXT;
BSP_randomSeed(1234U);
if (QS_INIT((void *)0) == 0U) { /* initialize the QS software tracing */
Q_ERROR();
}
QS_OBJ_DICTIONARY(&l_SysTick_Handler);
QS_OBJ_DICTIONARY(&l_EINT0_IRQHandler);
QS_USR_DICTIONARY(PHILO_STAT);
}
/*..........................................................................*/
void BSP_displayPhilStat(uint8_t n, char const *stat) {
if (stat[0] == 'h') {
LPC_GPIO1->FIOSET = LED_1; /* turn LED on */
}
else {
LPC_GPIO1->FIOCLR = LED_1; /* turn LED off */
}
if (stat[0] == 'e') {
LPC_GPIO1->FIOSET = LED_2; /* turn LED on */
}
else {
LPC_GPIO1->FIOCLR = LED_2; /* turn LED off */
}
QS_BEGIN(PHILO_STAT, AO_Philo[n]) /* application-specific record begin */
QS_U8(1, n); /* Philosopher number */
QS_STR(stat); /* Philosopher status */
QS_END()
}
/*..........................................................................*/
void BSP_displayPaused(uint8_t paused) {
if (paused != (uint8_t)0) {
LPC_GPIO1->FIOSET = LED_3; /* turn LED on */
}
else {
LPC_GPIO1->FIOCLR = LED_3; /* turn LED off */
}
}
/*..........................................................................*/
uint32_t BSP_random(void) { /* a very cheap pseudo-random-number generator */
/* "Super-Duper" Linear Congruential Generator (LCG)
* LCG(2^32, 3*7*11*13*23, 0, seed)
*/
l_rnd = l_rnd * (3U*7U*11U*13U*23U);
return l_rnd >> 8;
}
/*..........................................................................*/
void BSP_randomSeed(uint32_t seed) {
l_rnd = seed;
}
/*..........................................................................*/
void BSP_terminate(int16_t result) {
(void)result;
}
/* QF callbacks ============================================================*/
void QF_onStartup(void) {
/* set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate */
SysTick_Config(SystemCoreClock / BSP_TICKS_PER_SEC);
/* set priorities of ALL ISRs used in the system, see NOTE00
*
* !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
* Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
* DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
*/
NVIC_SetPriority(SysTick_IRQn, SYSTICK_PRIO);
NVIC_SetPriority(EINT0_IRQn, EINT0_PRIO);
/* ... */
/* enable IRQs in the NVIC... */
NVIC_EnableIRQ(EINT0_IRQn);
}
/*..........................................................................*/
void QF_onCleanup(void) {
}
/*..........................................................................*/
void QV_onIdle(void) { /* called with interrupts disabled, see NOTE01 */
/* toggle the LED on and then off, see NOTE02 */
QF_INT_DISABLE();
LPC_GPIO1->FIOSET = LED_4; /* turn LED on */
__NOP(); /* a couple of NOPs to actually see the LED glow */
__NOP();
__NOP();
__NOP();
LPC_GPIO1->FIOCLR = LED_4; /* turn LED off */
QF_INT_ENABLE();
#ifdef Q_SPY
if ((LPC_UART0->LSR & 0x20U) != 0U) { /* TX Holding Register empty? */
uint16_t fifo = UART_TXFIFO_DEPTH; /* max bytes we can accept */
uint8_t const *block;
QF_INT_DISABLE();
block = QS_getBlock(&fifo); /* try to get next block to transmit */
QF_INT_ENABLE();
while (fifo-- != 0) { /* any bytes in the block? */
LPC_UART0->THR = *block++; /* put into the FIFO */
}
}
#elif defined NDEBUG
/* Put the CPU and peripherals to the low-power mode.
* you might need to customize the clock management for your application,
* see the datasheet for your particular Cortex-M MCU.
*/
QV_CPU_SLEEP(); /* atomically go to sleep and enable interrupts */
#else
QF_INT_ENABLE(); /* just enable interrupts */
#endif
}
/*..........................................................................*/
void Q_onAssert(char const *module, int loc) {
/*
* NOTE: add here your application-specific error handling
*/
(void)module;
(void)loc;
QS_ASSERTION(module, loc, (uint32_t)10000U); /* report assertion to QS */
NVIC_SystemReset();
}
/* QS callbacks ============================================================*/
#ifdef Q_SPY
static void UART0_setBaudrate(uint32_t baud); /* helper function */
/*..........................................................................*/
uint8_t QS_onStartup(void const *arg) {
static uint8_t qsBuf[2*1024]; /* buffer for Quantum Spy */
QS_initBuf(qsBuf, sizeof(qsBuf));
// setup the P0_2 UART0 TX pin
LPC_PINCON->PINSEL0 &= ~(3U << 4); /* clear P0_2 function */
LPC_PINCON->PINSEL0 |= (1U << 4); /* P0_2 to UART function (TX) */
LPC_PINCON->PINMODE0 &= ~(3U << 4); /* P0_2 pull-up register */
// setup the P0_3 UART0 RX pin
LPC_PINCON->PINSEL0 &= ~(3U << 6); /* clear P0_3 function */
LPC_PINCON->PINSEL0 |= (1U << 6); /* P0_3 to UART function (RX) */
LPC_PINCON->PINMODE0 &= ~(3U << 6); /* P0_3 pull-up register */
/* enable power to UART0 */
LPC_SC->PCONP |= (1U << 3);
/* enable FIFOs and default RX trigger level */
LPC_UART0->FCR =
(1U << 0) /* FIFO Enable - 0 = Disables, 1 = Enabled */
| (0U << 1) /* Rx Fifo Reset */
| (0U << 2) /* Tx Fifo Reset */
| (0U << 6); /* Rx irq trig: 0=1char, 1=4chars, 2=8chars, 3=14chars */
/* disable IRQs */
LPC_UART0->IER =
(0U << 0) /* Rx Data available IRQ disable */
| (0U << 1) /* Tx Fifo empty IRQ disable */
| (0U << 2); /* Rx Line Status IRQ disable */
// set default baud rate
UART0_setBaudrate(115200U);
// format 8-data-bits, 1-stop-bit, parity-none
LPC_UART0->LCR =
(3U << 0) /* 8-data-bits */
| (0U << 2) /* 1 stop-bit */
| (0U << 3) /* parity disable */
| (0U << 4); /* parity none */
QS_tickPeriod_ = SystemCoreClock / BSP_TICKS_PER_SEC;
QS_tickTime_ = QS_tickPeriod_; /* to start the timestamp at zero */
/* setup the QS filters... */
QS_FILTER_ON(QS_QEP_STATE_ENTRY);
QS_FILTER_ON(QS_QEP_STATE_EXIT);
QS_FILTER_ON(QS_QEP_STATE_INIT);
QS_FILTER_ON(QS_QEP_INIT_TRAN);
QS_FILTER_ON(QS_QEP_INTERN_TRAN);
QS_FILTER_ON(QS_QEP_TRAN);
QS_FILTER_ON(QS_QEP_IGNORED);
QS_FILTER_ON(QS_QEP_DISPATCH);
QS_FILTER_ON(QS_QEP_UNHANDLED);
QS_FILTER_ON(PHILO_STAT);
return (uint8_t)1; /* return success */
}
/*..........................................................................*/
void QS_onCleanup(void) {
}
/*..........................................................................*/
QSTimeCtr QS_onGetTime(void) { /* NOTE: invoked with interrupts DISABLED */
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { /* not set? */
return QS_tickTime_ - (QSTimeCtr)SysTick->VAL;
}
else { /* the rollover occured, but the SysTick_ISR did not run yet */
return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL;
}
}
/*..........................................................................*/
void QS_onFlush(void) {
uint16_t b;
QF_INT_DISABLE();
while ((b = QS_getByte()) != QS_EOD) { /* while not End-Of-Data... */
QF_INT_ENABLE();
while ((LPC_UART0->LSR & 0x20U) == 0U) { /* while THR empty... */
}
LPC_UART0->THR = (b & 0xFFU); /* put into the DR register */
QF_INT_DISABLE();
}
QF_INT_ENABLE();
}
/*..........................................................................*/
/*
* Set the LPC UART0 barud-rate generator according to
* Section 14.4.12 in LPC176x Manual (document UM10360)
*/
static void UART0_setBaudrate(uint32_t baud) {
/* First we check to see if the basic divide with no DivAddVal/MulVal
* ratio gives us an integer result. If it does, we set DivAddVal = 0,
* MulVal = 1. Otherwise, we search the valid ratio value range to find
* the closest match. This could be more elegant, using search methods
* and/or lookup tables, but the brute force method is not that much
* slower, and is more maintainable.
*/
uint32_t PCLK = SystemCoreClock; /* divider /1 set below */
uint16_t DL = PCLK / (16U * baud);
uint8_t DivAddVal = 0U;
uint8_t MulVal = 1U;
/* set PCLK divider to 1 */
LPC_SC->PCLKSEL0 &= ~(0x3U << 6); /* clear divider bits */
LPC_SC->PCLKSEL0 |= (0x1U << 6); /* set divider to 1 */
if ((PCLK % (16U * baud)) != 0U) { /* non zero remainder? */
uint32_t err_best = baud;
bool found = false;
uint32_t b;
uint8_t mv;
for (mv = 1U; mv < 16U && !found; mv++) {
uint16_t dlv;
uint8_t dav;
for (dav = 0U; dav < mv; ++dav) {
/*
* baud = PCLK / (16 * dlv * (1 + (DivAdd / Mul))
* solving for dlv, we get
* dlv = mul * PCLK / (16 * baud * (divadd + mul))
* mul has 4 bits, PCLK has 27 so we have 1 bit headroom,
* which can be used for rounding for many values of mul
* and PCLK we have 2 or more bits of headroom which can
* be used to improve precision
* note: X / 32 doesn't round correctly.
* Instead, we use ((X / 16) + 1) / 2 for correct rounding
*/
if ((mv*PCLK*2U) & 0x80000000U) { /* 1 bit headroom */
dlv = ((((2U*mv*PCLK) / (baud*(dav + mv)))/16U) + 1U)/2U;
}
else { /* 2 bits headroom, use more precision */
dlv = ((((4U*mv*PCLK) / (baud*(dav+mv)))/32U) + 1U)/2U;
}
/* datasheet says if DLL==DLM==0, then 1 is used instead */
if (dlv == 0U) {
dlv = 1U;
}
/* datasheet says if dav > 0 then DL must be >= 2 */
if ((dav > 0U) && (dlv < 2U)) {
dlv = 2U;
}
/* integer rearrangement of baud equation (with rounding) */
b = ((PCLK*mv / (dlv*(dav + mv)*8U)) + 1U)/2U;
b = (b >= baud) ? (b - baud) : (baud - b);
/* check to see how we did */
if (b < err_best) {
err_best = b;
DL = dlv;
MulVal = mv;
DivAddVal = dav;
if (b == baud) {
found = true;
break; /* break out of the inner for-loop */
}
}
}
}
}
// set LCR[DLAB] to enable writing to divider registers
LPC_UART0->LCR |= (1U << 7);
// set divider values
LPC_UART0->DLM = (DL >> 8) & 0xFFU;
LPC_UART0->DLL = (DL >> 0) & 0xFFU;
LPC_UART0->FDR = ((uint32_t)DivAddVal << 0)
| ((uint32_t)MulVal << 4);
// clear LCR[DLAB]
LPC_UART0->LCR &= ~(1U << 7);
}
#endif /* Q_SPY */
/*--------------------------------------------------------------------------*/
/*****************************************************************************
* NOTE00:
* The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest
* ISR priority that is disabled by the QF framework. The value is suitable
* for the NVIC_SetPriority() CMSIS function.
*
* Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e.,
* with the numerical values of priorities equal or higher than
* QF_AWARE_ISR_CMSIS_PRI) are allowed to call the QK_ISR_ENTRY/QK_ISR_ENTRY
* macros or any other QF/QK services. These ISRs are "QF-aware".
*
* Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority
* level (i.e., with the numerical values of priorities less than
* QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel.
* Such "QF-unaware" ISRs cannot call any QF/QK services. In particular they
* can NOT call the macros QK_ISR_ENTRY/QK_ISR_ENTRY. The only mechanism
* by which a "QF-unaware" ISR can communicate with the QF framework is by
* triggering a "QF-aware" ISR, which can post/publish events.
*
* NOTE01:
* The QV_onIdle() callback is called with interrupts disabled, because the
* determination of the idle condition might change by any interrupt posting
* an event. QV_onIdle() must internally enable interrupts, ideally
* atomically with putting the CPU to the power-saving mode.
*
* NOTE02:
* The User LED is used to visualize the idle loop activity. The brightness
* The User LED is used to visualize the idle loop activity. The brightness
* of the LED is proportional to the frequency of invcations of the idle loop.
* Please note that the LED is toggled with interrupts locked, so no interrupt
* execution time contributes to the brightness of the User LED.
*/