mirror of
https://github.com/QuantumLeaps/qpc.git
synced 2025-01-21 06:53:11 +08:00
913 lines
33 KiB
C
913 lines
33 KiB
C
/*****************************************************************************
|
|
* Product: "Fly 'n' Shoot" game example, EFM32-SLSTK3401A board, QV kernel
|
|
* Last updated for version 5.6.5
|
|
* Last updated on 2016-06-02
|
|
*
|
|
* Q u a n t u m L e a P s
|
|
* ---------------------------
|
|
* innovating embedded systems
|
|
*
|
|
* Copyright (C) Quantum Leaps, LLC. All rights reserved.
|
|
*
|
|
* This program is open source software: you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as published
|
|
* by the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* Alternatively, this program may be distributed and modified under the
|
|
* terms of Quantum Leaps commercial licenses, which expressly supersede
|
|
* the GNU General Public License and are specifically designed for
|
|
* licensees interested in retaining the proprietary status of their code.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Contact information:
|
|
* http://www.state-machine.com
|
|
* mailto:info@state-machine.com
|
|
*****************************************************************************/
|
|
#include "qpc.h"
|
|
#include "game.h"
|
|
#include "bsp.h"
|
|
|
|
#include "em_device.h" /* the device specific header (SiLabs) */
|
|
#include "em_chip.h" /* Chip errata (SiLabs) */
|
|
#include "em_cmu.h" /* Clock Management Unit (SiLabs) */
|
|
#include "em_gpio.h" /* GPIO (SiLabs) */
|
|
#include "em_usart.h" /* USART (SiLabs) */
|
|
#include "display_ls013b7dh03.h" /* LS013b7DH03 display (SiLabs/QL) */
|
|
/* add other drivers if necessary... */
|
|
|
|
Q_DEFINE_THIS_FILE
|
|
|
|
/*!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
* Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
|
|
* DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
|
|
*/
|
|
enum KernelUnawareISRs { /* see NOTE00 */
|
|
USART0_RX_PRIO,
|
|
/* ... */
|
|
MAX_KERNEL_UNAWARE_CMSIS_PRI /* keep always last */
|
|
};
|
|
/* "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts */
|
|
Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI);
|
|
|
|
enum KernelAwareISRs {
|
|
GPIO_EVEN_PRIO = QF_AWARE_ISR_CMSIS_PRI, /* see NOTE00 */
|
|
SYSTICK_PRIO,
|
|
/* ... */
|
|
MAX_KERNEL_AWARE_CMSIS_PRI /* keep always last */
|
|
};
|
|
/* "kernel-aware" interrupts should not overlap the PendSV priority */
|
|
Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS)));
|
|
|
|
/* ISRs defined in this BSP ------------------------------------------------*/
|
|
void SysTick_Handler(void);
|
|
void GPIO_EVEN_IRQHandler(void);
|
|
void USART0_RX_IRQHandler(void);
|
|
|
|
/* Local-scope objects -----------------------------------------------------*/
|
|
#define LED_PORT gpioPortF
|
|
#define LED0_PIN 4
|
|
#define LED1_PIN 5
|
|
|
|
#define PB_PORT gpioPortF
|
|
#define PB0_PIN 6
|
|
#define PB1_PIN 7
|
|
|
|
/* LCD geometry and frame buffer */
|
|
static uint32_t l_fb[BSP_SCREEN_HEIGHT + 1][BSP_SCREEN_WIDTH / 32U];
|
|
|
|
/* the walls buffer */
|
|
static uint32_t l_walls[GAME_TUNNEL_HEIGHT + 1][BSP_SCREEN_WIDTH / 32U];
|
|
|
|
static unsigned l_rnd; /* random seed */
|
|
static void paintBits(uint8_t x, uint8_t y, uint8_t const *bits, uint8_t h);
|
|
static void paintBitsClear(uint8_t x, uint8_t y,
|
|
uint8_t const *bits, uint8_t h);
|
|
#ifdef Q_SPY
|
|
QSTimeCtr QS_tickTime_;
|
|
QSTimeCtr QS_tickPeriod_;
|
|
|
|
/* QS source IDs */
|
|
static uint8_t const l_SysTick_Handler = (uint8_t)0;
|
|
static uint8_t const l_GPIO_EVEN_IRQHandler = (uint8_t)0;
|
|
static USART_TypeDef * const l_USART0 = ((USART_TypeDef *)(0x40010000UL));
|
|
|
|
enum AppRecords { /* application-specific trace records */
|
|
SCORE_STAT = QS_USER,
|
|
COMMAND_STAT
|
|
};
|
|
|
|
#endif
|
|
|
|
/* ISRs used in the application ==========================================*/
|
|
void SysTick_Handler(void) {
|
|
static QEvt const tickEvt = { TIME_TICK_SIG, 0U, 0U };
|
|
|
|
#ifdef Q_SPY
|
|
{
|
|
/* clear SysTick_CTRL_COUNTFLAG */
|
|
uint32_t volatile tmp = SysTick->CTRL;
|
|
(void)tmp; /* avoid compiler warning about unused local variable */
|
|
QS_tickTime_ += QS_tickPeriod_; /* account for the clock rollover */
|
|
}
|
|
#endif
|
|
|
|
QF_TICK_X(0U, &l_SysTick_Handler); /* process time events for rate 0 */
|
|
QF_PUBLISH(&tickEvt, &l_SysTick_Handler); /* publish to all subscribers */
|
|
|
|
{
|
|
/* state of the button debouncing, see below */
|
|
static struct ButtonsDebouncing {
|
|
uint32_t depressed;
|
|
uint32_t previous;
|
|
} buttons = { ~0U, ~0U };
|
|
uint32_t current;
|
|
uint32_t tmp;
|
|
|
|
/* Perform the debouncing of buttons. The algorithm for debouncing
|
|
* adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
|
|
* and Michael Barr, page 71.
|
|
*/
|
|
current = ~GPIO->P[PB_PORT].DIN; /* read PB0 and BP1 */
|
|
tmp = buttons.depressed; /* save the debounced depressed buttons */
|
|
buttons.depressed |= (buttons.previous & current); /* set depressed */
|
|
buttons.depressed &= (buttons.previous | current); /* clear released */
|
|
buttons.previous = current; /* update the history */
|
|
tmp ^= buttons.depressed; /* changed debounced depressed */
|
|
if ((tmp & (1U << PB0_PIN)) != 0U) { /* debounced PB0 state changed? */
|
|
if ((buttons.depressed & (1U << PB0_PIN)) != 0U) {/*PB0 depressed?*/
|
|
static QEvt const trigEvt = { PLAYER_TRIGGER_SIG, 0U, 0U};
|
|
QF_PUBLISH(&trigEvt, &l_SysTick_Handler);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*..........................................................................*/
|
|
void GPIO_EVEN_IRQHandler(void) {
|
|
QACTIVE_POST(AO_Tunnel, Q_NEW(QEvt, MAX_PUB_SIG), /* for testing... */
|
|
&l_GPIO_EVEN_IRQHandler);
|
|
}
|
|
/*..........................................................................*/
|
|
void USART0_RX_IRQHandler(void); // prototype
|
|
#ifdef Q_SPY
|
|
/* ISR for receiving bytes from the QSPY Back-End
|
|
* NOTE: This ISR is "QF-unaware" meaning that it does not interact with
|
|
* the QF/QK and is not disabled. Such ISRs don't need to call QK_ISR_ENTRY/
|
|
* QK_ISR_EXIT and they cannot post or publish events.
|
|
*/
|
|
void USART0_RX_IRQHandler(void) {
|
|
/* while RX FIFO NOT empty */
|
|
while ((l_USART0->STATUS & USART_STATUS_RXDATAV) != 0) {
|
|
uint32_t b = l_USART0->RXDATA;
|
|
QS_RX_PUT(b);
|
|
}
|
|
}
|
|
#else
|
|
void USART0_RX_IRQHandler(void) {}
|
|
#endif /* Q_SPY */
|
|
|
|
|
|
/* BSP functions ===========================================================*/
|
|
void BSP_init(void) {
|
|
/* Chip errata */
|
|
CHIP_Init();
|
|
|
|
/* NOTE: SystemInit() already called from startup_TM4C123GH6PM.s
|
|
* but SystemCoreClock needs to be updated
|
|
*/
|
|
SystemCoreClockUpdate();
|
|
|
|
|
|
/* Do NOT to use the automatic FPU state preservation and
|
|
* do NOT to use the FPU lazy stacking.
|
|
*
|
|
* NOTE:
|
|
* Use the following setting when FPU is NOT used in any ISR.
|
|
*/
|
|
FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos));
|
|
|
|
/* enable clock for to the peripherals used by this application... */
|
|
CMU_ClockEnable(cmuClock_HFPER, true);
|
|
CMU_ClockEnable(cmuClock_GPIO, true);
|
|
CMU_ClockEnable(cmuClock_HFPER, true);
|
|
CMU_ClockEnable(cmuClock_GPIO, true);
|
|
|
|
/* configure the LEDs */
|
|
GPIO_PinModeSet(LED_PORT, LED0_PIN, gpioModePushPull, 0);
|
|
GPIO_PinModeSet(LED_PORT, LED1_PIN, gpioModePushPull, 0);
|
|
GPIO_PinOutClear(LED_PORT, LED0_PIN);
|
|
GPIO_PinOutClear(LED_PORT, LED1_PIN);
|
|
|
|
/* configure the Buttons */
|
|
GPIO_PinModeSet(PB_PORT, PB0_PIN, gpioModeInputPull, 1);
|
|
GPIO_PinModeSet(PB_PORT, PB1_PIN, gpioModeInputPull, 1);
|
|
|
|
/* Initialize the DISPLAY driver. */
|
|
if (!Display_init()) {
|
|
Q_ERROR();
|
|
}
|
|
|
|
/* initialize the QS software tracing */
|
|
if (QS_INIT((void *)0) == 0U) {
|
|
Q_ERROR();
|
|
}
|
|
|
|
QS_OBJ_DICTIONARY(&l_SysTick_Handler);
|
|
QS_OBJ_DICTIONARY(&l_GPIO_EVEN_IRQHandler);
|
|
QS_USR_DICTIONARY(SCORE_STAT);
|
|
QS_USR_DICTIONARY(COMMAND_STAT);
|
|
}
|
|
|
|
/*..........................................................................*/
|
|
void BSP_updateScreen(void) {
|
|
GPIO->P[LED_PORT].DOUT |= (1U << LED1_PIN);
|
|
Display_sendPA(&l_fb[0][0], 0, LS013B7DH03_HEIGHT);
|
|
GPIO->P[LED_PORT].DOUT &= ~(1U << LED1_PIN);
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_clearFB() {
|
|
uint_fast8_t y;
|
|
for (y = 0U; y < BSP_SCREEN_HEIGHT; ++y) {
|
|
l_fb[y][0] = 0U;
|
|
l_fb[y][1] = 0U;
|
|
l_fb[y][2] = 0U;
|
|
l_fb[y][3] = 0U;
|
|
}
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_clearWalls() {
|
|
uint_fast8_t y;
|
|
for (y = 0U; y < GAME_TUNNEL_HEIGHT; ++y) {
|
|
l_walls[y][0] = 0U;
|
|
l_walls[y][1] = 0U;
|
|
l_walls[y][2] = 0U;
|
|
l_walls[y][3] = 0U;
|
|
}
|
|
}
|
|
/*..........................................................................*/
|
|
bool BSP_isThrottle(void) { /* is the throttle button depressed? */
|
|
return (GPIO->P[PB_PORT].DIN & (1U << PB1_PIN)) == 0U;
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_paintString(uint8_t x, uint8_t y, char const *str) {
|
|
static uint8_t const font5x7[95][7] = {
|
|
{ 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U }, /* */
|
|
{ 0x04U, 0x04U, 0x04U, 0x04U, 0x00U, 0x00U, 0x04U }, /* ! */
|
|
{ 0x0AU, 0x0AU, 0x0AU, 0x00U, 0x00U, 0x00U, 0x00U }, /* " */
|
|
{ 0x0AU, 0x0AU, 0x1FU, 0x0AU, 0x1FU, 0x0AU, 0x0AU }, /* # */
|
|
{ 0x04U, 0x1EU, 0x05U, 0x0EU, 0x14U, 0x0FU, 0x04U }, /* $ */
|
|
{ 0x03U, 0x13U, 0x08U, 0x04U, 0x02U, 0x19U, 0x18U }, /* % */
|
|
{ 0x06U, 0x09U, 0x05U, 0x02U, 0x15U, 0x09U, 0x16U }, /* & */
|
|
{ 0x06U, 0x04U, 0x02U, 0x00U, 0x00U, 0x00U, 0x00U }, /* ' */
|
|
{ 0x08U, 0x04U, 0x02U, 0x02U, 0x02U, 0x04U, 0x08U }, /* ( */
|
|
{ 0x02U, 0x04U, 0x08U, 0x08U, 0x08U, 0x04U, 0x02U }, /* ) */
|
|
{ 0x00U, 0x04U, 0x15U, 0x0EU, 0x15U, 0x04U, 0x00U }, /* * */
|
|
{ 0x00U, 0x04U, 0x04U, 0x1FU, 0x04U, 0x04U, 0x00U }, /* + */
|
|
{ 0x00U, 0x00U, 0x00U, 0x00U, 0x06U, 0x04U, 0x02U }, /* , */
|
|
{ 0x00U, 0x00U, 0x00U, 0x1FU, 0x00U, 0x00U, 0x00U }, /* - */
|
|
{ 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x06U, 0x06U }, /* . */
|
|
{ 0x00U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U, 0x00U }, /* / */
|
|
{ 0x0EU, 0x11U, 0x19U, 0x15U, 0x13U, 0x11U, 0x0EU }, /* 0 */
|
|
{ 0x04U, 0x06U, 0x04U, 0x04U, 0x04U, 0x04U, 0x0EU }, /* 1 */
|
|
{ 0x0EU, 0x11U, 0x10U, 0x08U, 0x04U, 0x02U, 0x1FU }, /* 2 */
|
|
{ 0x1FU, 0x08U, 0x04U, 0x08U, 0x10U, 0x11U, 0x0EU }, /* 3 */
|
|
{ 0x08U, 0x0CU, 0x0AU, 0x09U, 0x1FU, 0x08U, 0x08U }, /* 4 */
|
|
{ 0x1FU, 0x01U, 0x0FU, 0x10U, 0x10U, 0x11U, 0x0EU }, /* 5 */
|
|
{ 0x0CU, 0x02U, 0x01U, 0x0FU, 0x11U, 0x11U, 0x0EU }, /* 6 */
|
|
{ 0x1FU, 0x10U, 0x08U, 0x04U, 0x02U, 0x02U, 0x02U }, /* 7 */
|
|
{ 0x0EU, 0x11U, 0x11U, 0x0EU, 0x11U, 0x11U, 0x0EU }, /* 8 */
|
|
{ 0x0EU, 0x11U, 0x11U, 0x1EU, 0x10U, 0x08U, 0x06U }, /* 9 */
|
|
{ 0x00U, 0x06U, 0x06U, 0x00U, 0x06U, 0x06U, 0x00U }, /* : */
|
|
{ 0x00U, 0x06U, 0x06U, 0x00U, 0x06U, 0x04U, 0x02U }, /* ; */
|
|
{ 0x08U, 0x04U, 0x02U, 0x01U, 0x02U, 0x04U, 0x08U }, /* < */
|
|
{ 0x00U, 0x00U, 0x1FU, 0x00U, 0x1FU, 0x00U, 0x00U }, /* = */
|
|
{ 0x02U, 0x04U, 0x08U, 0x10U, 0x08U, 0x04U, 0x02U }, /* > */
|
|
{ 0x0EU, 0x11U, 0x10U, 0x08U, 0x04U, 0x00U, 0x04U }, /* ? */
|
|
{ 0x0EU, 0x11U, 0x10U, 0x16U, 0x15U, 0x15U, 0x0EU }, /* @ */
|
|
{ 0x0EU, 0x11U, 0x11U, 0x11U, 0x1FU, 0x11U, 0x11U }, /* A */
|
|
{ 0x0FU, 0x11U, 0x11U, 0x0FU, 0x11U, 0x11U, 0x0FU }, /* B */
|
|
{ 0x0EU, 0x11U, 0x01U, 0x01U, 0x01U, 0x11U, 0x0EU }, /* C */
|
|
{ 0x07U, 0x09U, 0x11U, 0x11U, 0x11U, 0x09U, 0x07U }, /* D */
|
|
{ 0x1FU, 0x01U, 0x01U, 0x0FU, 0x01U, 0x01U, 0x1FU }, /* E */
|
|
{ 0x1FU, 0x01U, 0x01U, 0x0FU, 0x01U, 0x01U, 0x01U }, /* F */
|
|
{ 0x0EU, 0x11U, 0x01U, 0x1DU, 0x11U, 0x11U, 0x1EU }, /* G */
|
|
{ 0x11U, 0x11U, 0x11U, 0x1FU, 0x11U, 0x11U, 0x11U }, /* H */
|
|
{ 0x0EU, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x0EU }, /* I */
|
|
{ 0x1CU, 0x08U, 0x08U, 0x08U, 0x08U, 0x09U, 0x06U }, /* J */
|
|
{ 0x11U, 0x09U, 0x05U, 0x03U, 0x05U, 0x09U, 0x11U }, /* K */
|
|
{ 0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x1FU }, /* L */
|
|
{ 0x11U, 0x1BU, 0x15U, 0x15U, 0x11U, 0x11U, 0x11U }, /* M */
|
|
{ 0x11U, 0x11U, 0x13U, 0x15U, 0x19U, 0x11U, 0x11U }, /* N */
|
|
{ 0x0EU, 0x11U, 0x11U, 0x11U, 0x11U, 0x11U, 0x0EU }, /* O */
|
|
{ 0x0FU, 0x11U, 0x11U, 0x0FU, 0x01U, 0x01U, 0x01U }, /* P */
|
|
{ 0x0EU, 0x11U, 0x11U, 0x11U, 0x15U, 0x09U, 0x16U }, /* Q */
|
|
{ 0x0FU, 0x11U, 0x11U, 0x0FU, 0x05U, 0x09U, 0x11U }, /* R */
|
|
{ 0x1EU, 0x01U, 0x01U, 0x0EU, 0x10U, 0x10U, 0x0FU }, /* S */
|
|
{ 0x1FU, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U }, /* T */
|
|
{ 0x11U, 0x11U, 0x11U, 0x11U, 0x11U, 0x11U, 0x0EU }, /* U */
|
|
{ 0x11U, 0x11U, 0x11U, 0x11U, 0x11U, 0x0AU, 0x04U }, /* V */
|
|
{ 0x11U, 0x11U, 0x11U, 0x15U, 0x15U, 0x15U, 0x0AU }, /* W */
|
|
{ 0x11U, 0x11U, 0x0AU, 0x04U, 0x0AU, 0x11U, 0x11U }, /* X */
|
|
{ 0x11U, 0x11U, 0x11U, 0x0AU, 0x04U, 0x04U, 0x04U }, /* Y */
|
|
{ 0x1FU, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U, 0x1FU }, /* Z */
|
|
{ 0x0EU, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x0EU }, /* [ */
|
|
{ 0x00U, 0x01U, 0x02U, 0x04U, 0x08U, 0x10U, 0x00U }, /* \ */
|
|
{ 0x0EU, 0x08U, 0x08U, 0x08U, 0x08U, 0x08U, 0x0EU }, /* ] */
|
|
{ 0x04U, 0x0AU, 0x11U, 0x00U, 0x00U, 0x00U, 0x00U }, /* ^ */
|
|
{ 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x1FU }, /* _ */
|
|
{ 0x02U, 0x04U, 0x08U, 0x00U, 0x00U, 0x00U, 0x00U }, /* ` */
|
|
{ 0x00U, 0x00U, 0x0EU, 0x10U, 0x1EU, 0x11U, 0x1EU }, /* a */
|
|
{ 0x01U, 0x01U, 0x0DU, 0x13U, 0x11U, 0x11U, 0x0FU }, /* b */
|
|
{ 0x00U, 0x00U, 0x0EU, 0x01U, 0x01U, 0x11U, 0x0EU }, /* c */
|
|
{ 0x10U, 0x10U, 0x16U, 0x19U, 0x11U, 0x11U, 0x1EU }, /* d */
|
|
{ 0x00U, 0x00U, 0x0EU, 0x11U, 0x1FU, 0x01U, 0x0EU }, /* e */
|
|
{ 0x0CU, 0x12U, 0x02U, 0x07U, 0x02U, 0x02U, 0x02U }, /* f */
|
|
{ 0x00U, 0x1EU, 0x11U, 0x11U, 0x1EU, 0x10U, 0x0EU }, /* g */
|
|
{ 0x01U, 0x01U, 0x0DU, 0x13U, 0x11U, 0x11U, 0x11U }, /* h */
|
|
{ 0x04U, 0x00U, 0x06U, 0x04U, 0x04U, 0x04U, 0x0EU }, /* i */
|
|
{ 0x08U, 0x00U, 0x0CU, 0x08U, 0x08U, 0x09U, 0x06U }, /* j */
|
|
{ 0x01U, 0x01U, 0x09U, 0x05U, 0x03U, 0x05U, 0x09U }, /* k */
|
|
{ 0x06U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x0EU }, /* l */
|
|
{ 0x00U, 0x00U, 0x0BU, 0x15U, 0x15U, 0x11U, 0x11U }, /* m */
|
|
{ 0x00U, 0x00U, 0x0DU, 0x13U, 0x11U, 0x11U, 0x11U }, /* n */
|
|
{ 0x00U, 0x00U, 0x0EU, 0x11U, 0x11U, 0x11U, 0x0EU }, /* o */
|
|
{ 0x00U, 0x00U, 0x0FU, 0x11U, 0x0FU, 0x01U, 0x01U }, /* p */
|
|
{ 0x00U, 0x00U, 0x16U, 0x19U, 0x1EU, 0x10U, 0x10U }, /* q */
|
|
{ 0x00U, 0x00U, 0x0DU, 0x13U, 0x01U, 0x01U, 0x01U }, /* r */
|
|
{ 0x00U, 0x00U, 0x0EU, 0x01U, 0x0EU, 0x10U, 0x0FU }, /* s */
|
|
{ 0x02U, 0x02U, 0x07U, 0x02U, 0x02U, 0x12U, 0x0CU }, /* t */
|
|
{ 0x00U, 0x00U, 0x11U, 0x11U, 0x11U, 0x19U, 0x16U }, /* u */
|
|
{ 0x00U, 0x00U, 0x11U, 0x11U, 0x11U, 0x0AU, 0x04U }, /* v */
|
|
{ 0x00U, 0x00U, 0x11U, 0x11U, 0x15U, 0x15U, 0x0AU }, /* w */
|
|
{ 0x00U, 0x00U, 0x11U, 0x0AU, 0x04U, 0x0AU, 0x11U }, /* x */
|
|
{ 0x00U, 0x00U, 0x11U, 0x11U, 0x1EU, 0x10U, 0x0EU }, /* y */
|
|
{ 0x00U, 0x00U, 0x1FU, 0x08U, 0x04U, 0x02U, 0x1FU }, /* z */
|
|
{ 0x08U, 0x04U, 0x04U, 0x02U, 0x04U, 0x04U, 0x08U }, /* { */
|
|
{ 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U }, /* | */
|
|
{ 0x02U, 0x04U, 0x04U, 0x08U, 0x04U, 0x04U, 0x02U }, /* } */
|
|
{ 0x02U, 0x15U, 0x08U, 0x00U, 0x00U, 0x00U, 0x00U }, /* ~ */
|
|
};
|
|
|
|
for (; *str != '\0'; ++str, x += 6) {
|
|
uint8_t const *ch = &font5x7[*str - ' '][0];
|
|
paintBitsClear(x, y, ch, 7);
|
|
}
|
|
}
|
|
|
|
/*==========================================================================*/
|
|
typedef struct { /* the auxiliary structure to hold const bitmaps */
|
|
uint8_t const *bits; /* the bits in the bitmap */
|
|
uint8_t height; /* the height of the bitmap */
|
|
} Bitmap;
|
|
|
|
/* bitmap of the Ship:
|
|
*
|
|
* x....
|
|
* xxx..
|
|
* xxxxx
|
|
*/
|
|
static uint8_t const ship_bits[] = {
|
|
0x01U, 0x07U, 0x1FU
|
|
};
|
|
|
|
/* bitmap of the Missile:
|
|
*
|
|
* xxxx
|
|
*/
|
|
static uint8_t const missile_bits[] = {
|
|
0x0FU
|
|
};
|
|
|
|
/* bitmap of the Mine type-1:
|
|
*
|
|
* .x.
|
|
* xxx
|
|
* .x.
|
|
*/
|
|
static uint8_t const mine1_bits[] = {
|
|
0x02U, 0x07U, 0x02U
|
|
};
|
|
|
|
/* bitmap of the Mine type-2:
|
|
*
|
|
* x..x
|
|
* .xx.
|
|
* .xx.
|
|
* x..x
|
|
*/
|
|
static uint8_t const mine2_bits[] = {
|
|
0x09U, 0x06U, 0x06U, 0x09U
|
|
};
|
|
|
|
/* Mine type-2 is nastier than Mine type-1. The type-2 mine can
|
|
* hit the Ship with any of its "tentacles". However, it can be
|
|
* destroyed by the Missile only by hitting its center, defined as
|
|
* the following bitmap:
|
|
*
|
|
* ....
|
|
* .xx.
|
|
* .xx.
|
|
*/
|
|
static uint8_t const mine2_missile_bits[] = {
|
|
0x00U, 0x06U, 0x06U
|
|
};
|
|
|
|
/*
|
|
* The bitmap of the explosion stage 0:
|
|
*
|
|
* .......
|
|
* ...x...
|
|
* ..x.x..
|
|
* ...x...
|
|
*/
|
|
static uint8_t const explosion0_bits[] = {
|
|
0x00U, 0x08U, 0x14U, 0x08U
|
|
};
|
|
|
|
/*
|
|
* The bitmap of the explosion stage 1:
|
|
*
|
|
* .......
|
|
* ..x.x..
|
|
* ...x...
|
|
* ..x.x..
|
|
*/
|
|
static uint8_t const explosion1_bits[] = {
|
|
0x00U, 0x14U, 0x08U, 0x14U
|
|
};
|
|
|
|
/*
|
|
* The bitmap of the explosion stage 2:
|
|
*
|
|
* .x...x.
|
|
* ..x.x..
|
|
* ...x...
|
|
* ..x.x..
|
|
* .x...x.
|
|
*/
|
|
static uint8_t const explosion2_bits[] = {
|
|
0x11U, 0x0AU, 0x04U, 0x0AU, 0x11U
|
|
};
|
|
|
|
/*
|
|
* The bitmap of the explosion stage 3:
|
|
*
|
|
* x..x..x
|
|
* .x.x.x.
|
|
* ..x.x..
|
|
* xx.x.xx
|
|
* ..x.x..
|
|
* .x.x.x.
|
|
* x..x..x
|
|
*/
|
|
static uint8_t const explosion3_bits[] = {
|
|
0x49, 0x2A, 0x14, 0x6B, 0x14, 0x2A, 0x49
|
|
};
|
|
|
|
static Bitmap const l_bitmap[MAX_BMP] = {
|
|
{ ship_bits, Q_DIM(ship_bits) },
|
|
{ missile_bits, Q_DIM(missile_bits) },
|
|
{ mine1_bits, Q_DIM(mine1_bits) },
|
|
{ mine2_bits, Q_DIM(mine2_bits) },
|
|
{ mine2_missile_bits, Q_DIM(mine2_missile_bits) },
|
|
{ explosion0_bits, Q_DIM(explosion0_bits) },
|
|
{ explosion1_bits, Q_DIM(explosion1_bits) },
|
|
{ explosion2_bits, Q_DIM(explosion2_bits) },
|
|
{ explosion3_bits, Q_DIM(explosion3_bits) }
|
|
};
|
|
|
|
/*..........................................................................*/
|
|
void BSP_paintBitmap(uint8_t x, uint8_t y, uint8_t bmp_id) {
|
|
Bitmap const *bmp = &l_bitmap[bmp_id];
|
|
paintBits(x, y, bmp->bits, bmp->height);
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_advanceWalls(uint8_t top, uint8_t bottom) {
|
|
uint_fast8_t y;
|
|
for (y = 0U; y < GAME_TUNNEL_HEIGHT; ++y) {
|
|
/* shift the walls one pixel to the left */
|
|
l_walls[y][0] = (l_walls[y][0] >> 1) | (l_walls[y][1] << 31);
|
|
l_walls[y][1] = (l_walls[y][1] >> 1) | (l_walls[y][2] << 31);
|
|
l_walls[y][2] = (l_walls[y][2] >> 1) | (l_walls[y][3] << 31);
|
|
l_walls[y][3] = (l_walls[y][3] >> 1);
|
|
|
|
/* add new column of walls at the end */
|
|
if (y <= top) {
|
|
l_walls[y][3] |= (1U << 31);
|
|
}
|
|
if (y >= (GAME_TUNNEL_HEIGHT - bottom)) {
|
|
l_walls[y][3] |= (1U << 31);
|
|
}
|
|
|
|
/* copy the walls to the frame buffer */
|
|
l_fb[y][0] = l_walls[y][0];
|
|
l_fb[y][1] = l_walls[y][1];
|
|
l_fb[y][2] = l_walls[y][2];
|
|
l_fb[y][3] = l_walls[y][3];
|
|
}
|
|
}
|
|
/*..........................................................................*/
|
|
bool BSP_doBitmapsOverlap(uint8_t bmp_id1, uint8_t x1, uint8_t y1,
|
|
uint8_t bmp_id2, uint8_t x2, uint8_t y2)
|
|
{
|
|
uint8_t y;
|
|
uint8_t y0;
|
|
uint8_t h;
|
|
uint32_t bits1;
|
|
uint32_t bits2;
|
|
Bitmap const *bmp1;
|
|
Bitmap const *bmp2;
|
|
|
|
Q_REQUIRE((bmp_id1 < Q_DIM(l_bitmap)) && (bmp_id2 < Q_DIM(l_bitmap)));
|
|
|
|
/* are the bitmaps close enough in x? */
|
|
if (x1 >= x2) {
|
|
if (x1 > x2 + 8U) {
|
|
return false;
|
|
}
|
|
x1 -= x2;
|
|
x2 = 0U;
|
|
}
|
|
else {
|
|
if (x2 > x1 + 8U) {
|
|
return false;
|
|
}
|
|
x2 -= x1;
|
|
x1 = 0U;
|
|
}
|
|
|
|
bmp1 = &l_bitmap[bmp_id1];
|
|
bmp2 = &l_bitmap[bmp_id2];
|
|
if ((y1 <= y2) && (y1 + bmp1->height > y2)) {
|
|
y0 = y2 - y1;
|
|
h = y1 + bmp1->height - y2;
|
|
if (h > bmp2->height) {
|
|
h = bmp2->height;
|
|
}
|
|
for (y = 0; y < h; ++y) { /* scan over the overlapping rows */
|
|
bits1 = ((uint32_t)bmp1->bits[y + y0] << x1);
|
|
bits2 = ((uint32_t)bmp2->bits[y] << x2);
|
|
if ((bits1 & bits2) != 0U) { /* do the bits overlap? */
|
|
return true; /* yes! */
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if ((y1 > y2) && (y2 + bmp2->height > y1)) {
|
|
y0 = y1 - y2;
|
|
h = y2 + bmp2->height - y1;
|
|
if (h > bmp1->height) {
|
|
h = bmp1->height;
|
|
}
|
|
for (y = 0; y < h; ++y) { /* scan over the overlapping rows */
|
|
bits1 = ((uint32_t)bmp1->bits[y] << x1);
|
|
bits2 = ((uint32_t)bmp2->bits[y + y0] << x2);
|
|
if ((bits1 & bits2) != 0U) { /* do the bits overlap? */
|
|
return true; /* yes! */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false; /* the bitmaps do not overlap */
|
|
}
|
|
/*..........................................................................*/
|
|
bool BSP_isWallHit(uint8_t bmp_id, uint8_t x, uint8_t y) {
|
|
Bitmap const *bmp = &l_bitmap[bmp_id];
|
|
uint32_t shft = (x & 0x1FU);
|
|
uint32_t *walls = &l_walls[y][x >> 5];
|
|
for (y = 0; y < bmp->height; ++y, walls += (BSP_SCREEN_WIDTH >> 5)) {
|
|
if (*walls & ((uint32_t)bmp->bits[y] << shft)) {
|
|
return true;
|
|
}
|
|
if (shft > 24U) {
|
|
if (*(walls + 1) & ((uint32_t)bmp->bits[y] >> (32U - shft))) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*..........................................................................*/
|
|
void BSP_updateScore(uint16_t score) {
|
|
char str[5];
|
|
uint16_t s = score;
|
|
|
|
if (score == 0U) {
|
|
BSP_paintString(1U, BSP_SCREEN_HEIGHT - 8U, "SCORE:");
|
|
}
|
|
|
|
/* update the SCORE area on the screeen */
|
|
str[4] = '\0';
|
|
str[3] = (s % 10U) + '0'; s /= 10U;
|
|
str[2] = (s % 10U) + '0'; s /= 10U;
|
|
str[1] = (s % 10U) + '0'; s /= 10U;
|
|
str[0] = (s % 10U) + '0';
|
|
BSP_paintString(6U*6U, BSP_SCREEN_HEIGHT - 8U, str);
|
|
|
|
QS_BEGIN(SCORE_STAT, (void *)1) /* application-specific record begin */
|
|
QS_U16(4, score);
|
|
QS_END()
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_displayOn(void) {
|
|
Display_enable(true);
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_displayOff(void) {
|
|
Display_enable(false);
|
|
}
|
|
/*..........................................................................*/
|
|
uint32_t BSP_random(void) { /* a very cheap pseudo-random-number generator */
|
|
/* "Super-Duper" Linear Congruential Generator (LCG)
|
|
* LCG(2^32, 3*7*11*13*23, 0, seed)
|
|
*/
|
|
l_rnd = l_rnd * (3U*7U*11U*13U*23U);
|
|
return l_rnd >> 8;
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_randomSeed(uint32_t seed) {
|
|
l_rnd = seed;
|
|
}
|
|
|
|
/*--------------------------------------------------------------------------*/
|
|
/*..........................................................................*/
|
|
static void paintBits(uint8_t x, uint8_t y, uint8_t const *bits, uint8_t h) {
|
|
uint32_t *fb = &l_fb[y][x >> 5];
|
|
uint32_t shft = (x & 0x1FU);
|
|
for (y = 0; y < h; ++y, fb += (BSP_SCREEN_WIDTH >> 5)) {
|
|
*fb |= ((uint32_t)bits[y] << shft);
|
|
if (shft > 24U) {
|
|
*(fb + 1) |= ((uint32_t)bits[y] >> (32U - shft));
|
|
}
|
|
}
|
|
}
|
|
/*..........................................................................*/
|
|
static void paintBitsClear(uint8_t x, uint8_t y,
|
|
uint8_t const *bits, uint8_t h)
|
|
{
|
|
uint32_t *fb = &l_fb[y][x >> 5];
|
|
uint32_t shft = (x & 0x1FU);
|
|
uint32_t mask1 = ~((uint32_t)0xFFU << shft);
|
|
uint32_t mask2;
|
|
if (shft > 24U) {
|
|
mask2 = ~(0xFFU >> (32U - shft));
|
|
}
|
|
for (y = 0; y < h; ++y, fb += (BSP_SCREEN_WIDTH >> 5)) {
|
|
*fb = ((*fb & mask1) | ((uint32_t)bits[y] << shft));
|
|
if (shft > 24U) {
|
|
*(fb + 1) = ((*(fb + 1) & mask2)
|
|
| ((uint32_t)bits[y] >> (32U - shft)));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* QF callbacks ============================================================*/
|
|
void QF_onStartup(void) {
|
|
/* set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate */
|
|
SysTick_Config(SystemCoreClock / BSP_TICKS_PER_SEC);
|
|
|
|
/* assing all priority bits for preemption-prio. and none to sub-prio. */
|
|
NVIC_SetPriorityGrouping(0U);
|
|
|
|
/* set priorities of ALL ISRs used in the system, see NOTE00
|
|
*
|
|
* !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
* Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
|
|
* DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
|
|
*/
|
|
NVIC_SetPriority(USART0_RX_IRQn, USART0_RX_PRIO);
|
|
NVIC_SetPriority(SysTick_IRQn, SYSTICK_PRIO);
|
|
NVIC_SetPriority(GPIO_EVEN_IRQn, GPIO_EVEN_PRIO);
|
|
/* ... */
|
|
|
|
/* enable IRQs... */
|
|
NVIC_EnableIRQ(GPIO_EVEN_IRQn);
|
|
#ifdef Q_SPY
|
|
NVIC_EnableIRQ(USART0_RX_IRQn); /* UART0 interrupt used for QS-RX */
|
|
#endif
|
|
}
|
|
/*..........................................................................*/
|
|
void QF_onCleanup(void) {
|
|
}
|
|
/*..........................................................................*/
|
|
void QV_onIdle(void) { /* called with interrupts disabled, see NOTE01 */
|
|
/* toggle the User LED on and then off, see NOTE02 */
|
|
GPIO->P[LED_PORT].DOUT |= (1U << LED0_PIN);
|
|
GPIO->P[LED_PORT].DOUT &= ~(1U << LED0_PIN);
|
|
|
|
#ifdef Q_SPY
|
|
QF_INT_ENABLE();
|
|
QS_rxParse(); /* parse all the received bytes */
|
|
|
|
if ((l_USART0->STATUS & USART_STATUS_TXBL) != 0) { /* is TXE empty? */
|
|
uint16_t b;
|
|
|
|
QF_INT_DISABLE();
|
|
b = QS_getByte();
|
|
QF_INT_ENABLE();
|
|
|
|
if (b != QS_EOD) { /* not End-Of-Data? */
|
|
l_USART0->TXDATA = (b & 0xFFU); /* put into the DR register */
|
|
}
|
|
}
|
|
#elif defined NDEBUG
|
|
/* Put the CPU and peripherals to the low-power mode.
|
|
* you might need to customize the clock management for your application,
|
|
* see the datasheet for your particular Cortex-M MCU.
|
|
*/
|
|
QV_CPU_SLEEP(); /* atomically go to sleep and enable interrupts */
|
|
#else
|
|
QF_INT_ENABLE(); /* just enable interrupts */
|
|
#endif
|
|
}
|
|
|
|
/*..........................................................................*/
|
|
void Q_onAssert(char const *module, int loc) {
|
|
/*
|
|
* NOTE: add here your application-specific error handling
|
|
*/
|
|
(void)module;
|
|
(void)loc;
|
|
QS_ASSERTION(module, loc, (uint32_t)10000U); /* report assertion to QS */
|
|
|
|
#ifndef NDEBUG
|
|
/* light up both LEDs */
|
|
GPIO->P[LED_PORT].DOUT |= ((1U << LED0_PIN) | (1U << LED1_PIN));
|
|
/* for debugging, hang on in an endless loop until PB1 is pressed... */
|
|
while ((GPIO->P[PB_PORT].DIN & (1U << PB1_PIN)) != 0) {
|
|
}
|
|
#endif
|
|
|
|
NVIC_SystemReset();
|
|
}
|
|
|
|
/* QS callbacks ============================================================*/
|
|
#ifdef Q_SPY
|
|
/*..........................................................................*/
|
|
uint8_t QS_onStartup(void const *arg) {
|
|
static uint8_t qsTxBuf[2*1024]; /* buffer for QS transmit channel */
|
|
static uint8_t qsRxBuf[100]; /* buffer for QS receive channel */
|
|
static USART_InitAsync_TypeDef init = {
|
|
usartEnable, /* Enable RX/TX when init completed */
|
|
0, /* Use current clock for configuring baudrate */
|
|
115200, /* 115200 bits/s */
|
|
usartOVS16, /* 16x oversampling */
|
|
usartDatabits8, /* 8 databits */
|
|
usartNoParity, /* No parity */
|
|
usartStopbits1, /* 1 stopbit */
|
|
0, /* Do not disable majority vote */
|
|
0, /* Not USART PRS input mode */
|
|
usartPrsRxCh0, /* PRS channel 0 */
|
|
0, /* Auto CS functionality enable/disable switch */
|
|
0, /* Auto CS Hold cycles */
|
|
0 /* Auto CS Setup cycles */
|
|
};
|
|
|
|
QS_initBuf (qsTxBuf, sizeof(qsTxBuf));
|
|
QS_rxInitBuf(qsRxBuf, sizeof(qsRxBuf));
|
|
|
|
/* Enable peripheral clocks */
|
|
CMU_ClockEnable(cmuClock_HFPER, true);
|
|
CMU_ClockEnable(cmuClock_GPIO, true);
|
|
|
|
/* To avoid false start, configure output as high */
|
|
GPIO_PinModeSet(gpioPortA, 0, gpioModePushPull, 1); // TX pin
|
|
GPIO_PinModeSet(gpioPortA, 1, gpioModeInput, 0); // RX pin
|
|
|
|
/* Enable DK RS232/UART switch */
|
|
GPIO_PinModeSet(gpioPortA, 5, gpioModePushPull, 1);
|
|
CMU_ClockEnable(cmuClock_USART0, true);
|
|
|
|
/* configure the UART for the desired baud rate, 8-N-1 operation */
|
|
init.enable = usartDisable;
|
|
USART_InitAsync(l_USART0, &init);
|
|
|
|
/* enable pins at correct UART/USART location. */
|
|
l_USART0->ROUTEPEN = USART_ROUTEPEN_RXPEN | USART_ROUTEPEN_TXPEN;
|
|
l_USART0->ROUTELOC0 = (l_USART0->ROUTELOC0 &
|
|
~(_USART_ROUTELOC0_TXLOC_MASK
|
|
| _USART_ROUTELOC0_RXLOC_MASK));
|
|
|
|
/* Clear previous RX interrupts */
|
|
USART_IntClear(l_USART0, USART_IF_RXDATAV);
|
|
NVIC_ClearPendingIRQ(USART0_RX_IRQn);
|
|
|
|
/* Enable RX interrupts */
|
|
USART_IntEnable(l_USART0, USART_IF_RXDATAV);
|
|
/* NOTE: do not enable the UART0 interrupt in the NVIC yet.
|
|
* Wait till QF_onStartup()
|
|
*/
|
|
|
|
/* Finally enable the UART */
|
|
USART_Enable(l_USART0, usartEnable);
|
|
|
|
QS_tickPeriod_ = SystemCoreClock / BSP_TICKS_PER_SEC;
|
|
QS_tickTime_ = QS_tickPeriod_; /* to start the timestamp at zero */
|
|
|
|
/* setup the QS filters... */
|
|
QS_FILTER_ON(QS_QEP_STATE_ENTRY);
|
|
QS_FILTER_ON(QS_QEP_STATE_EXIT);
|
|
QS_FILTER_ON(QS_QEP_STATE_INIT);
|
|
QS_FILTER_ON(QS_QEP_INIT_TRAN);
|
|
QS_FILTER_ON(QS_QEP_INTERN_TRAN);
|
|
QS_FILTER_ON(QS_QEP_TRAN);
|
|
QS_FILTER_ON(QS_QEP_IGNORED);
|
|
QS_FILTER_ON(QS_QEP_DISPATCH);
|
|
QS_FILTER_ON(QS_QEP_UNHANDLED);
|
|
|
|
return (uint8_t)1; /* return success */
|
|
}
|
|
/*..........................................................................*/
|
|
void QS_onCleanup(void) {
|
|
}
|
|
/*..........................................................................*/
|
|
QSTimeCtr QS_onGetTime(void) { /* NOTE: invoked with interrupts DISABLED */
|
|
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { /* not set? */
|
|
return QS_tickTime_ - (QSTimeCtr)SysTick->VAL;
|
|
}
|
|
else { /* the rollover occured, but the SysTick_ISR did not run yet */
|
|
return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL;
|
|
}
|
|
}
|
|
/*..........................................................................*/
|
|
void QS_onFlush(void) {
|
|
uint16_t b;
|
|
|
|
QF_INT_DISABLE();
|
|
while ((b = QS_getByte()) != QS_EOD) { /* while not End-Of-Data... */
|
|
QF_INT_ENABLE();
|
|
/* while TXE not empty */
|
|
while ((l_USART0->STATUS & USART_STATUS_TXBL) == 0U) {
|
|
}
|
|
l_USART0->TXDATA = (b & 0xFFU); /* put into the DR register */
|
|
QF_INT_DISABLE();
|
|
}
|
|
QF_INT_ENABLE();
|
|
}
|
|
/*..........................................................................*/
|
|
/*! callback function to reset the target (to be implemented in the BSP) */
|
|
void QS_onReset(void) {
|
|
NVIC_SystemReset();
|
|
}
|
|
/*..........................................................................*/
|
|
/*! callback function to execute a user command (to be implemented in BSP) */
|
|
void QS_onCommand(uint8_t cmdId, uint32_t param) {
|
|
void assert_failed(char const *module, int loc);
|
|
(void)cmdId;
|
|
(void)param;
|
|
QS_BEGIN(COMMAND_STAT, (void *)1) /* application-specific record begin */
|
|
QS_U8(2, cmdId);
|
|
QS_U32(8, param);
|
|
QS_END()
|
|
|
|
if (cmdId == 10U) {
|
|
Q_ERROR();
|
|
}
|
|
else if (cmdId == 11U) {
|
|
assert_failed("QS_onCommand", 123);
|
|
}
|
|
}
|
|
|
|
#endif /* Q_SPY */
|
|
/*--------------------------------------------------------------------------*/
|
|
|
|
/*****************************************************************************
|
|
* NOTE00:
|
|
* The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest
|
|
* ISR priority that is disabled by the QF framework. The value is suitable
|
|
* for the NVIC_SetPriority() CMSIS function.
|
|
*
|
|
* Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e.,
|
|
* with the numerical values of priorities equal or higher than
|
|
* QF_AWARE_ISR_CMSIS_PRI) are allowed to call the QK_ISR_ENTRY/QK_ISR_ENTRY
|
|
* macros or any other QF/QK services. These ISRs are "QF-aware".
|
|
*
|
|
* Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority
|
|
* level (i.e., with the numerical values of priorities less than
|
|
* QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel.
|
|
* Such "QF-unaware" ISRs cannot call any QF/QK services. In particular they
|
|
* can NOT call the macros QK_ISR_ENTRY/QK_ISR_ENTRY. The only mechanism
|
|
* by which a "QF-unaware" ISR can communicate with the QF framework is by
|
|
* triggering a "QF-aware" ISR, which can post/publish events.
|
|
*
|
|
* NOTE01:
|
|
* The QV_onIdle() callback is called with interrupts disabled, because the
|
|
* determination of the idle condition might change by any interrupt posting
|
|
* an event. QV_onIdle() must internally enable interrupts, ideally
|
|
* atomically with putting the CPU to the power-saving mode.
|
|
*
|
|
* NOTE02:
|
|
* The User LED is used to visualize the idle loop activity. The brightness
|
|
* of the LED is proportional to the frequency of invcations of the idle loop.
|
|
* Please note that the LED is toggled with interrupts locked, so no interrupt
|
|
* execution time contributes to the brightness of the User LED.
|
|
*/
|