2018-01-10 18:27:33 -05:00

374 lines
13 KiB
C

/*****************************************************************************
* Product: "Dining Philosophers Problem" example, ThreadX kernel
* Last updated for version 5.6.2
* Last updated on 2016-03-12
*
* Q u a n t u m L e a P s
* ---------------------------
* innovating embedded systems
*
* Copyright (C) Quantum Leaps, LLC. All rights reserved.
*
* This program is open source software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Alternatively, this program may be distributed and modified under the
* terms of Quantum Leaps commercial licenses, which expressly supersede
* the GNU General Public License and are specifically designed for
* licensees interested in retaining the proprietary status of their code.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Contact information:
* https://state-machine.com
* mailto:info@state-machine.com
*****************************************************************************/
#include "qpc.h"
#include "dpp.h"
#include "bsp.h"
#include "stm32f4xx.h" /* CMSIS-compliant header file for the MCU used */
#include "stm32f4xx_exti.h"
#include "stm32f4xx_gpio.h"
#include "stm32f4xx_rcc.h"
#include "stm32f4xx_usart.h"
/* add other drivers if necessary... */
Q_DEFINE_THIS_FILE
/* Local-scope defines -----------------------------------------------------*/
#define LED_GPIO_PORT GPIOD
#define LED_GPIO_CLK RCC_AHB1Periph_GPIOD
#define LED4_PIN GPIO_Pin_12
#define LED3_PIN GPIO_Pin_13
#define LED5_PIN GPIO_Pin_14
#define LED6_PIN GPIO_Pin_15
#define BTN_GPIO_PORT GPIOA
#define BTN_GPIO_CLK RCC_AHB1Periph_GPIOA
#define BTN_B1 GPIO_Pin_0
static unsigned l_rnd; /* random seed */
static TX_TIMER l_tick_timer; /* ThreadX timer to call QF_tickX_() */
#ifdef Q_SPY
QSTimeCtr QS_tickTime_;
QSTimeCtr QS_tickPeriod_;
enum AppRecords { /* application-specific trace records */
PHILO_STAT = QS_USER
};
/* ThreadX thread and thread function for QS output, see NOTE1 */
static TX_THREAD l_qs_output_thread;
static void qs_thread_function(ULONG thread_input);
static ULONG qs_thread_stkSto[64];
#endif
/* ISRs used in the application ==========================================*/
/* BSP functions ===========================================================*/
void BSP_init(void) {
GPIO_InitTypeDef GPIO_struct;
/* NOTE: SystemInit() already called from the startup code
* but SystemCoreClock needs to be updated
*/
SystemCoreClockUpdate();
/* Explictily Disable the automatic FPU state preservation as well as
* the FPU lazy stacking
*/
FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos));
/* Initialize thr port for the LEDs */
RCC_AHB1PeriphClockCmd(LED_GPIO_CLK , ENABLE);
/* GPIO Configuration for the LEDs... */
GPIO_struct.GPIO_Mode = GPIO_Mode_OUT;
GPIO_struct.GPIO_OType = GPIO_OType_PP;
GPIO_struct.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_struct.GPIO_Pin = LED3_PIN;
GPIO_Init(LED_GPIO_PORT, &GPIO_struct);
LED_GPIO_PORT->BSRRH = LED3_PIN; /* turn LED off */
GPIO_struct.GPIO_Pin = LED4_PIN;
GPIO_Init(LED_GPIO_PORT, &GPIO_struct);
LED_GPIO_PORT->BSRRH = LED4_PIN; /* turn LED off */
GPIO_struct.GPIO_Pin = LED5_PIN;
GPIO_Init(LED_GPIO_PORT, &GPIO_struct);
LED_GPIO_PORT->BSRRH = LED5_PIN; /* turn LED off */
GPIO_struct.GPIO_Pin = LED6_PIN;
GPIO_Init(LED_GPIO_PORT, &GPIO_struct);
LED_GPIO_PORT->BSRRH = LED6_PIN; /* turn LED off */
/* Initialize thr port for Button */
RCC_AHB1PeriphClockCmd(BTN_GPIO_CLK , ENABLE);
/* GPIO Configuration for the Button... */
GPIO_struct.GPIO_Pin = BTN_B1;
GPIO_struct.GPIO_Mode = GPIO_Mode_IN;
GPIO_struct.GPIO_OType = GPIO_OType_PP;
GPIO_struct.GPIO_PuPd = GPIO_PuPd_DOWN;
GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(BTN_GPIO_PORT, &GPIO_struct);
/* seed the random number generator */
BSP_randomSeed(1234U);
if (QS_INIT((void *)0) == 0U) { /* initialize the QS software tracing */
Q_ERROR();
}
QS_USR_DICTIONARY(PHILO_STAT);
}
/*..........................................................................*/
void BSP_displayPhilStat(uint8_t n, char const *stat) {
/* exercise the FPU with some floating point computations */
float volatile x;
x = 3.1415926F;
x = x + 2.7182818F;
if (stat[0] == 'h') {
LED_GPIO_PORT->BSRRL = LED3_PIN; /* turn LED on */
}
else {
LED_GPIO_PORT->BSRRH = LED3_PIN; /* turn LED off */
}
if (stat[0] == 'e') {
LED_GPIO_PORT->BSRRL = LED5_PIN; /* turn LED on */
}
else {
LED_GPIO_PORT->BSRRH = LED5_PIN; /* turn LED on */
}
(void)n; /* unused parameter (in all but Spy build configuration) */
QS_BEGIN(PHILO_STAT, AO_Philo[n]) /* application-specific record begin */
QS_U8(1, n); /* Philosopher number */
QS_STR(stat); /* Philosopher status */
QS_END() /* application-specific record end */
}
/*..........................................................................*/
void BSP_displayPaused(uint8_t paused) {
if (paused) {
LED_GPIO_PORT->BSRRL = LED4_PIN; /* turn LED on */
}
else {
LED_GPIO_PORT->BSRRH = LED4_PIN; /* turn LED on */
}
}
/*..........................................................................*/
uint32_t BSP_random(void) { /* a very cheap pseudo-random-number generator */
/* "Super-Duper" Linear Congruential Generator (LCG)
* LCG(2^32, 3*7*11*13*23, 0, seed)
*/
l_rnd = l_rnd * (3U*7U*11U*13U*23U);
return l_rnd >> 8;
}
/*..........................................................................*/
void BSP_randomSeed(uint32_t seed) {
l_rnd = seed;
}
/*..........................................................................*/
void BSP_terminate(int16_t result) {
(void)result;
}
/* QF callbacks ============================================================*/
void QF_onStartup(void) {
/*
* NOTE:
* This application uses the ThreadX timer to periodically call
* the QF_tickX_(0) function. Here, only the clock tick rate of 0
* is used, but other timers can be used to call QF_tickX_() for
* other clock tick rates, if needed.
*
* The choice of a ThreadX timer is not the only option. Applications
* might choose to call QF_tickX_() directly from timer interrupts
* or from active object(s).
*/
Q_ALLEGE(tx_timer_create(&l_tick_timer, /* ThreadX timer object */
(CHAR *)"QF_TICK", /* name of the timer */
(VOID (*)(ULONG))&QF_tickX_, /* expiration function */
0U, /* expiration function input (tick rate) */
1U, /* initial ticks */
1U, /* reschedule ticks */
TX_AUTO_ACTIVATE) /* automatically activate timer */
== TX_SUCCESS);
#ifdef Q_SPY
/* start a ThreadX timer to perform QS output. See NOTE1... */
Q_ALLEGE(tx_thread_create(&l_qs_output_thread, /* thread control block */
(CHAR *)"QS_TX", /* thread name */
&qs_thread_function, /* thread function */
0UL, /* thread input (unsued) */
qs_thread_stkSto, /* stack start */
sizeof(qs_thread_stkSto), /* stack size in bytes */
TX_MAX_PRIORITIES - 1, /* ThreadX prio (lowest possible) */
TX_MAX_PRIORITIES - 1, /* preemption threshold disabled */
TX_NO_TIME_SLICE,
TX_AUTO_START)
== TX_SUCCESS);
#endif /* Q_SPY */
}
/*..........................................................................*/
void QF_onCleanup(void) {
}
/*..........................................................................*/
void Q_onAssert(char const *module, int loc) {
/*
* NOTE: add here your application-specific error handling
*/
(void)module;
(void)loc;
QS_ASSERTION(module, loc, (uint32_t)10000U); /* report assertion to QS */
NVIC_SystemReset();
}
/* QS callbacks ============================================================*/
#ifdef Q_SPY
//............................................................................
static void qs_thread_function(ULONG thread_input) { /* see NOTE1 */
(void)thread_input; /* unused */
for (;;) {
/* turn the LED6 on an off to visualize the QS activity */
LED_GPIO_PORT->BSRRL = LED6_PIN; /* turn LED on */
__NOP(); /* wait a little to actually see the LED glow */
__NOP();
__NOP();
__NOP();
LED_GPIO_PORT->BSRRH = LED6_PIN; /* turn LED off */
if ((USART2->SR & 0x80U) != 0U) { /* is TXE empty? */
uint16_t b;
QF_CRIT_STAT_TYPE intStat;
QF_CRIT_ENTRY(intStat);
b = QS_getByte();
QF_CRIT_EXIT(intStat);
if (b != QS_EOD) { /* not End-Of-Data? */
USART2->DR = (b & 0xFFU); /* put into the DR register */
}
}
/* no blocking in this thread; see NOTE1 */
}
}
/*..........................................................................*/
uint8_t QS_onStartup(void const *arg) {
static uint8_t qsBuf[2*1024]; /* buffer for Quantum Spy */
GPIO_InitTypeDef GPIO_struct;
USART_InitTypeDef USART_struct;
(void)arg; /* avoid the "unused parameter" compiler warning */
QS_initBuf(qsBuf, sizeof(qsBuf));
/* enable peripheral clock for USART2 */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
/* GPIOA clock enable */
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
/* GPIOA Configuration: USART2 TX on PA2 */
GPIO_struct.GPIO_Pin = GPIO_Pin_2;
GPIO_struct.GPIO_Mode = GPIO_Mode_AF;
GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_struct.GPIO_OType = GPIO_OType_PP;
GPIO_struct.GPIO_PuPd = GPIO_PuPd_UP ;
GPIO_Init(GPIOA, &GPIO_struct);
/* Connect USART2 pins to AF2 */
GPIO_PinAFConfig(GPIOA, GPIO_PinSource2, GPIO_AF_USART2); /* TX = PA2 */
GPIO_PinAFConfig(GPIOA, GPIO_PinSource3, GPIO_AF_USART2); /* RX = PA3 */
USART_struct.USART_BaudRate = 115200;
USART_struct.USART_WordLength = USART_WordLength_8b;
USART_struct.USART_StopBits = USART_StopBits_1;
USART_struct.USART_Parity = USART_Parity_No;
USART_struct.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_struct.USART_Mode = USART_Mode_Tx;
USART_Init(USART2, &USART_struct);
USART_Cmd(USART2, ENABLE); // enable USART2
QS_tickPeriod_ = SystemCoreClock / BSP_TICKS_PER_SEC;
QS_tickTime_ = QS_tickPeriod_; /* to start the timestamp at zero */
/* setup the QS filters... */
QS_FILTER_ON(QS_QEP_STATE_ENTRY);
QS_FILTER_ON(QS_QEP_STATE_EXIT);
QS_FILTER_ON(QS_QEP_STATE_INIT);
QS_FILTER_ON(QS_QEP_INIT_TRAN);
QS_FILTER_ON(QS_QEP_INTERN_TRAN);
QS_FILTER_ON(QS_QEP_TRAN);
QS_FILTER_ON(QS_QEP_IGNORED);
QS_FILTER_ON(QS_QEP_DISPATCH);
QS_FILTER_ON(QS_QEP_UNHANDLED);
QS_FILTER_ON(PHILO_STAT);
return (uint8_t)1; /* return success */
}
/*..........................................................................*/
void QS_onCleanup(void) {
}
/*..........................................................................*/
QSTimeCtr QS_onGetTime(void) { /* NOTE: invoked with interrupts DISABLED */
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { /* not set? */
return QS_tickTime_ - (QSTimeCtr)SysTick->VAL;
}
else { /* the rollover occured, but the SysTick_ISR did not run yet */
return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL;
}
}
/*..........................................................................*/
void QS_onFlush(void) {
uint16_t b;
QF_CRIT_STAT_TYPE intStat;
QF_CRIT_ENTRY(intStat);
while ((b = QS_getByte()) != QS_EOD) { /* while not End-Of-Data... */
QF_CRIT_EXIT(intStat);
while ((USART2->SR & USART_FLAG_TXE) == 0) { /* while TXE not empty */
}
USART2->DR = (b & 0xFFU); /* put into the DR register */
QF_CRIT_ENTRY(intStat);
}
QF_CRIT_EXIT(intStat);
}
#endif /* Q_SPY */
/*--------------------------------------------------------------------------*/
/*****************************************************************************
* NOTE1:
* This application uses the ThreadX thread of the lowest priority to perform
* the QS data output to the host. This is not the only choice available, and
* other applications might choose to peform the QS output some other way.
*
* The lowest-priority thread does not block, so in effect, it becomes the
* idle loop. This presents no problems to ThreadX - its idle task in the
* scheduler does not need to run.
*/