mirror of
https://github.com/QuantumLeaps/qpc.git
synced 2025-01-28 07:03:10 +08:00
374 lines
13 KiB
C
374 lines
13 KiB
C
/*****************************************************************************
|
|
* Product: "Dining Philosophers Problem" example, ThreadX kernel
|
|
* Last updated for version 5.6.2
|
|
* Last updated on 2016-03-12
|
|
*
|
|
* Q u a n t u m L e a P s
|
|
* ---------------------------
|
|
* innovating embedded systems
|
|
*
|
|
* Copyright (C) Quantum Leaps, LLC. All rights reserved.
|
|
*
|
|
* This program is open source software: you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as published
|
|
* by the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* Alternatively, this program may be distributed and modified under the
|
|
* terms of Quantum Leaps commercial licenses, which expressly supersede
|
|
* the GNU General Public License and are specifically designed for
|
|
* licensees interested in retaining the proprietary status of their code.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Contact information:
|
|
* https://state-machine.com
|
|
* mailto:info@state-machine.com
|
|
*****************************************************************************/
|
|
#include "qpc.h"
|
|
#include "dpp.h"
|
|
#include "bsp.h"
|
|
|
|
#include "stm32f4xx.h" /* CMSIS-compliant header file for the MCU used */
|
|
#include "stm32f4xx_exti.h"
|
|
#include "stm32f4xx_gpio.h"
|
|
#include "stm32f4xx_rcc.h"
|
|
#include "stm32f4xx_usart.h"
|
|
/* add other drivers if necessary... */
|
|
|
|
Q_DEFINE_THIS_FILE
|
|
|
|
/* Local-scope defines -----------------------------------------------------*/
|
|
#define LED_GPIO_PORT GPIOD
|
|
#define LED_GPIO_CLK RCC_AHB1Periph_GPIOD
|
|
|
|
#define LED4_PIN GPIO_Pin_12
|
|
#define LED3_PIN GPIO_Pin_13
|
|
#define LED5_PIN GPIO_Pin_14
|
|
#define LED6_PIN GPIO_Pin_15
|
|
|
|
#define BTN_GPIO_PORT GPIOA
|
|
#define BTN_GPIO_CLK RCC_AHB1Periph_GPIOA
|
|
#define BTN_B1 GPIO_Pin_0
|
|
|
|
static unsigned l_rnd; /* random seed */
|
|
static TX_TIMER l_tick_timer; /* ThreadX timer to call QF_tickX_() */
|
|
|
|
#ifdef Q_SPY
|
|
QSTimeCtr QS_tickTime_;
|
|
QSTimeCtr QS_tickPeriod_;
|
|
|
|
enum AppRecords { /* application-specific trace records */
|
|
PHILO_STAT = QS_USER
|
|
};
|
|
|
|
/* ThreadX thread and thread function for QS output, see NOTE1 */
|
|
static TX_THREAD l_qs_output_thread;
|
|
static void qs_thread_function(ULONG thread_input);
|
|
static ULONG qs_thread_stkSto[64];
|
|
#endif
|
|
|
|
/* ISRs used in the application ==========================================*/
|
|
|
|
/* BSP functions ===========================================================*/
|
|
void BSP_init(void) {
|
|
GPIO_InitTypeDef GPIO_struct;
|
|
|
|
/* NOTE: SystemInit() already called from the startup code
|
|
* but SystemCoreClock needs to be updated
|
|
*/
|
|
SystemCoreClockUpdate();
|
|
|
|
/* Explictily Disable the automatic FPU state preservation as well as
|
|
* the FPU lazy stacking
|
|
*/
|
|
FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos));
|
|
|
|
/* Initialize thr port for the LEDs */
|
|
RCC_AHB1PeriphClockCmd(LED_GPIO_CLK , ENABLE);
|
|
|
|
/* GPIO Configuration for the LEDs... */
|
|
GPIO_struct.GPIO_Mode = GPIO_Mode_OUT;
|
|
GPIO_struct.GPIO_OType = GPIO_OType_PP;
|
|
GPIO_struct.GPIO_PuPd = GPIO_PuPd_UP;
|
|
GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz;
|
|
|
|
GPIO_struct.GPIO_Pin = LED3_PIN;
|
|
GPIO_Init(LED_GPIO_PORT, &GPIO_struct);
|
|
LED_GPIO_PORT->BSRRH = LED3_PIN; /* turn LED off */
|
|
|
|
GPIO_struct.GPIO_Pin = LED4_PIN;
|
|
GPIO_Init(LED_GPIO_PORT, &GPIO_struct);
|
|
LED_GPIO_PORT->BSRRH = LED4_PIN; /* turn LED off */
|
|
|
|
GPIO_struct.GPIO_Pin = LED5_PIN;
|
|
GPIO_Init(LED_GPIO_PORT, &GPIO_struct);
|
|
LED_GPIO_PORT->BSRRH = LED5_PIN; /* turn LED off */
|
|
|
|
GPIO_struct.GPIO_Pin = LED6_PIN;
|
|
GPIO_Init(LED_GPIO_PORT, &GPIO_struct);
|
|
LED_GPIO_PORT->BSRRH = LED6_PIN; /* turn LED off */
|
|
|
|
/* Initialize thr port for Button */
|
|
RCC_AHB1PeriphClockCmd(BTN_GPIO_CLK , ENABLE);
|
|
|
|
/* GPIO Configuration for the Button... */
|
|
GPIO_struct.GPIO_Pin = BTN_B1;
|
|
GPIO_struct.GPIO_Mode = GPIO_Mode_IN;
|
|
GPIO_struct.GPIO_OType = GPIO_OType_PP;
|
|
GPIO_struct.GPIO_PuPd = GPIO_PuPd_DOWN;
|
|
GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz;
|
|
GPIO_Init(BTN_GPIO_PORT, &GPIO_struct);
|
|
|
|
/* seed the random number generator */
|
|
BSP_randomSeed(1234U);
|
|
|
|
if (QS_INIT((void *)0) == 0U) { /* initialize the QS software tracing */
|
|
Q_ERROR();
|
|
}
|
|
QS_USR_DICTIONARY(PHILO_STAT);
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_displayPhilStat(uint8_t n, char const *stat) {
|
|
/* exercise the FPU with some floating point computations */
|
|
float volatile x;
|
|
x = 3.1415926F;
|
|
x = x + 2.7182818F;
|
|
|
|
if (stat[0] == 'h') {
|
|
LED_GPIO_PORT->BSRRL = LED3_PIN; /* turn LED on */
|
|
}
|
|
else {
|
|
LED_GPIO_PORT->BSRRH = LED3_PIN; /* turn LED off */
|
|
}
|
|
if (stat[0] == 'e') {
|
|
LED_GPIO_PORT->BSRRL = LED5_PIN; /* turn LED on */
|
|
}
|
|
else {
|
|
LED_GPIO_PORT->BSRRH = LED5_PIN; /* turn LED on */
|
|
}
|
|
(void)n; /* unused parameter (in all but Spy build configuration) */
|
|
|
|
QS_BEGIN(PHILO_STAT, AO_Philo[n]) /* application-specific record begin */
|
|
QS_U8(1, n); /* Philosopher number */
|
|
QS_STR(stat); /* Philosopher status */
|
|
QS_END() /* application-specific record end */
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_displayPaused(uint8_t paused) {
|
|
if (paused) {
|
|
LED_GPIO_PORT->BSRRL = LED4_PIN; /* turn LED on */
|
|
}
|
|
else {
|
|
LED_GPIO_PORT->BSRRH = LED4_PIN; /* turn LED on */
|
|
}
|
|
}
|
|
/*..........................................................................*/
|
|
uint32_t BSP_random(void) { /* a very cheap pseudo-random-number generator */
|
|
/* "Super-Duper" Linear Congruential Generator (LCG)
|
|
* LCG(2^32, 3*7*11*13*23, 0, seed)
|
|
*/
|
|
l_rnd = l_rnd * (3U*7U*11U*13U*23U);
|
|
|
|
return l_rnd >> 8;
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_randomSeed(uint32_t seed) {
|
|
l_rnd = seed;
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_terminate(int16_t result) {
|
|
(void)result;
|
|
}
|
|
|
|
|
|
/* QF callbacks ============================================================*/
|
|
void QF_onStartup(void) {
|
|
/*
|
|
* NOTE:
|
|
* This application uses the ThreadX timer to periodically call
|
|
* the QF_tickX_(0) function. Here, only the clock tick rate of 0
|
|
* is used, but other timers can be used to call QF_tickX_() for
|
|
* other clock tick rates, if needed.
|
|
*
|
|
* The choice of a ThreadX timer is not the only option. Applications
|
|
* might choose to call QF_tickX_() directly from timer interrupts
|
|
* or from active object(s).
|
|
*/
|
|
Q_ALLEGE(tx_timer_create(&l_tick_timer, /* ThreadX timer object */
|
|
(CHAR *)"QF_TICK", /* name of the timer */
|
|
(VOID (*)(ULONG))&QF_tickX_, /* expiration function */
|
|
0U, /* expiration function input (tick rate) */
|
|
1U, /* initial ticks */
|
|
1U, /* reschedule ticks */
|
|
TX_AUTO_ACTIVATE) /* automatically activate timer */
|
|
== TX_SUCCESS);
|
|
|
|
#ifdef Q_SPY
|
|
/* start a ThreadX timer to perform QS output. See NOTE1... */
|
|
Q_ALLEGE(tx_thread_create(&l_qs_output_thread, /* thread control block */
|
|
(CHAR *)"QS_TX", /* thread name */
|
|
&qs_thread_function, /* thread function */
|
|
0UL, /* thread input (unsued) */
|
|
qs_thread_stkSto, /* stack start */
|
|
sizeof(qs_thread_stkSto), /* stack size in bytes */
|
|
TX_MAX_PRIORITIES - 1, /* ThreadX prio (lowest possible) */
|
|
TX_MAX_PRIORITIES - 1, /* preemption threshold disabled */
|
|
TX_NO_TIME_SLICE,
|
|
TX_AUTO_START)
|
|
== TX_SUCCESS);
|
|
#endif /* Q_SPY */
|
|
}
|
|
/*..........................................................................*/
|
|
void QF_onCleanup(void) {
|
|
}
|
|
|
|
/*..........................................................................*/
|
|
void Q_onAssert(char const *module, int loc) {
|
|
/*
|
|
* NOTE: add here your application-specific error handling
|
|
*/
|
|
(void)module;
|
|
(void)loc;
|
|
QS_ASSERTION(module, loc, (uint32_t)10000U); /* report assertion to QS */
|
|
NVIC_SystemReset();
|
|
}
|
|
|
|
/* QS callbacks ============================================================*/
|
|
#ifdef Q_SPY
|
|
|
|
//............................................................................
|
|
static void qs_thread_function(ULONG thread_input) { /* see NOTE1 */
|
|
(void)thread_input; /* unused */
|
|
|
|
for (;;) {
|
|
|
|
/* turn the LED6 on an off to visualize the QS activity */
|
|
LED_GPIO_PORT->BSRRL = LED6_PIN; /* turn LED on */
|
|
__NOP(); /* wait a little to actually see the LED glow */
|
|
__NOP();
|
|
__NOP();
|
|
__NOP();
|
|
LED_GPIO_PORT->BSRRH = LED6_PIN; /* turn LED off */
|
|
|
|
if ((USART2->SR & 0x80U) != 0U) { /* is TXE empty? */
|
|
uint16_t b;
|
|
QF_CRIT_STAT_TYPE intStat;
|
|
|
|
QF_CRIT_ENTRY(intStat);
|
|
b = QS_getByte();
|
|
QF_CRIT_EXIT(intStat);
|
|
|
|
if (b != QS_EOD) { /* not End-Of-Data? */
|
|
USART2->DR = (b & 0xFFU); /* put into the DR register */
|
|
}
|
|
}
|
|
|
|
/* no blocking in this thread; see NOTE1 */
|
|
}
|
|
}
|
|
|
|
/*..........................................................................*/
|
|
uint8_t QS_onStartup(void const *arg) {
|
|
static uint8_t qsBuf[2*1024]; /* buffer for Quantum Spy */
|
|
GPIO_InitTypeDef GPIO_struct;
|
|
USART_InitTypeDef USART_struct;
|
|
|
|
(void)arg; /* avoid the "unused parameter" compiler warning */
|
|
QS_initBuf(qsBuf, sizeof(qsBuf));
|
|
|
|
/* enable peripheral clock for USART2 */
|
|
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
|
|
|
|
/* GPIOA clock enable */
|
|
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
|
|
|
|
/* GPIOA Configuration: USART2 TX on PA2 */
|
|
GPIO_struct.GPIO_Pin = GPIO_Pin_2;
|
|
GPIO_struct.GPIO_Mode = GPIO_Mode_AF;
|
|
GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz;
|
|
GPIO_struct.GPIO_OType = GPIO_OType_PP;
|
|
GPIO_struct.GPIO_PuPd = GPIO_PuPd_UP ;
|
|
GPIO_Init(GPIOA, &GPIO_struct);
|
|
|
|
/* Connect USART2 pins to AF2 */
|
|
GPIO_PinAFConfig(GPIOA, GPIO_PinSource2, GPIO_AF_USART2); /* TX = PA2 */
|
|
GPIO_PinAFConfig(GPIOA, GPIO_PinSource3, GPIO_AF_USART2); /* RX = PA3 */
|
|
|
|
USART_struct.USART_BaudRate = 115200;
|
|
USART_struct.USART_WordLength = USART_WordLength_8b;
|
|
USART_struct.USART_StopBits = USART_StopBits_1;
|
|
USART_struct.USART_Parity = USART_Parity_No;
|
|
USART_struct.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
|
|
USART_struct.USART_Mode = USART_Mode_Tx;
|
|
USART_Init(USART2, &USART_struct);
|
|
|
|
USART_Cmd(USART2, ENABLE); // enable USART2
|
|
|
|
QS_tickPeriod_ = SystemCoreClock / BSP_TICKS_PER_SEC;
|
|
QS_tickTime_ = QS_tickPeriod_; /* to start the timestamp at zero */
|
|
|
|
/* setup the QS filters... */
|
|
QS_FILTER_ON(QS_QEP_STATE_ENTRY);
|
|
QS_FILTER_ON(QS_QEP_STATE_EXIT);
|
|
QS_FILTER_ON(QS_QEP_STATE_INIT);
|
|
QS_FILTER_ON(QS_QEP_INIT_TRAN);
|
|
QS_FILTER_ON(QS_QEP_INTERN_TRAN);
|
|
QS_FILTER_ON(QS_QEP_TRAN);
|
|
QS_FILTER_ON(QS_QEP_IGNORED);
|
|
QS_FILTER_ON(QS_QEP_DISPATCH);
|
|
QS_FILTER_ON(QS_QEP_UNHANDLED);
|
|
|
|
QS_FILTER_ON(PHILO_STAT);
|
|
|
|
return (uint8_t)1; /* return success */
|
|
}
|
|
/*..........................................................................*/
|
|
void QS_onCleanup(void) {
|
|
}
|
|
/*..........................................................................*/
|
|
QSTimeCtr QS_onGetTime(void) { /* NOTE: invoked with interrupts DISABLED */
|
|
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { /* not set? */
|
|
return QS_tickTime_ - (QSTimeCtr)SysTick->VAL;
|
|
}
|
|
else { /* the rollover occured, but the SysTick_ISR did not run yet */
|
|
return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL;
|
|
}
|
|
}
|
|
/*..........................................................................*/
|
|
void QS_onFlush(void) {
|
|
uint16_t b;
|
|
QF_CRIT_STAT_TYPE intStat;
|
|
|
|
QF_CRIT_ENTRY(intStat);
|
|
while ((b = QS_getByte()) != QS_EOD) { /* while not End-Of-Data... */
|
|
QF_CRIT_EXIT(intStat);
|
|
while ((USART2->SR & USART_FLAG_TXE) == 0) { /* while TXE not empty */
|
|
}
|
|
USART2->DR = (b & 0xFFU); /* put into the DR register */
|
|
QF_CRIT_ENTRY(intStat);
|
|
}
|
|
QF_CRIT_EXIT(intStat);
|
|
}
|
|
|
|
#endif /* Q_SPY */
|
|
/*--------------------------------------------------------------------------*/
|
|
|
|
/*****************************************************************************
|
|
* NOTE1:
|
|
* This application uses the ThreadX thread of the lowest priority to perform
|
|
* the QS data output to the host. This is not the only choice available, and
|
|
* other applications might choose to peform the QS output some other way.
|
|
*
|
|
* The lowest-priority thread does not block, so in effect, it becomes the
|
|
* idle loop. This presents no problems to ThreadX - its idle task in the
|
|
* scheduler does not need to run.
|
|
*/
|
|
|