Quantum Leaps cd6736f1fd 5.4.0
2015-04-28 13:45:35 -04:00

475 lines
18 KiB
C

/*****************************************************************************
* Product: DPP example, EK-TM4C123GXL board, cooperative QV kernel
* Last Updated for Version: 5.4.0
* Date of the Last Update: 2015-04-04
*
* Q u a n t u m L e a P s
* ---------------------------
* innovating embedded systems
*
* Copyright (C) Quantum Leaps, LLC. state-machine.com.
*
* This program is open source software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Alternatively, this program may be distributed and modified under the
* terms of Quantum Leaps commercial licenses, which expressly supersede
* the GNU General Public License and are specifically designed for
* licensees interested in retaining the proprietary status of their code.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Contact information:
* Web: www.state-machine.com
* Email: info@state-machine.com
*****************************************************************************/
#include "qpc.h"
#include "dpp.h"
#include "bsp.h"
#include "TM4C123GH6PM.h" /* the device specific header (TI) */
#include "rom.h" /* the built-in ROM functions (TI) */
#include "sysctl.h" /* system control driver (TI) */
#include "gpio.h" /* GPIO driver (TI) */
/* add other drivers if necessary... */
Q_DEFINE_THIS_FILE
/*!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
* Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
* DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
*/
enum KernelUnawareISRs { /* see NOTE00 */
/* ... */
MAX_KERNEL_UNAWARE_CMSIS_PRI /* keep always last */
};
/* "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts */
Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI);
enum KernelAwareISRs {
GPIOA_PRIO = QF_AWARE_ISR_CMSIS_PRI, /* see NOTE00 */
SYSTICK_PRIO,
/* ... */
MAX_KERNEL_AWARE_CMSIS_PRI /* keep always last */
};
/* "kernel-aware" interrupts should not overlap the PendSV priority */
Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS)));
/* ISRs defined in this BSP ------------------------------------------------*/
void SysTick_Handler(void);
void GPIOPortA_IRQHandler(void);
/* Local-scope objects -----------------------------------------------------*/
#define LED_RED (1U << 1)
#define LED_GREEN (1U << 3)
#define LED_BLUE (1U << 2)
#define BTN_SW1 (1U << 4)
#define BTN_SW2 (1U << 0)
static unsigned l_rnd; /* random seed */
#ifdef Q_SPY
QSTimeCtr QS_tickTime_;
QSTimeCtr QS_tickPeriod_;
static uint8_t l_SysTick_Handler;
static uint8_t l_GPIOPortA_IRQHandler;
#define UART_BAUD_RATE 115200U
#define UART_FR_TXFE 0x80U
#define UART_TXFIFO_DEPTH 16U
enum AppRecords { /* application-specific trace records */
PHILO_STAT = QS_USER
};
#endif
/*..........................................................................*/
void SysTick_Handler(void) {
/* state of the button debouncing, see below */
static struct ButtonsDebouncing {
uint32_t depressed;
uint32_t previous;
} buttons = { ~0U, ~0U };
uint32_t current;
uint32_t tmp;
#ifdef Q_SPY
{
tmp = SysTick->CTRL; /* clear SysTick_CTRL_COUNTFLAG */
QS_tickTime_ += QS_tickPeriod_; /* account for the clock rollover */
}
#endif
QF_TICK_X(0U, &l_SysTick_Handler); /* process time events for rate 0 */
/* Perform the debouncing of buttons. The algorithm for debouncing
* adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
* and Michael Barr, page 71.
*/
current = ~GPIOF->DATA_Bits[BTN_SW1 | BTN_SW2]; /* read SW1 and SW2 */
tmp = buttons.depressed; /* save the debounced depressed buttons */
buttons.depressed |= (buttons.previous & current); /* set depressed */
buttons.depressed &= (buttons.previous | current); /* clear released */
buttons.previous = current; /* update the history */
tmp ^= buttons.depressed; /* changed debounced depressed */
if ((tmp & BTN_SW1) != 0U) { /* debounced SW1 state changed? */
if ((buttons.depressed & BTN_SW1) != 0U) { /* is SW1 depressed? */
static QEvt const pauseEvt = { PAUSE_SIG, 0U, 0U};
QF_PUBLISH(&pauseEvt, &l_SysTick_Handler);
}
else { /* the button is released */
static QEvt const serveEvt = { SERVE_SIG, 0U, 0U};
QF_PUBLISH(&serveEvt, &l_SysTick_Handler);
}
}
}
/*..........................................................................*/
void GPIOPortA_IRQHandler(void) {
QACTIVE_POST(AO_Table, Q_NEW(QEvt, MAX_PUB_SIG), /* for testing... */
&l_GPIOPortA_IRQHandler);
}
/*..........................................................................*/
void BSP_init(void) {
/* NOTE: SystemInit() already called from the startup code
* but SystemCoreClock needs to be updated
*/
SystemCoreClockUpdate();
/* configure the FPU usage by choosing one of the options... */
#if 1
/* OPTION 1:
* Use the automatic FPU state preservation and the FPU lazy stacking.
*
* NOTE:
* Use the following setting when FPU is used in more than one task or
* in any ISRs. This setting is the safest and recommended, but requires
* extra stack space and CPU cycles.
*/
FPU->FPCCR |= (1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos);
#else
/* OPTION 2:
* Do NOT to use the automatic FPU state preservation and
* do NOT to use the FPU lazy stacking.
*
* NOTE:
* Use the following setting when FPU is used in ONE task only and not
* in any ISR. This setting is very efficient, but if more than one task
* (or ISR) start using the FPU, this can lead to corruption of the
* FPU registers. This option should be used with CAUTION.
*/
FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos));
#endif
/* enable clock to the peripherals used by the application */
SYSCTL->RCGC2 |= (1U << 5); /* enable clock to GPIOF */
__NOP(); /* wait after enabling clocks */
__NOP();
__NOP();
/* configure the LEDs and push buttons */
GPIOF->DIR |= (LED_RED | LED_GREEN | LED_BLUE);/* set direction: output */
GPIOF->DEN |= (LED_RED | LED_GREEN | LED_BLUE); /* digital enable */
GPIOF->DATA_Bits[LED_RED] = 0; /* turn the LED off */
GPIOF->DATA_Bits[LED_GREEN] = 0; /* turn the LED off */
GPIOF->DATA_Bits[LED_BLUE] = 0; /* turn the LED off */
/* configure the Buttons */
GPIOF->DIR &= ~(BTN_SW1 | BTN_SW2); /* set direction: input */
ROM_GPIOPadConfigSet(GPIOF_BASE, (BTN_SW1 | BTN_SW2),
GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU);
BSP_randomSeed(1234U);
if (QS_INIT((void *)0) == 0) { /* initialize the QS software tracing */
Q_ERROR();
}
QS_OBJ_DICTIONARY(&l_SysTick_Handler);
QS_OBJ_DICTIONARY(&l_GPIOPortA_IRQHandler);
}
/*..........................................................................*/
void BSP_displayPhilStat(uint8_t n, char const *stat) {
GPIOF->DATA_Bits[LED_RED] = ((stat[0] == 'h') ? LED_RED : 0U);
GPIOF->DATA_Bits[LED_GREEN] = ((stat[0] == 'e') ? LED_GREEN : 0U);
QS_BEGIN(PHILO_STAT, AO_Philo[n]) /* application-specific record begin */
QS_U8(1, n); /* Philosopher number */
QS_STR(stat); /* Philosopher status */
QS_END()
}
/*..........................................................................*/
void BSP_displayPaused(uint8_t paused) {
GPIOF->DATA_Bits[LED_RED] = ((paused != 0U) ? LED_RED : 0U);
}
/*..........................................................................*/
uint32_t BSP_random(void) { /* a very cheap pseudo-random-number generator */
/* The flating point code is to exercise the FPU
*/
float volatile x = 3.1415926F;
x = x + 2.7182818F;
/* "Super-Duper" Linear Congruential Generator (LCG)
* LCG(2^32, 3*7*11*13*23, 0, seed)
*/
l_rnd = l_rnd * (3U*7U*11U*13U*23U);
return l_rnd >> 8;
}
/*..........................................................................*/
void BSP_randomSeed(uint32_t seed) {
l_rnd = seed;
}
/*..........................................................................*/
void BSP_terminate(int16_t result) {
(void)result;
}
/*..........................................................................*/
void QF_onStartup(void) {
/* set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate */
SysTick_Config(SystemCoreClock / BSP_TICKS_PER_SEC);
/* assing all priority bits for preemption-prio. and none to sub-prio. */
NVIC_SetPriorityGrouping(0U);
/* set priorities of ALL ISRs used in the system, see NOTE00
*
* !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
* Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
* DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
*/
NVIC_SetPriority(SysTick_IRQn, SYSTICK_PRIO);
NVIC_SetPriority(GPIOA_IRQn, GPIOA_PRIO);
/* ... */
/* enable IRQs... */
NVIC_EnableIRQ(GPIOA_IRQn);
}
/*..........................................................................*/
void QF_onCleanup(void) {
}
/*..........................................................................*/
void QV_onIdle(void) { /* called with interrupts disabled, see NOTE01 */
/* toggle the User LED on and then off, see NOTE02 */
GPIOF->DATA_Bits[LED_BLUE] = LED_BLUE; /* turn the Blue LED on */
GPIOF->DATA_Bits[LED_BLUE] = 0U; /* turn the Blue LED off */
#ifdef Q_SPY
QF_INT_ENABLE();
if ((UART0->FR & UART_FR_TXFE) != 0U) { /* TX done? */
uint16_t fifo = UART_TXFIFO_DEPTH; /* max bytes we can accept */
uint8_t const *block;
QF_INT_DISABLE();
block = QS_getBlock(&fifo); /* try to get next block to transmit */
QF_INT_ENABLE();
while (fifo-- != 0) { /* any bytes in the block? */
UART0->DR = *block++; /* put into the FIFO */
}
}
#elif defined NDEBUG
/* Put the CPU and peripherals to the low-power mode.
* you might need to customize the clock management for your application,
* see the datasheet for your particular Cortex-M MCU.
*/
QV_CPU_SLEEP(); /* atomically go to sleep and enable interrupts */
#else
QF_INT_ENABLE(); /* just enable interrupts */
#endif
}
/*..........................................................................*/
/* NOTE Q_onAssert() defined in assembly in startup_TM4C123GH6PM.s */
/*--------------------------------------------------------------------------*/
#ifdef Q_SPY
/*..........................................................................*/
uint8_t QS_onStartup(void const *arg) {
static uint8_t qsBuf[2*1024]; /* buffer for Quantum Spy */
uint32_t tmp;
QS_initBuf(qsBuf, sizeof(qsBuf));
/* enable the peripherals used by the UART0 */
SYSCTL->RCGC1 |= (1U << 0); /* enable clock to UART0 */
SYSCTL->RCGC2 |= (1U << 0); /* enable clock to GPIOA */
__NOP(); /* wait after enabling clocks */
__NOP();
__NOP();
/* configure UART0 pins for UART operation */
tmp = (1U << 0) | (1U << 1);
GPIOA->DIR &= ~tmp;
GPIOA->AFSEL |= tmp;
GPIOA->DR2R |= tmp; /* set 2mA drive, DR4R and DR8R are cleared */
GPIOA->SLR &= ~tmp;
GPIOA->ODR &= ~tmp;
GPIOA->PUR &= ~tmp;
GPIOA->PDR &= ~tmp;
GPIOA->DEN |= tmp;
/* configure the UART for the desired baud rate, 8-N-1 operation */
tmp = (((ROM_SysCtlClockGet() * 8U) / UART_BAUD_RATE) + 1U) / 2U;
UART0->IBRD = tmp / 64U;
UART0->FBRD = tmp % 64U;
UART0->LCRH = 0x60U; /* configure 8-N-1 operation */
UART0->LCRH |= 0x10U;
UART0->CTL |= (1U << 0) | (1U << 8) | (1U << 9);
QS_tickPeriod_ = ROM_SysCtlClockGet() / BSP_TICKS_PER_SEC;
QS_tickTime_ = QS_tickPeriod_; /* to start the timestamp at zero */
/* setup the QS filters... */
QS_FILTER_ON(QS_QEP_STATE_ENTRY);
QS_FILTER_ON(QS_QEP_STATE_EXIT);
QS_FILTER_ON(QS_QEP_STATE_INIT);
QS_FILTER_ON(QS_QEP_INIT_TRAN);
QS_FILTER_ON(QS_QEP_INTERN_TRAN);
QS_FILTER_ON(QS_QEP_TRAN);
QS_FILTER_ON(QS_QEP_IGNORED);
QS_FILTER_ON(QS_QEP_DISPATCH);
QS_FILTER_ON(QS_QEP_UNHANDLED);
// QS_FILTER_ON(QS_QF_ACTIVE_ADD);
// QS_FILTER_ON(QS_QF_ACTIVE_REMOVE);
// QS_FILTER_ON(QS_QF_ACTIVE_SUBSCRIBE);
// QS_FILTER_ON(QS_QF_ACTIVE_UNSUBSCRIBE);
// QS_FILTER_ON(QS_QF_ACTIVE_POST_FIFO);
// QS_FILTER_ON(QS_QF_ACTIVE_POST_LIFO);
// QS_FILTER_ON(QS_QF_ACTIVE_GET);
// QS_FILTER_ON(QS_QF_ACTIVE_GET_LAST);
// QS_FILTER_ON(QS_QF_EQUEUE_INIT);
// QS_FILTER_ON(QS_QF_EQUEUE_POST_FIFO);
// QS_FILTER_ON(QS_QF_EQUEUE_POST_LIFO);
// QS_FILTER_ON(QS_QF_EQUEUE_GET);
// QS_FILTER_ON(QS_QF_EQUEUE_GET_LAST);
// QS_FILTER_ON(QS_QF_MPOOL_INIT);
// QS_FILTER_ON(QS_QF_MPOOL_GET);
// QS_FILTER_ON(QS_QF_MPOOL_PUT);
// QS_FILTER_ON(QS_QF_PUBLISH);
// QS_FILTER_ON(QS_QF_RESERVED8);
// QS_FILTER_ON(QS_QF_NEW);
// QS_FILTER_ON(QS_QF_GC_ATTEMPT);
// QS_FILTER_ON(QS_QF_GC);
QS_FILTER_ON(QS_QF_TICK);
// QS_FILTER_ON(QS_QF_TIMEEVT_ARM);
// QS_FILTER_ON(QS_QF_TIMEEVT_AUTO_DISARM);
// QS_FILTER_ON(QS_QF_TIMEEVT_DISARM_ATTEMPT);
// QS_FILTER_ON(QS_QF_TIMEEVT_DISARM);
// QS_FILTER_ON(QS_QF_TIMEEVT_REARM);
// QS_FILTER_ON(QS_QF_TIMEEVT_POST);
// QS_FILTER_ON(QS_QF_TIMEEVT_CTR);
// QS_FILTER_ON(QS_QF_CRIT_ENTRY);
// QS_FILTER_ON(QS_QF_CRIT_EXIT);
// QS_FILTER_ON(QS_QF_ISR_ENTRY);
// QS_FILTER_ON(QS_QF_ISR_EXIT);
// QS_FILTER_ON(QS_QF_INT_DISABLE);
// QS_FILTER_ON(QS_QF_INT_ENABLE);
// QS_FILTER_ON(QS_QF_ACTIVE_POST_ATTEMPT);
// QS_FILTER_ON(QS_QF_EQUEUE_POST_ATTEMPT);
// QS_FILTER_ON(QS_QF_MPOOL_GET_ATTEMPT);
// QS_FILTER_ON(QS_QF_RESERVED1);
// QS_FILTER_ON(QS_QF_RESERVED0);
// QS_FILTER_ON(QS_QK_MUTEX_LOCK);
// QS_FILTER_ON(QS_QK_MUTEX_UNLOCK);
// QS_FILTER_ON(QS_QK_SCHEDULE);
// QS_FILTER_ON(QS_QK_RESERVED1);
// QS_FILTER_ON(QS_QK_RESERVED0);
// QS_FILTER_ON(QS_QEP_TRAN_HIST);
// QS_FILTER_ON(QS_QEP_TRAN_EP);
// QS_FILTER_ON(QS_QEP_TRAN_XP);
// QS_FILTER_ON(QS_QEP_RESERVED1);
// QS_FILTER_ON(QS_QEP_RESERVED0);
QS_FILTER_ON(QS_SIG_DICT);
QS_FILTER_ON(QS_OBJ_DICT);
QS_FILTER_ON(QS_FUN_DICT);
QS_FILTER_ON(QS_USR_DICT);
QS_FILTER_ON(QS_EMPTY);
QS_FILTER_ON(QS_RESERVED3);
QS_FILTER_ON(QS_RESERVED2);
QS_FILTER_ON(QS_TEST_RUN);
QS_FILTER_ON(QS_TEST_FAIL);
QS_FILTER_ON(QS_ASSERT_FAIL);
return (uint8_t)1; /* return success */
}
/*..........................................................................*/
void QS_onCleanup(void) {
}
/*..........................................................................*/
QSTimeCtr QS_onGetTime(void) { /* NOTE: invoked with interrupts DISABLED */
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { /* not set? */
return QS_tickTime_ - (QSTimeCtr)SysTick->VAL;
}
else { /* the rollover occured, but the SysTick_ISR did not run yet */
return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL;
}
}
/*..........................................................................*/
void QS_onFlush(void) {
uint16_t fifo = UART_TXFIFO_DEPTH; /* Tx FIFO depth */
uint8_t const *block;
QF_INT_DISABLE();
while ((block = QS_getBlock(&fifo)) != (uint8_t *)0) {
QF_INT_ENABLE();
/* busy-wait until TX FIFO empty */
while ((UART0->FR & UART_FR_TXFE) == 0) {
}
while (fifo-- != 0) { /* any bytes in the block? */
UART0->DR = *block++; /* put into the TX FIFO */
}
fifo = UART_TXFIFO_DEPTH; /* re-load the Tx FIFO depth */
QF_INT_DISABLE();
}
QF_INT_ENABLE();
}
#endif /* Q_SPY */
/*--------------------------------------------------------------------------*/
/*****************************************************************************
* NOTE00:
* The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest
* ISR priority that is disabled by the QF framework. The value is suitable
* for the NVIC_SetPriority() CMSIS function.
*
* Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e.,
* with the numerical values of priorities equal or higher than
* QF_AWARE_ISR_CMSIS_PRI) are allowed to call the QK_ISR_ENTRY/QK_ISR_ENTRY
* macros or any other QF/QK services. These ISRs are "QF-aware".
*
* Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority
* level (i.e., with the numerical values of priorities less than
* QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel.
* Such "QF-unaware" ISRs cannot call any QF/QK services. In particular they
* can NOT call the macros QK_ISR_ENTRY/QK_ISR_ENTRY. The only mechanism
* by which a "QF-unaware" ISR can communicate with the QF framework is by
* triggering a "QF-aware" ISR, which can post/publish events.
*
* NOTE01:
* The QV_onIdle() callback is called with interrupts disabled, because the
* determination of the idle condition might change by any interrupt posting
* an event. QV_onIdle() must internally enable interrupts, ideally
* atomically with putting the CPU to the power-saving mode.
*
* NOTE02:
* The User LED is used to visualize the idle loop activity. The brightness
* of the LED is proportional to the frequency of invcations of the idle loop.
* Please note that the LED is toggled with interrupts locked, so no interrupt
* execution time contributes to the brightness of the User LED.
*/