mirror of
https://github.com/QuantumLeaps/qpc.git
synced 2025-01-21 06:53:11 +08:00
381 lines
13 KiB
C
381 lines
13 KiB
C
/*****************************************************************************
|
|
* Product: DPP on MSP-EXP430G2 board, preemptive QK kernel
|
|
* Last Updated for Version: 5.4.0
|
|
* Date of the Last Update: 2015-04-04
|
|
*
|
|
* Q u a n t u m L e a P s
|
|
* ---------------------------
|
|
* innovating embedded systems
|
|
*
|
|
* Copyright (C) Quantum Leaps, LLC. state-machine.com.
|
|
*
|
|
* This program is open source software: you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as published
|
|
* by the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* Alternatively, this program may be distributed and modified under the
|
|
* terms of Quantum Leaps commercial licenses, which expressly supersede
|
|
* the GNU General Public License and are specifically designed for
|
|
* licensees interested in retaining the proprietary status of their code.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Contact information:
|
|
* Web: www.state-machine.com
|
|
* Email: info@state-machine.com
|
|
*****************************************************************************/
|
|
#include "qpc.h"
|
|
#include "dpp.h"
|
|
#include "bsp.h"
|
|
|
|
#include <msp430g2553.h> /* MSP430 variant used */
|
|
/* add other drivers if necessary... */
|
|
|
|
Q_DEFINE_THIS_FILE
|
|
|
|
/* Local-scope objects -----------------------------------------------------*/
|
|
/* 8MHz clock setting, see BSP_init() */
|
|
#define BSP_MCK 8000000U
|
|
#define BSP_SMCLK 8000000U
|
|
|
|
/* LEDs on the MSP-EXP430G2 board */
|
|
#define LED1 (1U << 0)
|
|
#define LED2 (1U << 6)
|
|
|
|
/* Buttons on the MSP-EXP430G2 board */
|
|
#define BTN1 (1U << 3)
|
|
|
|
/* random seed */
|
|
static uint32_t l_rnd;
|
|
|
|
#ifdef Q_SPY
|
|
|
|
#define TXD (1U << 2)
|
|
#define RXD (1U << 1)
|
|
|
|
QSTimeCtr QS_tickTime_;
|
|
static uint8_t const l_timerA_ISR = 0U;
|
|
|
|
enum AppRecords { /* application-specific trace records */
|
|
PHILO_STAT = QS_USER
|
|
};
|
|
|
|
#endif
|
|
|
|
/* ISRs used in this project ===============================================*/
|
|
#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
|
|
__interrupt void TIMER0_A0_ISR(void); /* prototype */
|
|
#pragma vector=TIMER0_A0_VECTOR
|
|
__interrupt void TIMER0_A0_ISR(void)
|
|
#elif defined(__GNUC__)
|
|
void __attribute__ ((interrupt(TIMER0_A0_VECTOR)))
|
|
TIMER0_A0_ISR(void)
|
|
#else
|
|
#error MSP430 compiler not supported!
|
|
#endif
|
|
{
|
|
/* state of the button debouncing, see below */
|
|
static struct ButtonsDebouncing {
|
|
uint8_t depressed;
|
|
uint8_t previous;
|
|
} buttons = { (uint8_t)~0U, (uint8_t)~0U };
|
|
uint8_t current;
|
|
uint8_t tmp;
|
|
|
|
QK_ISR_ENTRY(); /* inform QK about entering the ISR */
|
|
|
|
TACTL &= ~TAIFG; /* clear the interrupt pending flag */
|
|
|
|
#ifdef Q_SPY
|
|
QS_tickTime_ +=
|
|
(((BSP_SMCLK / 8) + BSP_TICKS_PER_SEC/2) / BSP_TICKS_PER_SEC) + 1;
|
|
#endif
|
|
|
|
QF_TICK_X(0U, (void *)0); /* process all time events at rate 0 */
|
|
|
|
/* Perform the debouncing of buttons. The algorithm for debouncing
|
|
* adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
|
|
* and Michael Barr, page 71.
|
|
*/
|
|
current = ~P1IN; /* read P1 port with the state of BTN1 */
|
|
tmp = buttons.depressed; /* save the debounced depressed buttons */
|
|
buttons.depressed |= (buttons.previous & current); /* set depressed */
|
|
buttons.depressed &= (buttons.previous | current); /* clear released */
|
|
buttons.previous = current; /* update the history */
|
|
tmp ^= buttons.depressed; /* changed debounced depressed */
|
|
if ((tmp & BTN1) != 0U) { /* debounced BTN1 state changed? */
|
|
if ((buttons.depressed & BTN1) != 0U) { /* is BTN1 depressed? */
|
|
static QEvt const pauseEvt = { PAUSE_SIG, 0U, 0U};
|
|
QF_PUBLISH(&pauseEvt, &l_timerA_ISR);
|
|
}
|
|
else { /* the button is released */
|
|
static QEvt const serveEvt = { SERVE_SIG, 0U, 0U};
|
|
QF_PUBLISH(&serveEvt, &l_timerA_ISR);
|
|
}
|
|
}
|
|
|
|
QK_ISR_EXIT(); /* inform QK about exiting the ISR */
|
|
}
|
|
|
|
/* BSP functions ===========================================================*/
|
|
void BSP_init(void) {
|
|
WDTCTL = WDTPW | WDTHOLD; /* stop watchdog timer */
|
|
|
|
/* configure the Basic Clock Module */
|
|
DCOCTL = 0; /* Select lowest DCOx and MODx settings */
|
|
BCSCTL1 = CALBC1_8MHZ; /* Set DCO */
|
|
DCOCTL = CALDCO_8MHZ;
|
|
|
|
/* configure pins for LEDs */
|
|
P1DIR |= (LED1 | LED2); /* set LED1 and LED2 pins to output */
|
|
|
|
/* configure pin for Button */
|
|
P1DIR &= ~BTN1; /* set BTN1 pin as input */
|
|
P1OUT |= BTN1; /* drive output to hi */
|
|
P1REN |= BTN1; /* enable internal pull up register */
|
|
|
|
if (QS_INIT((void *)0) == 0) { /* initialize the QS software tracing */
|
|
Q_ERROR();
|
|
}
|
|
QS_OBJ_DICTIONARY(&l_timerA_ISR);
|
|
QS_USR_DICTIONARY(PHILO_STAT);
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_displayPhilStat(uint8_t n, char const *stat) {
|
|
if (stat[0] == 'h') { /* is Philo hungry? */
|
|
P1OUT |= LED1; /* turn LED1 on */
|
|
}
|
|
else {
|
|
P1OUT &= ~LED1; /* turn LED1 off */
|
|
}
|
|
|
|
QS_BEGIN(PHILO_STAT, AO_Philo[n]) /* application-specific record begin */
|
|
QS_U8(1, n); /* Philosopher number */
|
|
QS_STR(stat); /* Philosopher status */
|
|
QS_END()
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_displayPaused(uint8_t paused) {
|
|
/* not enouhg LEDs to implement this feature */
|
|
if (paused != 0U) {
|
|
//P1OUT |= LED1;
|
|
}
|
|
else {
|
|
//P1OUT &= ~LED1;
|
|
}
|
|
}
|
|
/*..........................................................................*/
|
|
uint32_t BSP_random(void) { /* a very cheap pseudo-random-number generator */
|
|
/* "Super-Duper" Linear Congruential Generator (LCG)
|
|
* LCG(2^32, 3*7*11*13*23, 0, seed)
|
|
*/
|
|
l_rnd = l_rnd * ((uint32_t)3U*7U*11U*13U*23U);
|
|
|
|
return l_rnd >> 8;
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_randomSeed(uint32_t seed) {
|
|
l_rnd = seed;
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_terminate(int16_t result) {
|
|
(void)result;
|
|
}
|
|
|
|
|
|
/* QF callbacks ============================================================*/
|
|
void QF_onStartup(void) {
|
|
TACTL = (ID_3 | TASSEL_2 | MC_1); /* SMCLK, /8 divider, upmode */
|
|
TACCR0 = (((BSP_SMCLK / 8U) + BSP_TICKS_PER_SEC/2U) / BSP_TICKS_PER_SEC);
|
|
CCTL0 = CCIE; /* CCR0 interrupt enabled */
|
|
}
|
|
/*..........................................................................*/
|
|
void QF_onCleanup(void) {
|
|
}
|
|
/*..........................................................................*/
|
|
void QK_onIdle(void) {
|
|
/* toggle LED2 on and then off, see NOTE1 */
|
|
QF_INT_DISABLE();
|
|
P1OUT |= LED2; /* turn LED2 on */
|
|
P1OUT &= ~LED2; /* turn LED2 off */
|
|
QF_INT_ENABLE();
|
|
|
|
#ifdef Q_SPY
|
|
if (((IFG2 & UCA0TXIFG)) != 0U) { /* UART not transmitting? */
|
|
uint16_t b;
|
|
|
|
QF_INT_DISABLE();
|
|
b = QS_getByte();
|
|
QF_INT_ENABLE();
|
|
|
|
if (b != QS_EOD) {
|
|
UCA0TXBUF = (uint8_t)b; /* stick the byte to the TX BUF */
|
|
}
|
|
}
|
|
#elif defined NDEBUG
|
|
/* Put the CPU and peripherals to the low-power mode.
|
|
* you might need to customize the clock management for your application,
|
|
* see the datasheet for your particular MSP430 MCU.
|
|
*/
|
|
__low_power_mode_1(); /* Enter LPM1; also ENABLES interrupts */
|
|
#endif
|
|
}
|
|
/*..........................................................................*/
|
|
void Q_onAssert(char const Q_ROM * const file, int line) {
|
|
/* implement the error-handling policy for your application!!! */
|
|
QF_INT_DISABLE(); /* disable all interrupts */
|
|
|
|
/* cause the reset of the CPU... */
|
|
WDTCTL = WDTPW | WDTHOLD;
|
|
__asm(" push &0xFFFE");
|
|
/* return from function does the reset */
|
|
}
|
|
|
|
/* QS callbacks ============================================================*/
|
|
#ifdef Q_SPY
|
|
|
|
uint8_t QS_onStartup(void const *arg) {
|
|
static uint8_t qsBuf[80]; /* buffer for QS; RAM is tight! */
|
|
uint16_t tmp;
|
|
|
|
QS_initBuf(qsBuf, sizeof(qsBuf));
|
|
|
|
/* configure the UART pins... */
|
|
P1DIR |= (RXD | TXD); /* config RX and TX pins as outputs */
|
|
P1OUT &= ~(RXD | TXD); /* drive RX and TX pins hi */
|
|
P1SEL |= (RXD | TXD); /* select the UART function... */
|
|
P1SEL2 |= (RXD | TXD); /* ... for RXD and TXD */
|
|
|
|
/* configure the hardware UART... */
|
|
UCA0CTL1 |= UCSSEL_2; /* select SMCLK for the UART */
|
|
|
|
tmp = BSP_SMCLK / 9600U; /* baud-rate value for 9600 bauds */
|
|
UCA0BR0 = (uint8_t)tmp; /* load the baud-rate register low */
|
|
UCA0BR1 = (uint8_t)(tmp >> 8); /* load the baud-rate register hi */
|
|
|
|
UCA0MCTL = UCBRS0; /* modulation UCBRSx = 1 */
|
|
UCA0CTL1 &= ~UCSWRST; /* initialize USCI state machine */
|
|
|
|
/* setup the QS filters... */
|
|
QS_FILTER_ON(QS_QEP_STATE_ENTRY);
|
|
QS_FILTER_ON(QS_QEP_STATE_EXIT);
|
|
QS_FILTER_ON(QS_QEP_STATE_INIT);
|
|
QS_FILTER_ON(QS_QEP_INIT_TRAN);
|
|
QS_FILTER_ON(QS_QEP_INTERN_TRAN);
|
|
QS_FILTER_ON(QS_QEP_TRAN);
|
|
QS_FILTER_ON(QS_QEP_IGNORED);
|
|
QS_FILTER_ON(QS_QEP_DISPATCH);
|
|
QS_FILTER_ON(QS_QEP_UNHANDLED);
|
|
|
|
// QS_FILTER_ON(QS_QF_ACTIVE_ADD);
|
|
// QS_FILTER_ON(QS_QF_ACTIVE_REMOVE);
|
|
// QS_FILTER_ON(QS_QF_ACTIVE_SUBSCRIBE);
|
|
// QS_FILTER_ON(QS_QF_ACTIVE_UNSUBSCRIBE);
|
|
// QS_FILTER_ON(QS_QF_ACTIVE_POST_FIFO);
|
|
// QS_FILTER_ON(QS_QF_ACTIVE_POST_LIFO);
|
|
// QS_FILTER_ON(QS_QF_ACTIVE_GET);
|
|
// QS_FILTER_ON(QS_QF_ACTIVE_GET_LAST);
|
|
// QS_FILTER_ON(QS_QF_EQUEUE_INIT);
|
|
// QS_FILTER_ON(QS_QF_EQUEUE_POST_FIFO);
|
|
// QS_FILTER_ON(QS_QF_EQUEUE_POST_LIFO);
|
|
// QS_FILTER_ON(QS_QF_EQUEUE_GET);
|
|
// QS_FILTER_ON(QS_QF_EQUEUE_GET_LAST);
|
|
// QS_FILTER_ON(QS_QF_MPOOL_INIT);
|
|
// QS_FILTER_ON(QS_QF_MPOOL_GET);
|
|
// QS_FILTER_ON(QS_QF_MPOOL_PUT);
|
|
// QS_FILTER_ON(QS_QF_PUBLISH);
|
|
// QS_FILTER_ON(QS_QF_RESERVED8);
|
|
// QS_FILTER_ON(QS_QF_NEW);
|
|
// QS_FILTER_ON(QS_QF_GC_ATTEMPT);
|
|
// QS_FILTER_ON(QS_QF_GC);
|
|
QS_FILTER_ON(QS_QF_TICK);
|
|
// QS_FILTER_ON(QS_QF_TIMEEVT_ARM);
|
|
// QS_FILTER_ON(QS_QF_TIMEEVT_AUTO_DISARM);
|
|
// QS_FILTER_ON(QS_QF_TIMEEVT_DISARM_ATTEMPT);
|
|
// QS_FILTER_ON(QS_QF_TIMEEVT_DISARM);
|
|
// QS_FILTER_ON(QS_QF_TIMEEVT_REARM);
|
|
// QS_FILTER_ON(QS_QF_TIMEEVT_POST);
|
|
// QS_FILTER_ON(QS_QF_TIMEEVT_CTR);
|
|
// QS_FILTER_ON(QS_QF_CRIT_ENTRY);
|
|
// QS_FILTER_ON(QS_QF_CRIT_EXIT);
|
|
// QS_FILTER_ON(QS_QF_ISR_ENTRY);
|
|
// QS_FILTER_ON(QS_QF_ISR_EXIT);
|
|
// QS_FILTER_ON(QS_QF_INT_DISABLE);
|
|
// QS_FILTER_ON(QS_QF_INT_ENABLE);
|
|
// QS_FILTER_ON(QS_QF_ACTIVE_POST_ATTEMPT);
|
|
// QS_FILTER_ON(QS_QF_EQUEUE_POST_ATTEMPT);
|
|
// QS_FILTER_ON(QS_QF_MPOOL_GET_ATTEMPT);
|
|
// QS_FILTER_ON(QS_QF_RESERVED1);
|
|
// QS_FILTER_ON(QS_QF_RESERVED0);
|
|
|
|
// QS_FILTER_ON(QS_QK_MUTEX_LOCK);
|
|
// QS_FILTER_ON(QS_QK_MUTEX_UNLOCK);
|
|
// QS_FILTER_ON(QS_QK_SCHEDULE);
|
|
// QS_FILTER_ON(QS_QK_RESERVED1);
|
|
// QS_FILTER_ON(QS_QK_RESERVED0);
|
|
|
|
// QS_FILTER_ON(QS_QEP_TRAN_HIST);
|
|
// QS_FILTER_ON(QS_QEP_TRAN_EP);
|
|
// QS_FILTER_ON(QS_QEP_TRAN_XP);
|
|
// QS_FILTER_ON(QS_QEP_RESERVED1);
|
|
// QS_FILTER_ON(QS_QEP_RESERVED0);
|
|
|
|
QS_FILTER_ON(QS_SIG_DICT);
|
|
QS_FILTER_ON(QS_OBJ_DICT);
|
|
QS_FILTER_ON(QS_FUN_DICT);
|
|
QS_FILTER_ON(QS_USR_DICT);
|
|
QS_FILTER_ON(QS_EMPTY);
|
|
QS_FILTER_ON(QS_RESERVED3);
|
|
QS_FILTER_ON(QS_RESERVED2);
|
|
QS_FILTER_ON(QS_TEST_RUN);
|
|
QS_FILTER_ON(QS_TEST_FAIL);
|
|
QS_FILTER_ON(QS_ASSERT_FAIL);
|
|
|
|
return (uint8_t)1; /* return success */
|
|
}
|
|
/*..........................................................................*/
|
|
void QS_onCleanup(void) {
|
|
}
|
|
/*..........................................................................*/
|
|
QSTimeCtr QS_onGetTime(void) { /* invoked with interrupts DISABLED */
|
|
if ((TACTL & TAIFG) == 0U) { /* interrupt not pending? */
|
|
return QS_tickTime_ + TAR;
|
|
}
|
|
else { /* the rollover occured, but the timerA_ISR did not run yet */
|
|
return QS_tickTime_
|
|
+ (((BSP_SMCLK/8U) + BSP_TICKS_PER_SEC/2U)/BSP_TICKS_PER_SEC) + 1U
|
|
+ TAR;
|
|
}
|
|
}
|
|
/*..........................................................................*/
|
|
void QS_onFlush(void) {
|
|
uint16_t b;
|
|
QF_INT_DISABLE();
|
|
while ((b = QS_getByte()) != QS_EOD) { /* next QS byte available? */
|
|
QF_INT_ENABLE();
|
|
while ((IFG2 & UCA0TXIFG) == 0U) { /* TX not ready? */
|
|
}
|
|
UCA0TXBUF = (uint8_t)b; /* stick the byte to the TX BUF */
|
|
QF_INT_DISABLE();
|
|
}
|
|
QF_INT_ENABLE();
|
|
}
|
|
|
|
#endif /* Q_SPY */
|
|
|
|
/*****************************************************************************
|
|
* NOTE1:
|
|
* One of the LEDs is used to visualize the idle loop activity. The brightness
|
|
* of the LED is proportional to the frequency of invcations of the idle loop.
|
|
* Please note that the LED is toggled with interrupts locked, so no interrupt
|
|
* execution time contributes to the brightness of the User LED.
|
|
*/
|
|
|