mirror of
https://github.com/QuantumLeaps/qpc.git
synced 2025-01-28 07:03:10 +08:00
437 lines
16 KiB
C
437 lines
16 KiB
C
/*****************************************************************************
|
|
* Product: DPP example, EK-TM4C123GLX board, uC/OS-II RTOS
|
|
* Last Updated for Version: 5.4.0
|
|
* Date of the Last Update: 2015-03-27
|
|
*
|
|
* Q u a n t u m L e a P s
|
|
* ---------------------------
|
|
* innovating embedded systems
|
|
*
|
|
* Copyright (C) Quantum Leaps, LLC. state-machine.com.
|
|
*
|
|
* This program is open source software: you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as published
|
|
* by the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* Alternatively, this program may be distributed and modified under the
|
|
* terms of Quantum Leaps commercial licenses, which expressly supersede
|
|
* the GNU General Public License and are specifically designed for
|
|
* licensees interested in retaining the proprietary status of their code.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Contact information:
|
|
* Web : http://www.state-machine.com
|
|
* Email: info@state-machine.com
|
|
*****************************************************************************/
|
|
#include "qpc.h"
|
|
#include "dpp.h"
|
|
#include "bsp.h"
|
|
|
|
#include "TM4C123GH6PM.h" /* the device specific header (TI) */
|
|
#include "rom.h" /* the built-in ROM functions (TI) */
|
|
#include "sysctl.h" /* system control driver (TI) */
|
|
#include "gpio.h" /* GPIO driver (TI) */
|
|
/* add other drivers if necessary... */
|
|
|
|
Q_DEFINE_THIS_FILE
|
|
|
|
/* Local-scope objects -----------------------------------------------------*/
|
|
/* LEDs on the board */
|
|
#define LED_RED (1U << 1)
|
|
#define LED_GREEN (1U << 3)
|
|
#define LED_BLUE (1U << 2)
|
|
|
|
/* Buttons on the board */
|
|
#define BTN_SW1 (1U << 4)
|
|
#define BTN_SW2 (1U << 0)
|
|
|
|
static uint32_t l_rnd; /* random seed */
|
|
|
|
#ifdef Q_SPY
|
|
QSTimeCtr QS_tickTime_;
|
|
QSTimeCtr QS_tickPeriod_;
|
|
|
|
/* event-source identifiers used for tracing */
|
|
static uint8_t l_tickHook;
|
|
static uint8_t l_GPIOPortA_IRQHandler;
|
|
|
|
#define UART_BAUD_RATE 115200U
|
|
#define UART_FR_TXFE 0x80U
|
|
#define UART_TXFIFO_DEPTH 16U
|
|
|
|
enum AppRecords { /* application-specific trace records */
|
|
PHILO_STAT = QS_USER
|
|
};
|
|
|
|
#endif
|
|
|
|
/* ISRs used in the application ==========================================*/
|
|
/* example ISR handler for uCOS-II */
|
|
void GPIOPortA_IRQHandler(void);
|
|
void GPIOPortA_IRQHandler(void) {
|
|
#if OS_CRITICAL_METHOD == 3u /* Allocate storage for CPU status register */
|
|
OS_CPU_SR cpu_sr = 0u;
|
|
#endif
|
|
|
|
OS_ENTER_CRITICAL();
|
|
OSIntEnter(); /* Tell uC/OS-II that we are starting an ISR */
|
|
OS_EXIT_CRITICAL();
|
|
|
|
/* perform the application work... */
|
|
QACTIVE_POST(AO_Table, Q_NEW(QEvt, MAX_SIG), /* for testing... */
|
|
&l_GPIOPortA_IRQHandler);
|
|
|
|
OSIntExit(); /* Tell uC/OS-II that we are leaving the ISR */
|
|
}
|
|
|
|
/* uCOS-II application hooks ===============================================*/
|
|
void App_TaskCreateHook (OS_TCB *ptcb) { (void)ptcb; }
|
|
void App_TaskDelHook (OS_TCB *ptcb) { (void)ptcb; }
|
|
/*..........................................................................*/
|
|
void App_TaskIdleHook(void) {
|
|
#if OS_CRITICAL_METHOD == 3u /* Allocate storage for CPU status register */
|
|
OS_CPU_SR cpu_sr = 0u;
|
|
#endif
|
|
|
|
/* toggle LED2 on and then off, see NOTE01 */
|
|
OS_ENTER_CRITICAL();
|
|
GPIOF->DATA_Bits[LED_BLUE] = 0xFFU; /* turn the LED on */
|
|
GPIOF->DATA_Bits[LED_BLUE] = 0x00U; /* turn the LED off */
|
|
OS_EXIT_CRITICAL();
|
|
|
|
#ifdef Q_SPY
|
|
if ((UART0->FR & UART_FR_TXFE) != 0) { /* TX done? */
|
|
uint16_t fifo = UART_TXFIFO_DEPTH; /* max bytes we can accept */
|
|
uint8_t const *block;
|
|
|
|
OS_EXIT_CRITICAL();
|
|
block = QS_getBlock(&fifo); /* try to get next block to transmit */
|
|
OS_EXIT_CRITICAL();
|
|
|
|
while (fifo-- != 0) { /* any bytes in the block? */
|
|
UART0->DR = *block++; /* put into the FIFO */
|
|
}
|
|
}
|
|
#elif defined NDEBUG
|
|
/* Put the CPU and peripherals to the low-power mode.
|
|
* you might need to customize the clock management for your application,
|
|
* see the datasheet for your particular Cortex-M3 MCU.
|
|
*/
|
|
__WFI(); /* Wait-For-Interrupt */
|
|
#endif
|
|
}
|
|
/*..........................................................................*/
|
|
void App_TaskReturnHook (OS_TCB *ptcb) { (void)ptcb; }
|
|
void App_TaskStatHook (void) {}
|
|
void App_TaskSwHook (void) {}
|
|
void App_TCBInitHook (OS_TCB *ptcb) { (void)ptcb; }
|
|
/*..........................................................................*/
|
|
void App_TimeTickHook(void) {
|
|
/* state of the button debouncing, see below */
|
|
static struct ButtonsDebouncing {
|
|
uint32_t depressed;
|
|
uint32_t previous;
|
|
} buttons = { ~0U, ~0U };
|
|
uint32_t current;
|
|
uint32_t tmp;
|
|
|
|
#ifdef Q_SPY
|
|
{
|
|
tmp = SysTick->CTRL; /* clear SysTick_CTRL_COUNTFLAG */
|
|
QS_tickTime_ += QS_tickPeriod_; /* account for the clock rollover */
|
|
}
|
|
#endif
|
|
|
|
QF_TICK_X(0U, &l_tickHook); /* process time events for rate 0 */
|
|
|
|
/* Perform the debouncing of buttons. The algorithm for debouncing
|
|
* adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
|
|
* and Michael Barr, page 71.
|
|
*/
|
|
current = ~GPIOF->DATA_Bits[BTN_SW1 | BTN_SW2]; /* read SW1 and SW2 */
|
|
tmp = buttons.depressed; /* save the debounced depressed buttons */
|
|
buttons.depressed |= (buttons.previous & current); /* set depressed */
|
|
buttons.depressed &= (buttons.previous | current); /* clear released */
|
|
buttons.previous = current; /* update the history */
|
|
tmp ^= buttons.depressed; /* changed debounced depressed */
|
|
if ((tmp & BTN_SW1) != 0U) { /* debounced SW1 state changed? */
|
|
if ((buttons.depressed & BTN_SW1) != 0U) { /* is SW1 depressed? */
|
|
static QEvt const pauseEvt = { PAUSE_SIG, 0U, 0U};
|
|
QF_PUBLISH(&pauseEvt, &l_tickHook);
|
|
}
|
|
else { /* the button is released */
|
|
static QEvt const serveEvt = { SERVE_SIG, 0U, 0U};
|
|
QF_PUBLISH(&serveEvt, &l_tickHook);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* BSP functions ===========================================================*/
|
|
void BSP_init(void) {
|
|
/* NOTE: SystemInit() has been already called from the startup code
|
|
* but SystemCoreClock needs to be updated
|
|
*/
|
|
SystemCoreClockUpdate();
|
|
|
|
/* enable clock to the peripherals used by the application */
|
|
SYSCTL->RCGC2 |= (1U << 5); /* enable clock to GPIOF */
|
|
__NOP(); /* wait after enabling clocks */
|
|
__NOP();
|
|
__NOP();
|
|
|
|
/* configure the LEDs and push buttons */
|
|
GPIOF->DIR |= (LED_RED | LED_GREEN | LED_BLUE); /* set as output */
|
|
GPIOF->DEN |= (LED_RED | LED_GREEN | LED_BLUE);/* digital enable */
|
|
GPIOF->DATA_Bits[LED_RED] = 0U; /* turn the LED off */
|
|
GPIOF->DATA_Bits[LED_GREEN] = 0U; /* turn the LED off */
|
|
GPIOF->DATA_Bits[LED_BLUE] = 0U; /* turn the LED off */
|
|
|
|
/* configure the User Switches */
|
|
GPIOF->DIR &= ~(BTN_SW1 | BTN_SW2); /* set direction: input */
|
|
ROM_GPIOPadConfigSet(GPIOF_BASE, (BTN_SW1 | BTN_SW2),
|
|
GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU);
|
|
|
|
BSP_randomSeed(1234U);
|
|
|
|
if (QS_INIT((void *)0) == 0U) { /* initialize the QS software tracing */
|
|
Q_ERROR();
|
|
}
|
|
QS_OBJ_DICTIONARY(&l_tickHook);
|
|
QS_OBJ_DICTIONARY(&l_GPIOPortA_IRQHandler);
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_displayPhilStat(uint8_t n, char const *stat) {
|
|
/* exercise the FPU with some floating point computations */
|
|
/* NOTE: this code can be only called from a task that created with
|
|
* the option OS_TASK_OPT_SAVE_FP.
|
|
*/
|
|
float volatile x;
|
|
x = 3.1415926F;
|
|
x = x + 2.7182818F;
|
|
|
|
GPIOF->DATA_Bits[LED_GREEN] =
|
|
((stat[0] == 'e') /* Is Philo[n] eating? */
|
|
? 0xFFU /* turn the LED1 on */
|
|
: 0U); /* turn the LED1 off */
|
|
|
|
QS_BEGIN(PHILO_STAT, AO_Philo[n]) /* application-specific record begin */
|
|
QS_U8(1, n); /* Philosopher number */
|
|
QS_STR(stat); /* Philosopher status */
|
|
QS_END()
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_displayPaused(uint8_t paused) {
|
|
GPIOF->DATA_Bits[LED_GREEN] = ((paused != 0U) ? 0xFFU : 0U);
|
|
}
|
|
/*..........................................................................*/
|
|
uint32_t BSP_random(void) { /* a very cheap pseudo-random-number generator */
|
|
/* "Super-Duper" Linear Congruential Generator (LCG)
|
|
* LCG(2^32, 3*7*11*13*23, 0, seed)
|
|
*/
|
|
l_rnd = l_rnd * (3U*7U*11U*13U*23U);
|
|
return l_rnd >> 8;
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_randomSeed(uint32_t seed) {
|
|
l_rnd = seed;
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_terminate(int16_t result) {
|
|
(void)result;
|
|
}
|
|
|
|
|
|
/* QF callbacks ============================================================*/
|
|
void QF_onStartup(void) {
|
|
QF_CRIT_STAT_TYPE cpu_sr;
|
|
QF_CRIT_ENTRY(cpu_sr); /* DISABLED interrupts */
|
|
|
|
/* initialize the system clock tick... */
|
|
OS_CPU_SysTickInit(SystemCoreClock / OS_TICKS_PER_SEC);
|
|
|
|
/* set priorities of the ISRs used in the system */
|
|
NVIC_SetPriority(GPIOA_IRQn, 0xFFU);
|
|
/* ... */
|
|
|
|
/* enable IRQs in the NVIC... */
|
|
NVIC_EnableIRQ(GPIOA_IRQn);
|
|
|
|
/* NOTE: do not exit the critical section and leave interrupts DISABLED */
|
|
(void)cpu_sr; /* avoid compiler warning about unused variable */
|
|
}
|
|
/*..........................................................................*/
|
|
void QF_onCleanup(void) {
|
|
}
|
|
/*..........................................................................*/
|
|
/* NOTE Q_onAssert() defined in assembly in startup_TM4C123GH6PM.s */
|
|
|
|
|
|
/* QS callbacks ============================================================*/
|
|
#ifdef Q_SPY
|
|
/*..........................................................................*/
|
|
uint8_t QS_onStartup(void const *arg) {
|
|
static uint8_t qsBuf[2*1024]; /* buffer for Quantum Spy */
|
|
uint32_t tmp;
|
|
QS_initBuf(qsBuf, sizeof(qsBuf));
|
|
|
|
/* enable the peripherals used by the UART0 */
|
|
SYSCTL->RCGC1 |= (1U << 0); /* enable clock to UART0 */
|
|
SYSCTL->RCGC2 |= (1U << 0); /* enable clock to GPIOA */
|
|
__NOP(); /* wait after enabling clocks */
|
|
__NOP();
|
|
__NOP();
|
|
|
|
/* configure UART0 pins for UART operation */
|
|
tmp = (1U << 0) | (1U << 1);
|
|
GPIOA->DIR &= ~tmp;
|
|
GPIOA->AFSEL |= tmp;
|
|
GPIOA->DR2R |= tmp; /* set 2mA drive, DR4R and DR8R are cleared */
|
|
GPIOA->SLR &= ~tmp;
|
|
GPIOA->ODR &= ~tmp;
|
|
GPIOA->PUR &= ~tmp;
|
|
GPIOA->PDR &= ~tmp;
|
|
GPIOA->DEN |= tmp;
|
|
|
|
/* configure the UART for the desired baud rate, 8-N-1 operation */
|
|
tmp = (((SystemCoreClock * 8U) / UART_BAUD_RATE) + 1U) / 2U;
|
|
UART0->IBRD = tmp / 64U;
|
|
UART0->FBRD = tmp % 64U;
|
|
UART0->LCRH = 0x60U; /* configure 8-N-1 operation */
|
|
UART0->LCRH |= 0x10U;
|
|
UART0->CTL |= (1U << 0) | (1U << 8) | (1U << 9);
|
|
|
|
QS_tickPeriod_ = SystemCoreClock / BSP_TICKS_PER_SEC;
|
|
QS_tickTime_ = QS_tickPeriod_; /* to start the timestamp at zero */
|
|
|
|
/* setup the QS filters... */
|
|
QS_FILTER_ON(QS_QEP_STATE_ENTRY);
|
|
QS_FILTER_ON(QS_QEP_STATE_EXIT);
|
|
QS_FILTER_ON(QS_QEP_STATE_INIT);
|
|
QS_FILTER_ON(QS_QEP_INIT_TRAN);
|
|
QS_FILTER_ON(QS_QEP_INTERN_TRAN);
|
|
QS_FILTER_ON(QS_QEP_TRAN);
|
|
QS_FILTER_ON(QS_QEP_IGNORED);
|
|
QS_FILTER_ON(QS_QEP_DISPATCH);
|
|
QS_FILTER_ON(QS_QEP_UNHANDLED);
|
|
|
|
// QS_FILTER_ON(QS_QF_ACTIVE_ADD);
|
|
// QS_FILTER_ON(QS_QF_ACTIVE_REMOVE);
|
|
// QS_FILTER_ON(QS_QF_ACTIVE_SUBSCRIBE);
|
|
// QS_FILTER_ON(QS_QF_ACTIVE_UNSUBSCRIBE);
|
|
// QS_FILTER_ON(QS_QF_ACTIVE_POST_FIFO);
|
|
// QS_FILTER_ON(QS_QF_ACTIVE_POST_LIFO);
|
|
// QS_FILTER_ON(QS_QF_ACTIVE_GET);
|
|
// QS_FILTER_ON(QS_QF_ACTIVE_GET_LAST);
|
|
// QS_FILTER_ON(QS_QF_EQUEUE_INIT);
|
|
// QS_FILTER_ON(QS_QF_EQUEUE_POST_FIFO);
|
|
// QS_FILTER_ON(QS_QF_EQUEUE_POST_LIFO);
|
|
// QS_FILTER_ON(QS_QF_EQUEUE_GET);
|
|
// QS_FILTER_ON(QS_QF_EQUEUE_GET_LAST);
|
|
// QS_FILTER_ON(QS_QF_MPOOL_INIT);
|
|
// QS_FILTER_ON(QS_QF_MPOOL_GET);
|
|
// QS_FILTER_ON(QS_QF_MPOOL_PUT);
|
|
// QS_FILTER_ON(QS_QF_PUBLISH);
|
|
// QS_FILTER_ON(QS_QF_RESERVED8);
|
|
// QS_FILTER_ON(QS_QF_NEW);
|
|
// QS_FILTER_ON(QS_QF_GC_ATTEMPT);
|
|
// QS_FILTER_ON(QS_QF_GC);
|
|
QS_FILTER_ON(QS_QF_TICK);
|
|
// QS_FILTER_ON(QS_QF_TIMEEVT_ARM);
|
|
// QS_FILTER_ON(QS_QF_TIMEEVT_AUTO_DISARM);
|
|
// QS_FILTER_ON(QS_QF_TIMEEVT_DISARM_ATTEMPT);
|
|
// QS_FILTER_ON(QS_QF_TIMEEVT_DISARM);
|
|
// QS_FILTER_ON(QS_QF_TIMEEVT_REARM);
|
|
// QS_FILTER_ON(QS_QF_TIMEEVT_POST);
|
|
// QS_FILTER_ON(QS_QF_TIMEEVT_CTR);
|
|
// QS_FILTER_ON(QS_QF_CRIT_ENTRY);
|
|
// QS_FILTER_ON(QS_QF_CRIT_EXIT);
|
|
// QS_FILTER_ON(QS_QF_ISR_ENTRY);
|
|
// QS_FILTER_ON(QS_QF_ISR_EXIT);
|
|
// QS_FILTER_ON(QS_QF_INT_DISABLE);
|
|
// QS_FILTER_ON(QS_QF_INT_ENABLE);
|
|
// QS_FILTER_ON(QS_QF_ACTIVE_POST_ATTEMPT);
|
|
// QS_FILTER_ON(QS_QF_EQUEUE_POST_ATTEMPT);
|
|
// QS_FILTER_ON(QS_QF_MPOOL_GET_ATTEMPT);
|
|
// QS_FILTER_ON(QS_QF_RESERVED1);
|
|
// QS_FILTER_ON(QS_QF_RESERVED0);
|
|
|
|
// QS_FILTER_ON(QS_QK_MUTEX_LOCK);
|
|
// QS_FILTER_ON(QS_QK_MUTEX_UNLOCK);
|
|
// QS_FILTER_ON(QS_QK_SCHEDULE);
|
|
// QS_FILTER_ON(QS_QK_RESERVED1);
|
|
// QS_FILTER_ON(QS_QK_RESERVED0);
|
|
|
|
// QS_FILTER_ON(QS_QEP_TRAN_HIST);
|
|
// QS_FILTER_ON(QS_QEP_TRAN_EP);
|
|
// QS_FILTER_ON(QS_QEP_TRAN_XP);
|
|
// QS_FILTER_ON(QS_QEP_RESERVED1);
|
|
// QS_FILTER_ON(QS_QEP_RESERVED0);
|
|
|
|
QS_FILTER_ON(QS_SIG_DICT);
|
|
QS_FILTER_ON(QS_OBJ_DICT);
|
|
QS_FILTER_ON(QS_FUN_DICT);
|
|
QS_FILTER_ON(QS_USR_DICT);
|
|
QS_FILTER_ON(QS_EMPTY);
|
|
QS_FILTER_ON(QS_RESERVED3);
|
|
QS_FILTER_ON(QS_RESERVED2);
|
|
QS_FILTER_ON(QS_TEST_RUN);
|
|
QS_FILTER_ON(QS_TEST_FAIL);
|
|
QS_FILTER_ON(QS_ASSERT_FAIL);
|
|
|
|
return (uint8_t)1; /* return success */
|
|
}
|
|
/*..........................................................................*/
|
|
void QS_onCleanup(void) {
|
|
}
|
|
/*..........................................................................*/
|
|
QSTimeCtr QS_onGetTime(void) { /* NOTE: invoked with interrupts DISABLED */
|
|
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { /* not set? */
|
|
return QS_tickTime_ - (QSTimeCtr)SysTick->VAL;
|
|
}
|
|
else { /* the rollover occured, but the SysTick_ISR did not run yet */
|
|
return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL;
|
|
}
|
|
}
|
|
/*..........................................................................*/
|
|
void QS_onFlush(void) {
|
|
uint16_t fifo = UART_TXFIFO_DEPTH; /* Tx FIFO depth */
|
|
uint8_t const *block;
|
|
#if OS_CRITICAL_METHOD == 3u /* Allocate storage for CPU status register */
|
|
OS_CPU_SR cpu_sr = 0u;
|
|
#endif
|
|
|
|
OS_ENTER_CRITICAL();
|
|
while ((block = QS_getBlock(&fifo)) != (uint8_t *)0) {
|
|
OS_EXIT_CRITICAL();
|
|
/* busy-wait until TX FIFO empty */
|
|
while ((UART0->FR & UART_FR_TXFE) == 0) {
|
|
}
|
|
|
|
while (fifo-- != 0) { /* any bytes in the block? */
|
|
UART0->DR = *block++; /* put into the TX FIFO */
|
|
}
|
|
fifo = UART_TXFIFO_DEPTH; /* re-load the Tx FIFO depth */
|
|
OS_ENTER_CRITICAL();
|
|
}
|
|
OS_EXIT_CRITICAL();
|
|
}
|
|
#endif /* Q_SPY */
|
|
/*--------------------------------------------------------------------------*/
|
|
|
|
/*****************************************************************************
|
|
* NOTE01:
|
|
* The User LED is used to visualize the idle loop activity. The brightness
|
|
* of the LED is proportional to the frequency of invcations of the idle loop.
|
|
* Please note that the LED is toggled with interrupts locked, so no interrupt
|
|
* execution time contributes to the brightness of the User LED.
|
|
*/
|