Quantum Leaps 6e3f238df7 5.5.0
2015-09-04 12:08:22 -04:00

360 lines
13 KiB
C

/*****************************************************************************
* Product: DPP example, NUCLEO-L053R8 board, CMSIS-RTOS RTX
* Last Updated for Version: 5.5.0
* Date of the Last Update: 2015-08-20
*
* Q u a n t u m L e a P s
* ---------------------------
* innovating embedded systems
*
* Copyright (C) Quantum Leaps, LLC. All rights reserved.
*
* This program is open source software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Alternatively, this program may be distributed and modified under the
* terms of Quantum Leaps commercial licenses, which expressly supersede
* the GNU General Public License and are specifically designed for
* licensees interested in retaining the proprietary status of their code.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Contact information:
* http://www.state-machine.com
* mailto:info@state-machine.com
*****************************************************************************/
#include "qpc.h"
#include "dpp.h"
#include "bsp.h"
#include "stm32l0xx.h" /* CMSIS-compliant header file for the MCU used */
/* add other drivers if necessary... */
Q_DEFINE_THIS_FILE
/* Local-scope defines -----------------------------------------------------*/
/* LED pins available on the board (just one user LED LD2--Green on PA.5) */
#define LED_LD2 (1U << 5)
/* Button pins available on the board (just one user Button B1 on PC.13) */
#define BTN_B1 (1U << 13)
static uint32_t l_rnd; /* random seed */
#ifdef Q_SPY
/* event-source identifiers used for tracing */
static uint8_t const l_rtx_ticker = 0U;
static uint8_t const l_EXTI0_IRQHandler = 0U;
enum AppRecords { /* application-specific trace records */
PHILO_STAT = QS_USER
};
#endif
/* ISRs used in this project ===============================================*/
/* example ISR handler for CMSIS-RTX */
void EXTI0_IRQHandler(void); /* prototype */
void EXTI0_IRQHandler(void) {
QACTIVE_POST(AO_Table, Q_NEW(QEvt, MAX_SIG), /* for testing... */
&l_EXTI0_IRQHandler);
/* NOTE:
* There is no need to explicitly pend the PendSV exception, because
* RTX handles this when signaling the task. (See OS_PEND_IRQ() macro
* in RTX source code).
*/
}
/* RTX callbacks ===========================================================*/
void os_idle_demon(void); /* prototype */
void os_idle_demon(void) {
/* The idle demon is a system thread, running when no other thread is
* ready to run.
*/
for (;;) { /* idle loop */
/* toggle an LED on and then off (not enough LEDs, see NOTE01) */
QF_INT_DISABLE();
//GPIOA->BSRR |= (LED_LD2); /* turn LED[n] on */
//GPIOA->BSRR |= (LED_LD2 << 16); /* turn LED[n] off */
QF_INT_ENABLE();
#ifdef Q_SPY
if ((USART2->ISR & 0x0080U) != 0) { /* is TXE empty? */
uint16_t b;
QF_INT_DISABLE();
b = QS_getByte();
QF_INT_ENABLE();
if (b != QS_EOD) { /* not End-Of-Data? */
USART2->TDR = (b & 0xFFU); /* put into the DR register */
}
}
#elif defined NDEBUG
/* Put the CPU and peripherals to the low-power mode.
* you might need to customize the clock management for your application,
* see the datasheet for your particular Cortex-M3 MCU.
*/
/* !!!CAUTION!!!
* The WFI instruction stops the CPU clock, which unfortunately disables
* the JTAG port, so the ST-Link debugger can no longer connect to the
* board. For that reason, the call to __WFI() has to be used with CAUTION.
*
* NOTE: If you find your board "frozen" like this, strap BOOT0 to VDD and
* reset the board, then connect with ST-Link Utilities and erase the part.
* The trick with BOOT(0) is it gets the part to run the System Loader
* instead of your broken code. When done disconnect BOOT0, and start over.
*/
//__WFI(); /* Wait-For-Interrupt */
#endif
} /* idle loop */
}
/*..........................................................................*/
/* This function is called when RTX detects a runtime error.
* Parameter 'error_code' holds the runtime error code.
*/
void os_error(uint32_t err_code); /* prototype */
void os_error(uint32_t error_code) {
/* perform customized error handling... */
Q_ERROR_ID(error_code); /* NOTE: does not return */
}
/* BSP functions ===========================================================*/
void BSP_init(void) {
/* NOTE: SystemInit() has been already called from the startup code
* but SystemCoreClock needs to be updated
*/
SystemCoreClockUpdate();
/* enable GPIOA clock port for the LED LD2 */
RCC->IOPENR |= (1U << 0);
/* configure LED (PA.5) pin as push-pull output, no pull-up, pull-down */
GPIOA->MODER &= ~((3U << 2*5));
GPIOA->MODER |= ((1U << 2*5));
GPIOA->OTYPER &= ~((1U << 5));
GPIOA->OSPEEDR &= ~((3U << 2*5));
GPIOA->OSPEEDR |= ((1U << 2*5));
GPIOA->PUPDR &= ~((3U << 2*5));
/* enable GPIOC clock port for the Button B1 */
RCC->IOPENR |= (1U << 2);
/* configure Button (PC.13) pins as input, no pull-up, pull-down */
GPIOC->MODER &= ~(3U << 2*13);
GPIOC->OSPEEDR &= ~(3U << 2*13);
GPIOC->OSPEEDR |= (1U << 2*13);
GPIOC->PUPDR &= ~(3U << 2*13);
BSP_randomSeed(1234U); /* seed the random number generator */
/* initialize the QS software tracing... */
if (QS_INIT((void *)0) == 0U) {
Q_ERROR();
}
QS_OBJ_DICTIONARY(&l_rtx_ticker);
QS_OBJ_DICTIONARY(&l_EXTI0_IRQHandler);
}
/*..........................................................................*/
void BSP_displayPhilStat(uint8_t n, char const *stat) {
if (stat[0] == 'h') {
GPIOA->BSRR |= LED_LD2; /* turn LED on */
}
else {
GPIOA->BSRR |= (LED_LD2 << 16); /* turn LED off */
}
QS_BEGIN(PHILO_STAT, AO_Philo[n]) /* application-specific record begin */
QS_U8(1, n); /* Philosopher number */
QS_STR(stat); /* Philosopher status */
QS_END()
}
/*..........................................................................*/
void BSP_displayPaused(uint8_t paused) {
/* not enough LEDs to implement this feature */
if (paused != (uint8_t)0) {
//GPIOA->BSRR |= (LED_LD2); /* turn LED[n] on */
}
else {
//GPIOA->BSRR |= (LED_LD2 << 16); /* turn LED[n] off */
}
}
/*..........................................................................*/
uint32_t BSP_random(void) { /* a very cheap pseudo-random-number generator */
/* "Super-Duper" Linear Congruential Generator (LCG)
* LCG(2^32, 3*7*11*13*23, 0, seed)
*/
l_rnd = l_rnd * (3U*7U*11U*13U*23U);
return l_rnd >> 8;
}
/*..........................................................................*/
void BSP_randomSeed(uint32_t seed) {
l_rnd = seed;
}
/*..........................................................................*/
void BSP_terminate(int16_t result) {
(void)result;
}
/* QF callbacks ============================================================*/
void QF_onStartup(void) {
/* configure the QF ticker thread */
QF_setRtxTicker(1000U/BSP_TICKS_PER_SEC, osPriorityAboveNormal);
/* set priorities of ISRs used in the system... */
NVIC_SetPriority(EXTI0_1_IRQn, 1U);
/* ... */
/* enable IRQs in the NVIC... */
NVIC_EnableIRQ(EXTI0_1_IRQn);
/* ... */
}
/*..........................................................................*/
void QF_onCleanup(void) {
}
/*..........................................................................*/
void QF_onRtxTicker() {
/* state of the button debouncing, see below */
static struct ButtonsDebouncing {
uint32_t depressed;
uint32_t previous;
} buttons = { ~0U, ~0U };
uint32_t current;
uint32_t tmp;
QF_TICK_X(0U, &l_rtx_ticker); /* process time events for rate 0 */
/* Perform the debouncing of buttons. The algorithm for debouncing
* adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
* and Michael Barr, page 71.
*/
current = ~GPIOC->IDR; /* read Port C with the state of Button B1 */
tmp = buttons.depressed; /* save the debounced depressed buttons */
buttons.depressed |= (buttons.previous & current); /* set depressed */
buttons.depressed &= (buttons.previous | current); /* clear released */
buttons.previous = current; /* update the history */
tmp ^= buttons.depressed; /* changed debounced depressed */
if ((tmp & BTN_B1) != 0U) { /* debounced B1 state changed? */
if ((buttons.depressed & BTN_B1) != 0U) { /* is B1 depressed? */
static QEvt const pauseEvt = { PAUSE_SIG, 0U, 0U};
QF_PUBLISH(&pauseEvt, &l_rtx_ticker);
}
else { /* the button is released */
static QEvt const serveEvt = { SERVE_SIG, 0U, 0U};
QF_PUBLISH(&serveEvt, &l_rtx_ticker);
}
}
}
/*..........................................................................*/
void Q_onAssert(char const *module, int loc) {
/*
* NOTE: add here your application-specific error handling
*/
(void)module;
(void)loc;
QS_ASSERTION(module, loc, (uint32_t)10000U); /* report assertion to QS */
NVIC_SystemReset();
}
/* QS callbacks ============================================================*/
#ifdef Q_SPY
/*..........................................................................*/
#define __DIV(__PCLK, __BAUD) (((__PCLK / 4) *25)/(__BAUD))
#define __DIVMANT(__PCLK, __BAUD) (__DIV(__PCLK, __BAUD)/100)
#define __DIVFRAQ(__PCLK, __BAUD) \
(((__DIV(__PCLK, __BAUD) - (__DIVMANT(__PCLK, __BAUD) * 100)) \
* 16 + 50) / 100)
#define __USART_BRR(__PCLK, __BAUD) \
((__DIVMANT(__PCLK, __BAUD) << 4)|(__DIVFRAQ(__PCLK, __BAUD) & 0x0F))
uint8_t QS_onStartup(void const *arg) {
static uint8_t qsBuf[1024]; /* buffer for QS */
(void)arg; /* avoid the "unused parameter" compiler warning */
QS_initBuf(qsBuf, sizeof(qsBuf));
/* enable peripheral clock for USART2 */
RCC->IOPENR |= ( 1U << 0); /* Enable GPIOA clock */
RCC->APB1ENR |= ( 1U << 17); /* Enable USART#2 clock */
/* Configure PA3 to USART2_RX, PA2 to USART2_TX */
GPIOA->AFR[0] &= ~((15U << 4* 3) | (15ul << 4* 2) );
GPIOA->AFR[0] |= (( 4U << 4* 3) | ( 4ul << 4* 2) );
GPIOA->MODER &= ~(( 3U << 2* 3) | ( 3ul << 2* 2) );
GPIOA->MODER |= (( 2U << 2* 3) | ( 2ul << 2* 2) );
USART2->BRR = __USART_BRR(SystemCoreClock, 115200U); /* baud rate */
USART2->CR3 = 0x0000U; /* no flow control */
USART2->CR2 = 0x0000U; /* 1 stop bit */
USART2->CR1 = ((1U << 2) | /* enable RX */
(1U << 3) | /* enable TX */
(0U << 12) | /* 8 data bits */
(0U << 28) | /* 8 data bits */
(1U << 0) ); /* enable USART */
/* setup the QS filters... */
QS_FILTER_ON(QS_QEP_STATE_ENTRY);
QS_FILTER_ON(QS_QEP_STATE_EXIT);
QS_FILTER_ON(QS_QEP_STATE_INIT);
QS_FILTER_ON(QS_QEP_INIT_TRAN);
QS_FILTER_ON(QS_QEP_INTERN_TRAN);
QS_FILTER_ON(QS_QEP_TRAN);
QS_FILTER_ON(QS_QEP_IGNORED);
QS_FILTER_ON(QS_QEP_DISPATCH);
QS_FILTER_ON(QS_QEP_UNHANDLED);
QS_FILTER_ON(PHILO_STAT);
return (uint8_t)1; /* return success */
}
/*..........................................................................*/
void QS_onCleanup(void) {
}
/*..........................................................................*/
QSTimeCtr QS_onGetTime(void) { /* NOTE: invoked with interrupts DISABLED */
/* NOTE:
* QS_onGetTime() cannot call the offical RTX osKernelSysTick() service,
* because osKernelSysTick() is a SVC function, which can't execute
* with interrupts disabled. Therefore, QS_onGetTime() calls directly
* the function svcKernelSysTick().
*/
uint32_t svcKernelSysTick(void); /* prototype declaration */
return (QSTimeCtr)svcKernelSysTick();
}
/*..........................................................................*/
void QS_onFlush(void) {
uint16_t b;
QF_INT_DISABLE();
while ((b = QS_getByte()) != QS_EOD) { /* while not End-Of-Data... */
QF_INT_ENABLE();
while ((USART2->ISR & 0x0080U) == 0U) { /* while TXE not empty */
}
USART2->TDR = (b & 0xFFU); /* put into the DR register */
}
QF_INT_ENABLE();
}
#endif /* Q_SPY */
/*--------------------------------------------------------------------------*/
/*****************************************************************************
* NOTE01:
* The User LED is used to visualize the idle loop activity. The brightness
* of the LED is proportional to the frequency of invcations of the idle loop.
* Please note that the LED is toggled with interrupts locked, so no interrupt
* execution time contributes to the brightness of the User LED.
*/