Quantum Leaps bb3f7310b8 5.8.1
2016-12-16 10:34:09 -05:00

941 lines
34 KiB
C

/*****************************************************************************
* Product: "Fly 'n' Shoot" game example, EFM32-SLSTK3401A board, QK kernel
* Last updated for version 5.8.1
* Last updated on 2016-12-12
*
* Q u a n t u m L e a P s
* ---------------------------
* innovating embedded systems
*
* Copyright (C) Quantum Leaps, LLC. All rights reserved.
*
* This program is open source software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Alternatively, this program may be distributed and modified under the
* terms of Quantum Leaps commercial licenses, which expressly supersede
* the GNU General Public License and are specifically designed for
* licensees interested in retaining the proprietary status of their code.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Contact information:
* http://www.state-machine.com
* mailto:info@state-machine.com
*****************************************************************************/
#include "qpc.h"
#include "game.h"
#include "bsp.h"
#include "em_device.h" /* the device specific header (SiLabs) */
#include "em_chip.h" /* Chip errata (SiLabs) */
#include "em_cmu.h" /* Clock Management Unit (SiLabs) */
#include "em_gpio.h" /* GPIO (SiLabs) */
#include "em_usart.h" /* USART (SiLabs) */
#include "display_ls013b7dh03.h" /* LS013b7DH03 display (SiLabs/QL) */
/* add other drivers if necessary... */
Q_DEFINE_THIS_FILE
/*!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
* Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
* DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
*/
enum KernelUnawareISRs { /* see NOTE00 */
USART0_RX_PRIO,
/* ... */
MAX_KERNEL_UNAWARE_CMSIS_PRI /* keep always last */
};
/* "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts */
Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI);
enum KernelAwareISRs {
GPIO_EVEN_PRIO = QF_AWARE_ISR_CMSIS_PRI, /* see NOTE00 */
SYSTICK_PRIO,
/* ... */
MAX_KERNEL_AWARE_CMSIS_PRI /* keep always last */
};
/* "kernel-aware" interrupts should not overlap the PendSV priority */
Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS)));
/* ISRs defined in this BSP ------------------------------------------------*/
void SysTick_Handler(void);
void GPIO_EVEN_IRQHandler(void);
void USART0_RX_IRQHandler(void);
/* Local-scope objects -----------------------------------------------------*/
#define LED_PORT gpioPortF
#define LED0_PIN 4
#define LED1_PIN 5
#define PB_PORT gpioPortF
#define PB0_PIN 6
#define PB1_PIN 7
/* LCD geometry and frame buffer */
static uint32_t l_fb[BSP_SCREEN_HEIGHT + 1][BSP_SCREEN_WIDTH / 32U];
/* the walls buffer */
static uint32_t l_walls[GAME_TUNNEL_HEIGHT + 1][BSP_SCREEN_WIDTH / 32U];
static unsigned l_rnd; /* random seed */
static QMutex l_rndMutex; /* mutex to protect the random seed */
static void paintBits(uint8_t x, uint8_t y, uint8_t const *bits, uint8_t h);
static void paintBitsClear(uint8_t x, uint8_t y,
uint8_t const *bits, uint8_t h);
#ifdef Q_SPY
QSTimeCtr QS_tickTime_;
QSTimeCtr QS_tickPeriod_;
/* QS source IDs */
static uint8_t const l_SysTick_Handler = (uint8_t)0;
static uint8_t const l_GPIO_EVEN_IRQHandler = (uint8_t)0;
static USART_TypeDef * const l_USART0 = ((USART_TypeDef *)(0x40010000UL));
enum AppRecords { /* application-specific trace records */
SCORE_STAT = QS_USER,
COMMAND_STAT
};
#endif
/* ISRs used in the application ==========================================*/
void SysTick_Handler(void) {
static QEvt const tickEvt = { TIME_TICK_SIG, 0U, 0U };
QK_ISR_ENTRY(); /* inform QK about entering an ISR */
#ifdef Q_SPY
{
/* clear SysTick_CTRL_COUNTFLAG */
uint32_t volatile tmp = SysTick->CTRL;
(void)tmp; /* avoid compiler warning about unused local variable */
QS_tickTime_ += QS_tickPeriod_; /* account for the clock rollover */
}
#endif
//QF_TICK_X(0U, &l_SysTick_Handler); /* process time events for rate 0 */
QACTIVE_POST(the_Ticker0, 0, 0); /* post a don't-care event to Ticker0 */
QF_PUBLISH(&tickEvt, &l_SysTick_Handler); /* publish to all subscribers */
{
/* state of the button debouncing, see below */
static struct ButtonsDebouncing {
uint32_t depressed;
uint32_t previous;
} buttons = { ~0U, ~0U };
uint32_t current;
uint32_t tmp;
/* Perform the debouncing of buttons. The algorithm for debouncing
* adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
* and Michael Barr, page 71.
*/
current = ~GPIO->P[PB_PORT].DIN; /* read PB0 and BP1 */
tmp = buttons.depressed; /* save the debounced depressed buttons */
buttons.depressed |= (buttons.previous & current); /* set depressed */
buttons.depressed &= (buttons.previous | current); /* clear released */
buttons.previous = current; /* update the history */
tmp ^= buttons.depressed; /* changed debounced depressed */
if ((tmp & (1U << PB0_PIN)) != 0U) { /* debounced PB0 state changed? */
if ((buttons.depressed & (1U << PB0_PIN)) != 0U) {/*PB0 depressed?*/
static QEvt const trigEvt = { PLAYER_TRIGGER_SIG, 0U, 0U};
QF_PUBLISH(&trigEvt, &l_SysTick_Handler);
}
}
}
QK_ISR_EXIT(); /* inform QK about exiting an ISR */
}
/*..........................................................................*/
void GPIO_EVEN_IRQHandler(void) {
QK_ISR_ENTRY(); /* inform QK about entering an ISR */
QACTIVE_POST(AO_Tunnel, Q_NEW(QEvt, MAX_PUB_SIG), /* for testing... */
&l_GPIO_EVEN_IRQHandler);
QK_ISR_EXIT(); /* inform QK about exiting an ISR */
}
/*..........................................................................*/
void USART0_RX_IRQHandler(void); // prototype
#ifdef Q_SPY
/* ISR for receiving bytes from the QSPY Back-End
* NOTE: This ISR is "QF-unaware" meaning that it does not interact with
* the QF/QK and is not disabled. Such ISRs don't need to call QK_ISR_ENTRY/
* QK_ISR_EXIT and they cannot post or publish events.
*/
void USART0_RX_IRQHandler(void) {
/* while RX FIFO NOT empty */
while ((l_USART0->STATUS & USART_STATUS_RXDATAV) != 0) {
uint32_t b = l_USART0->RXDATA;
QS_RX_PUT(b);
}
}
#else
void USART0_RX_IRQHandler(void) {}
#endif /* Q_SPY */
/* BSP functions ===========================================================*/
void BSP_init(void) {
/* Chip errata */
CHIP_Init();
/* NOTE: SystemInit() already called from startup_TM4C123GH6PM.s
* but SystemCoreClock needs to be updated
*/
SystemCoreClockUpdate();
/* configure the FPU usage by choosing one of the options... */
#if 1
/* OPTION 1:
* Use the automatic FPU state preservation and the FPU lazy stacking.
*
* NOTE:
* Use the following setting when FPU is used in more than one task or
* in any ISRs. This setting is the safest and recommended, but requires
* extra stack space and CPU cycles.
*/
FPU->FPCCR |= (1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos);
#else
/* OPTION 2:
* Do NOT to use the automatic FPU state preservation and
* do NOT to use the FPU lazy stacking.
*
* NOTE:
* Use the following setting when FPU is used in ONE task only and not
* in any ISR. This setting is very efficient, but if more than one task
* (or ISR) start using the FPU, this can lead to corruption of the
* FPU registers. This option should be used with CAUTION.
*/
FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos));
#endif
/* enable clock for to the peripherals used by this application... */
CMU_ClockEnable(cmuClock_HFPER, true);
CMU_ClockEnable(cmuClock_GPIO, true);
CMU_ClockEnable(cmuClock_HFPER, true);
CMU_ClockEnable(cmuClock_GPIO, true);
/* configure the LEDs */
GPIO_PinModeSet(LED_PORT, LED0_PIN, gpioModePushPull, 0);
GPIO_PinModeSet(LED_PORT, LED1_PIN, gpioModePushPull, 0);
GPIO_PinOutClear(LED_PORT, LED0_PIN);
GPIO_PinOutClear(LED_PORT, LED1_PIN);
/* configure the Buttons */
GPIO_PinModeSet(PB_PORT, PB0_PIN, gpioModeInputPull, 1);
GPIO_PinModeSet(PB_PORT, PB1_PIN, gpioModeInputPull, 1);
/* Initialize the DISPLAY driver. */
if (!Display_init()) {
Q_ERROR();
}
/* initialize the QS software tracing */
if (QS_INIT((void *)0) == 0U) {
Q_ERROR();
}
QS_OBJ_DICTIONARY(&l_SysTick_Handler);
QS_OBJ_DICTIONARY(&l_GPIO_EVEN_IRQHandler);
QS_USR_DICTIONARY(SCORE_STAT);
QS_USR_DICTIONARY(COMMAND_STAT);
}
/*..........................................................................*/
void BSP_updateScreen(void) {
GPIO->P[LED_PORT].DOUT |= (1U << LED1_PIN);
Display_sendPA(&l_fb[0][0], 0, LS013B7DH03_HEIGHT);
GPIO->P[LED_PORT].DOUT &= ~(1U << LED1_PIN);
}
/*..........................................................................*/
void BSP_clearFB() {
uint_fast8_t y;
for (y = 0U; y < BSP_SCREEN_HEIGHT; ++y) {
l_fb[y][0] = 0U;
l_fb[y][1] = 0U;
l_fb[y][2] = 0U;
l_fb[y][3] = 0U;
}
}
/*..........................................................................*/
void BSP_clearWalls() {
uint_fast8_t y;
for (y = 0U; y < GAME_TUNNEL_HEIGHT; ++y) {
l_walls[y][0] = 0U;
l_walls[y][1] = 0U;
l_walls[y][2] = 0U;
l_walls[y][3] = 0U;
}
}
/*..........................................................................*/
bool BSP_isThrottle(void) { /* is the throttle button depressed? */
return (GPIO->P[PB_PORT].DIN & (1U << PB1_PIN)) == 0U;
}
/*..........................................................................*/
void BSP_paintString(uint8_t x, uint8_t y, char const *str) {
static uint8_t const font5x7[95][7] = {
{ 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U }, /* */
{ 0x04U, 0x04U, 0x04U, 0x04U, 0x00U, 0x00U, 0x04U }, /* ! */
{ 0x0AU, 0x0AU, 0x0AU, 0x00U, 0x00U, 0x00U, 0x00U }, /* " */
{ 0x0AU, 0x0AU, 0x1FU, 0x0AU, 0x1FU, 0x0AU, 0x0AU }, /* # */
{ 0x04U, 0x1EU, 0x05U, 0x0EU, 0x14U, 0x0FU, 0x04U }, /* $ */
{ 0x03U, 0x13U, 0x08U, 0x04U, 0x02U, 0x19U, 0x18U }, /* % */
{ 0x06U, 0x09U, 0x05U, 0x02U, 0x15U, 0x09U, 0x16U }, /* & */
{ 0x06U, 0x04U, 0x02U, 0x00U, 0x00U, 0x00U, 0x00U }, /* ' */
{ 0x08U, 0x04U, 0x02U, 0x02U, 0x02U, 0x04U, 0x08U }, /* ( */
{ 0x02U, 0x04U, 0x08U, 0x08U, 0x08U, 0x04U, 0x02U }, /* ) */
{ 0x00U, 0x04U, 0x15U, 0x0EU, 0x15U, 0x04U, 0x00U }, /* * */
{ 0x00U, 0x04U, 0x04U, 0x1FU, 0x04U, 0x04U, 0x00U }, /* + */
{ 0x00U, 0x00U, 0x00U, 0x00U, 0x06U, 0x04U, 0x02U }, /* , */
{ 0x00U, 0x00U, 0x00U, 0x1FU, 0x00U, 0x00U, 0x00U }, /* - */
{ 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x06U, 0x06U }, /* . */
{ 0x00U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U, 0x00U }, /* / */
{ 0x0EU, 0x11U, 0x19U, 0x15U, 0x13U, 0x11U, 0x0EU }, /* 0 */
{ 0x04U, 0x06U, 0x04U, 0x04U, 0x04U, 0x04U, 0x0EU }, /* 1 */
{ 0x0EU, 0x11U, 0x10U, 0x08U, 0x04U, 0x02U, 0x1FU }, /* 2 */
{ 0x1FU, 0x08U, 0x04U, 0x08U, 0x10U, 0x11U, 0x0EU }, /* 3 */
{ 0x08U, 0x0CU, 0x0AU, 0x09U, 0x1FU, 0x08U, 0x08U }, /* 4 */
{ 0x1FU, 0x01U, 0x0FU, 0x10U, 0x10U, 0x11U, 0x0EU }, /* 5 */
{ 0x0CU, 0x02U, 0x01U, 0x0FU, 0x11U, 0x11U, 0x0EU }, /* 6 */
{ 0x1FU, 0x10U, 0x08U, 0x04U, 0x02U, 0x02U, 0x02U }, /* 7 */
{ 0x0EU, 0x11U, 0x11U, 0x0EU, 0x11U, 0x11U, 0x0EU }, /* 8 */
{ 0x0EU, 0x11U, 0x11U, 0x1EU, 0x10U, 0x08U, 0x06U }, /* 9 */
{ 0x00U, 0x06U, 0x06U, 0x00U, 0x06U, 0x06U, 0x00U }, /* : */
{ 0x00U, 0x06U, 0x06U, 0x00U, 0x06U, 0x04U, 0x02U }, /* ; */
{ 0x08U, 0x04U, 0x02U, 0x01U, 0x02U, 0x04U, 0x08U }, /* < */
{ 0x00U, 0x00U, 0x1FU, 0x00U, 0x1FU, 0x00U, 0x00U }, /* = */
{ 0x02U, 0x04U, 0x08U, 0x10U, 0x08U, 0x04U, 0x02U }, /* > */
{ 0x0EU, 0x11U, 0x10U, 0x08U, 0x04U, 0x00U, 0x04U }, /* ? */
{ 0x0EU, 0x11U, 0x10U, 0x16U, 0x15U, 0x15U, 0x0EU }, /* @ */
{ 0x0EU, 0x11U, 0x11U, 0x11U, 0x1FU, 0x11U, 0x11U }, /* A */
{ 0x0FU, 0x11U, 0x11U, 0x0FU, 0x11U, 0x11U, 0x0FU }, /* B */
{ 0x0EU, 0x11U, 0x01U, 0x01U, 0x01U, 0x11U, 0x0EU }, /* C */
{ 0x07U, 0x09U, 0x11U, 0x11U, 0x11U, 0x09U, 0x07U }, /* D */
{ 0x1FU, 0x01U, 0x01U, 0x0FU, 0x01U, 0x01U, 0x1FU }, /* E */
{ 0x1FU, 0x01U, 0x01U, 0x0FU, 0x01U, 0x01U, 0x01U }, /* F */
{ 0x0EU, 0x11U, 0x01U, 0x1DU, 0x11U, 0x11U, 0x1EU }, /* G */
{ 0x11U, 0x11U, 0x11U, 0x1FU, 0x11U, 0x11U, 0x11U }, /* H */
{ 0x0EU, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x0EU }, /* I */
{ 0x1CU, 0x08U, 0x08U, 0x08U, 0x08U, 0x09U, 0x06U }, /* J */
{ 0x11U, 0x09U, 0x05U, 0x03U, 0x05U, 0x09U, 0x11U }, /* K */
{ 0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x1FU }, /* L */
{ 0x11U, 0x1BU, 0x15U, 0x15U, 0x11U, 0x11U, 0x11U }, /* M */
{ 0x11U, 0x11U, 0x13U, 0x15U, 0x19U, 0x11U, 0x11U }, /* N */
{ 0x0EU, 0x11U, 0x11U, 0x11U, 0x11U, 0x11U, 0x0EU }, /* O */
{ 0x0FU, 0x11U, 0x11U, 0x0FU, 0x01U, 0x01U, 0x01U }, /* P */
{ 0x0EU, 0x11U, 0x11U, 0x11U, 0x15U, 0x09U, 0x16U }, /* Q */
{ 0x0FU, 0x11U, 0x11U, 0x0FU, 0x05U, 0x09U, 0x11U }, /* R */
{ 0x1EU, 0x01U, 0x01U, 0x0EU, 0x10U, 0x10U, 0x0FU }, /* S */
{ 0x1FU, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U }, /* T */
{ 0x11U, 0x11U, 0x11U, 0x11U, 0x11U, 0x11U, 0x0EU }, /* U */
{ 0x11U, 0x11U, 0x11U, 0x11U, 0x11U, 0x0AU, 0x04U }, /* V */
{ 0x11U, 0x11U, 0x11U, 0x15U, 0x15U, 0x15U, 0x0AU }, /* W */
{ 0x11U, 0x11U, 0x0AU, 0x04U, 0x0AU, 0x11U, 0x11U }, /* X */
{ 0x11U, 0x11U, 0x11U, 0x0AU, 0x04U, 0x04U, 0x04U }, /* Y */
{ 0x1FU, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U, 0x1FU }, /* Z */
{ 0x0EU, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x0EU }, /* [ */
{ 0x00U, 0x01U, 0x02U, 0x04U, 0x08U, 0x10U, 0x00U }, /* \ */
{ 0x0EU, 0x08U, 0x08U, 0x08U, 0x08U, 0x08U, 0x0EU }, /* ] */
{ 0x04U, 0x0AU, 0x11U, 0x00U, 0x00U, 0x00U, 0x00U }, /* ^ */
{ 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x1FU }, /* _ */
{ 0x02U, 0x04U, 0x08U, 0x00U, 0x00U, 0x00U, 0x00U }, /* ` */
{ 0x00U, 0x00U, 0x0EU, 0x10U, 0x1EU, 0x11U, 0x1EU }, /* a */
{ 0x01U, 0x01U, 0x0DU, 0x13U, 0x11U, 0x11U, 0x0FU }, /* b */
{ 0x00U, 0x00U, 0x0EU, 0x01U, 0x01U, 0x11U, 0x0EU }, /* c */
{ 0x10U, 0x10U, 0x16U, 0x19U, 0x11U, 0x11U, 0x1EU }, /* d */
{ 0x00U, 0x00U, 0x0EU, 0x11U, 0x1FU, 0x01U, 0x0EU }, /* e */
{ 0x0CU, 0x12U, 0x02U, 0x07U, 0x02U, 0x02U, 0x02U }, /* f */
{ 0x00U, 0x1EU, 0x11U, 0x11U, 0x1EU, 0x10U, 0x0EU }, /* g */
{ 0x01U, 0x01U, 0x0DU, 0x13U, 0x11U, 0x11U, 0x11U }, /* h */
{ 0x04U, 0x00U, 0x06U, 0x04U, 0x04U, 0x04U, 0x0EU }, /* i */
{ 0x08U, 0x00U, 0x0CU, 0x08U, 0x08U, 0x09U, 0x06U }, /* j */
{ 0x01U, 0x01U, 0x09U, 0x05U, 0x03U, 0x05U, 0x09U }, /* k */
{ 0x06U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x0EU }, /* l */
{ 0x00U, 0x00U, 0x0BU, 0x15U, 0x15U, 0x11U, 0x11U }, /* m */
{ 0x00U, 0x00U, 0x0DU, 0x13U, 0x11U, 0x11U, 0x11U }, /* n */
{ 0x00U, 0x00U, 0x0EU, 0x11U, 0x11U, 0x11U, 0x0EU }, /* o */
{ 0x00U, 0x00U, 0x0FU, 0x11U, 0x0FU, 0x01U, 0x01U }, /* p */
{ 0x00U, 0x00U, 0x16U, 0x19U, 0x1EU, 0x10U, 0x10U }, /* q */
{ 0x00U, 0x00U, 0x0DU, 0x13U, 0x01U, 0x01U, 0x01U }, /* r */
{ 0x00U, 0x00U, 0x0EU, 0x01U, 0x0EU, 0x10U, 0x0FU }, /* s */
{ 0x02U, 0x02U, 0x07U, 0x02U, 0x02U, 0x12U, 0x0CU }, /* t */
{ 0x00U, 0x00U, 0x11U, 0x11U, 0x11U, 0x19U, 0x16U }, /* u */
{ 0x00U, 0x00U, 0x11U, 0x11U, 0x11U, 0x0AU, 0x04U }, /* v */
{ 0x00U, 0x00U, 0x11U, 0x11U, 0x15U, 0x15U, 0x0AU }, /* w */
{ 0x00U, 0x00U, 0x11U, 0x0AU, 0x04U, 0x0AU, 0x11U }, /* x */
{ 0x00U, 0x00U, 0x11U, 0x11U, 0x1EU, 0x10U, 0x0EU }, /* y */
{ 0x00U, 0x00U, 0x1FU, 0x08U, 0x04U, 0x02U, 0x1FU }, /* z */
{ 0x08U, 0x04U, 0x04U, 0x02U, 0x04U, 0x04U, 0x08U }, /* { */
{ 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U }, /* | */
{ 0x02U, 0x04U, 0x04U, 0x08U, 0x04U, 0x04U, 0x02U }, /* } */
{ 0x02U, 0x15U, 0x08U, 0x00U, 0x00U, 0x00U, 0x00U }, /* ~ */
};
for (; *str != '\0'; ++str, x += 6) {
uint8_t const *ch = &font5x7[*str - ' '][0];
paintBitsClear(x, y, ch, 7);
}
}
/*==========================================================================*/
typedef struct { /* the auxiliary structure to hold const bitmaps */
uint8_t const *bits; /* the bits in the bitmap */
uint8_t height; /* the height of the bitmap */
} Bitmap;
/* bitmap of the Ship:
*
* x....
* xxx..
* xxxxx
*/
static uint8_t const ship_bits[] = {
0x01U, 0x07U, 0x1FU
};
/* bitmap of the Missile:
*
* xxxx
*/
static uint8_t const missile_bits[] = {
0x0FU
};
/* bitmap of the Mine type-1:
*
* .x.
* xxx
* .x.
*/
static uint8_t const mine1_bits[] = {
0x02U, 0x07U, 0x02U
};
/* bitmap of the Mine type-2:
*
* x..x
* .xx.
* .xx.
* x..x
*/
static uint8_t const mine2_bits[] = {
0x09U, 0x06U, 0x06U, 0x09U
};
/* Mine type-2 is nastier than Mine type-1. The type-2 mine can
* hit the Ship with any of its "tentacles". However, it can be
* destroyed by the Missile only by hitting its center, defined as
* the following bitmap:
*
* ....
* .xx.
* .xx.
*/
static uint8_t const mine2_missile_bits[] = {
0x00U, 0x06U, 0x06U
};
/*
* The bitmap of the explosion stage 0:
*
* .......
* ...x...
* ..x.x..
* ...x...
*/
static uint8_t const explosion0_bits[] = {
0x00U, 0x08U, 0x14U, 0x08U
};
/*
* The bitmap of the explosion stage 1:
*
* .......
* ..x.x..
* ...x...
* ..x.x..
*/
static uint8_t const explosion1_bits[] = {
0x00U, 0x14U, 0x08U, 0x14U
};
/*
* The bitmap of the explosion stage 2:
*
* .x...x.
* ..x.x..
* ...x...
* ..x.x..
* .x...x.
*/
static uint8_t const explosion2_bits[] = {
0x11U, 0x0AU, 0x04U, 0x0AU, 0x11U
};
/*
* The bitmap of the explosion stage 3:
*
* x..x..x
* .x.x.x.
* ..x.x..
* xx.x.xx
* ..x.x..
* .x.x.x.
* x..x..x
*/
static uint8_t const explosion3_bits[] = {
0x49, 0x2A, 0x14, 0x6B, 0x14, 0x2A, 0x49
};
static Bitmap const l_bitmap[MAX_BMP] = {
{ ship_bits, Q_DIM(ship_bits) },
{ missile_bits, Q_DIM(missile_bits) },
{ mine1_bits, Q_DIM(mine1_bits) },
{ mine2_bits, Q_DIM(mine2_bits) },
{ mine2_missile_bits, Q_DIM(mine2_missile_bits) },
{ explosion0_bits, Q_DIM(explosion0_bits) },
{ explosion1_bits, Q_DIM(explosion1_bits) },
{ explosion2_bits, Q_DIM(explosion2_bits) },
{ explosion3_bits, Q_DIM(explosion3_bits) }
};
/*..........................................................................*/
void BSP_paintBitmap(uint8_t x, uint8_t y, uint8_t bmp_id) {
Bitmap const *bmp = &l_bitmap[bmp_id];
paintBits(x, y, bmp->bits, bmp->height);
}
/*..........................................................................*/
void BSP_advanceWalls(uint8_t top, uint8_t bottom) {
uint_fast8_t y;
for (y = 0U; y < GAME_TUNNEL_HEIGHT; ++y) {
/* shift the walls one pixel to the left */
l_walls[y][0] = (l_walls[y][0] >> 1) | (l_walls[y][1] << 31);
l_walls[y][1] = (l_walls[y][1] >> 1) | (l_walls[y][2] << 31);
l_walls[y][2] = (l_walls[y][2] >> 1) | (l_walls[y][3] << 31);
l_walls[y][3] = (l_walls[y][3] >> 1);
/* add new column of walls at the end */
if (y <= top) {
l_walls[y][3] |= (1U << 31);
}
if (y >= (GAME_TUNNEL_HEIGHT - bottom)) {
l_walls[y][3] |= (1U << 31);
}
/* copy the walls to the frame buffer */
l_fb[y][0] = l_walls[y][0];
l_fb[y][1] = l_walls[y][1];
l_fb[y][2] = l_walls[y][2];
l_fb[y][3] = l_walls[y][3];
}
}
/*..........................................................................*/
bool BSP_doBitmapsOverlap(uint8_t bmp_id1, uint8_t x1, uint8_t y1,
uint8_t bmp_id2, uint8_t x2, uint8_t y2)
{
uint8_t y;
uint8_t y0;
uint8_t h;
uint32_t bits1;
uint32_t bits2;
Bitmap const *bmp1;
Bitmap const *bmp2;
Q_REQUIRE((bmp_id1 < Q_DIM(l_bitmap)) && (bmp_id2 < Q_DIM(l_bitmap)));
/* are the bitmaps close enough in x? */
if (x1 >= x2) {
if (x1 > x2 + 8U) {
return false;
}
x1 -= x2;
x2 = 0U;
}
else {
if (x2 > x1 + 8U) {
return false;
}
x2 -= x1;
x1 = 0U;
}
bmp1 = &l_bitmap[bmp_id1];
bmp2 = &l_bitmap[bmp_id2];
if ((y1 <= y2) && (y1 + bmp1->height > y2)) {
y0 = y2 - y1;
h = y1 + bmp1->height - y2;
if (h > bmp2->height) {
h = bmp2->height;
}
for (y = 0; y < h; ++y) { /* scan over the overlapping rows */
bits1 = ((uint32_t)bmp1->bits[y + y0] << x1);
bits2 = ((uint32_t)bmp2->bits[y] << x2);
if ((bits1 & bits2) != 0U) { /* do the bits overlap? */
return true; /* yes! */
}
}
}
else {
if ((y1 > y2) && (y2 + bmp2->height > y1)) {
y0 = y1 - y2;
h = y2 + bmp2->height - y1;
if (h > bmp1->height) {
h = bmp1->height;
}
for (y = 0; y < h; ++y) { /* scan over the overlapping rows */
bits1 = ((uint32_t)bmp1->bits[y] << x1);
bits2 = ((uint32_t)bmp2->bits[y + y0] << x2);
if ((bits1 & bits2) != 0U) { /* do the bits overlap? */
return true; /* yes! */
}
}
}
}
return false; /* the bitmaps do not overlap */
}
/*..........................................................................*/
bool BSP_isWallHit(uint8_t bmp_id, uint8_t x, uint8_t y) {
Bitmap const *bmp = &l_bitmap[bmp_id];
uint32_t shft = (x & 0x1FU);
uint32_t *walls = &l_walls[y][x >> 5];
for (y = 0; y < bmp->height; ++y, walls += (BSP_SCREEN_WIDTH >> 5)) {
if (*walls & ((uint32_t)bmp->bits[y] << shft)) {
return true;
}
if (shft > 24U) {
if (*(walls + 1) & ((uint32_t)bmp->bits[y] >> (32U - shft))) {
return true;
}
}
}
return false;
}
/*..........................................................................*/
void BSP_updateScore(uint16_t score) {
char str[5];
uint16_t s = score;
if (score == 0U) {
BSP_paintString(1U, BSP_SCREEN_HEIGHT - 8U, "SCORE:");
}
/* update the SCORE area on the screeen */
str[4] = '\0';
str[3] = (s % 10U) + '0'; s /= 10U;
str[2] = (s % 10U) + '0'; s /= 10U;
str[1] = (s % 10U) + '0'; s /= 10U;
str[0] = (s % 10U) + '0';
BSP_paintString(6U*6U, BSP_SCREEN_HEIGHT - 8U, str);
QS_BEGIN(SCORE_STAT, (void *)1) /* application-specific record begin */
QS_U16(4, score);
QS_END()
}
/*..........................................................................*/
void BSP_displayOn(void) {
Display_enable(true);
}
/*..........................................................................*/
void BSP_displayOff(void) {
Display_enable(false);
}
/*..........................................................................*/
uint32_t BSP_random(void) { /* a very cheap pseudo-random-number generator */
uint32_t rnd;
/* "Super-Duper" Linear Congruential Generator (LCG)
* LCG(2^32, 3*7*11*13*23, 0, seed)
*/
QMutex_lock(&l_rndMutex); /* lock the random-seed mutex */
rnd = l_rnd * (3U*7U*11U*13U*23U);
l_rnd = rnd; /* set for the next time */
QMutex_unlock(&l_rndMutex); /* unlock the random-seed mutex */
return (rnd >> 8);
}
/*..........................................................................*/
void BSP_randomSeed(uint32_t seed) {
l_rnd = seed;
QMutex_init(&l_rndMutex, 1U); /* ceiling == Tunnel priority */
}
/*--------------------------------------------------------------------------*/
/*..........................................................................*/
static void paintBits(uint8_t x, uint8_t y, uint8_t const *bits, uint8_t h) {
uint32_t *fb = &l_fb[y][x >> 5];
uint32_t shft = (x & 0x1FU);
for (y = 0; y < h; ++y, fb += (BSP_SCREEN_WIDTH >> 5)) {
*fb |= ((uint32_t)bits[y] << shft);
if (shft > 24U) {
*(fb + 1) |= ((uint32_t)bits[y] >> (32U - shft));
}
}
}
/*..........................................................................*/
static void paintBitsClear(uint8_t x, uint8_t y,
uint8_t const *bits, uint8_t h)
{
uint32_t *fb = &l_fb[y][x >> 5];
uint32_t shft = (x & 0x1FU);
uint32_t mask1 = ~((uint32_t)0xFFU << shft);
uint32_t mask2;
if (shft > 24U) {
mask2 = ~(0xFFU >> (32U - shft));
}
for (y = 0; y < h; ++y, fb += (BSP_SCREEN_WIDTH >> 5)) {
*fb = ((*fb & mask1) | ((uint32_t)bits[y] << shft));
if (shft > 24U) {
*(fb + 1) = ((*(fb + 1) & mask2)
| ((uint32_t)bits[y] >> (32U - shft)));
}
}
}
/* QF callbacks ============================================================*/
void QF_onStartup(void) {
/* set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate */
SysTick_Config(SystemCoreClock / BSP_TICKS_PER_SEC);
/* assing all priority bits for preemption-prio. and none to sub-prio. */
NVIC_SetPriorityGrouping(0U);
/* set priorities of ALL ISRs used in the system, see NOTE00
*
* !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
* Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
* DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
*/
NVIC_SetPriority(USART0_RX_IRQn, USART0_RX_PRIO);
NVIC_SetPriority(SysTick_IRQn, SYSTICK_PRIO);
NVIC_SetPriority(GPIO_EVEN_IRQn, GPIO_EVEN_PRIO);
/* ... */
/* enable IRQs... */
NVIC_EnableIRQ(GPIO_EVEN_IRQn);
#ifdef Q_SPY
NVIC_EnableIRQ(USART0_RX_IRQn); /* UART0 interrupt used for QS-RX */
#endif
}
/*..........................................................................*/
void QF_onCleanup(void) {
}
/*..........................................................................*/
void QK_onIdle(void) {
/* toggle the User LED on and then off, see NOTE02 */
QF_INT_DISABLE();
GPIO->P[LED_PORT].DOUT |= (1U << LED0_PIN);
GPIO->P[LED_PORT].DOUT &= ~(1U << LED0_PIN);
QF_INT_ENABLE();
#ifdef Q_SPY
QS_rxParse(); /* parse all the received bytes */
if ((l_USART0->STATUS & USART_STATUS_TXBL) != 0) { /* is TXE empty? */
uint16_t b;
QF_INT_DISABLE();
b = QS_getByte();
QF_INT_ENABLE();
if (b != QS_EOD) { /* not End-Of-Data? */
l_USART0->TXDATA = (b & 0xFFU); /* put into the DR register */
}
}
#elif defined NDEBUG
/* Put the CPU and peripherals to the low-power mode.
* you might need to customize the clock management for your application,
* see the datasheet for your particular Cortex-M MCU.
*/
__WFI(); /* Wait-For-Interrupt */
#endif
}
/*..........................................................................*/
void Q_onAssert(char const *module, int loc) {
/*
* NOTE: add here your application-specific error handling
*/
(void)module;
(void)loc;
QS_ASSERTION(module, loc, (uint32_t)10000U); /* report assertion to QS */
#ifndef NDEBUG
/* light up both LEDs */
GPIO->P[LED_PORT].DOUT |= ((1U << LED0_PIN) | (1U << LED1_PIN));
/* for debugging, hang on in an endless loop until PB1 is pressed... */
while ((GPIO->P[PB_PORT].DIN & (1U << PB1_PIN)) != 0) {
}
#endif
NVIC_SystemReset();
}
/* QS callbacks ============================================================*/
#ifdef Q_SPY
/*..........................................................................*/
uint8_t QS_onStartup(void const *arg) {
static uint8_t qsTxBuf[2*1024]; /* buffer for QS transmit channel */
static uint8_t qsRxBuf[100]; /* buffer for QS receive channel */
static USART_InitAsync_TypeDef init = {
usartEnable, /* Enable RX/TX when init completed */
0, /* Use current clock for configuring baudrate */
115200, /* 115200 bits/s */
usartOVS16, /* 16x oversampling */
usartDatabits8, /* 8 databits */
usartNoParity, /* No parity */
usartStopbits1, /* 1 stopbit */
0, /* Do not disable majority vote */
0, /* Not USART PRS input mode */
usartPrsRxCh0, /* PRS channel 0 */
0, /* Auto CS functionality enable/disable switch */
0, /* Auto CS Hold cycles */
0 /* Auto CS Setup cycles */
};
QS_initBuf (qsTxBuf, sizeof(qsTxBuf));
QS_rxInitBuf(qsRxBuf, sizeof(qsRxBuf));
/* Enable peripheral clocks */
CMU_ClockEnable(cmuClock_HFPER, true);
CMU_ClockEnable(cmuClock_GPIO, true);
/* To avoid false start, configure output as high */
GPIO_PinModeSet(gpioPortA, 0, gpioModePushPull, 1); // TX pin
GPIO_PinModeSet(gpioPortA, 1, gpioModeInput, 0); // RX pin
/* Enable DK RS232/UART switch */
GPIO_PinModeSet(gpioPortA, 5, gpioModePushPull, 1);
CMU_ClockEnable(cmuClock_USART0, true);
/* configure the UART for the desired baud rate, 8-N-1 operation */
init.enable = usartDisable;
USART_InitAsync(l_USART0, &init);
/* enable pins at correct UART/USART location. */
l_USART0->ROUTEPEN = USART_ROUTEPEN_RXPEN | USART_ROUTEPEN_TXPEN;
l_USART0->ROUTELOC0 = (l_USART0->ROUTELOC0 &
~(_USART_ROUTELOC0_TXLOC_MASK
| _USART_ROUTELOC0_RXLOC_MASK));
/* Clear previous RX interrupts */
USART_IntClear(l_USART0, USART_IF_RXDATAV);
NVIC_ClearPendingIRQ(USART0_RX_IRQn);
/* Enable RX interrupts */
USART_IntEnable(l_USART0, USART_IF_RXDATAV);
/* NOTE: do not enable the UART0 interrupt in the NVIC yet.
* Wait till QF_onStartup()
*/
/* Finally enable the UART */
USART_Enable(l_USART0, usartEnable);
QS_tickPeriod_ = SystemCoreClock / BSP_TICKS_PER_SEC;
QS_tickTime_ = QS_tickPeriod_; /* to start the timestamp at zero */
/* setup the QS filters... */
QS_FILTER_ON(QS_QEP_STATE_ENTRY);
QS_FILTER_ON(QS_QEP_STATE_EXIT);
QS_FILTER_ON(QS_QEP_STATE_INIT);
QS_FILTER_ON(QS_QEP_INIT_TRAN);
QS_FILTER_ON(QS_QEP_INTERN_TRAN);
QS_FILTER_ON(QS_QEP_TRAN);
QS_FILTER_ON(QS_QEP_IGNORED);
QS_FILTER_ON(QS_QEP_DISPATCH);
QS_FILTER_ON(QS_QEP_UNHANDLED);
return (uint8_t)1; /* return success */
}
/*..........................................................................*/
void QS_onCleanup(void) {
}
/*..........................................................................*/
QSTimeCtr QS_onGetTime(void) { /* NOTE: invoked with interrupts DISABLED */
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { /* not set? */
return QS_tickTime_ - (QSTimeCtr)SysTick->VAL;
}
else { /* the rollover occured, but the SysTick_ISR did not run yet */
return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL;
}
}
/*..........................................................................*/
void QS_onFlush(void) {
uint16_t b;
QF_INT_DISABLE();
while ((b = QS_getByte()) != QS_EOD) { /* while not End-Of-Data... */
QF_INT_ENABLE();
/* while TXE not empty */
while ((l_USART0->STATUS & USART_STATUS_TXBL) == 0U) {
}
l_USART0->TXDATA = (b & 0xFFU); /* put into the DR register */
QF_INT_DISABLE();
}
QF_INT_ENABLE();
}
/*..........................................................................*/
/*! callback function to reset the target (to be implemented in the BSP) */
void QS_onReset(void) {
NVIC_SystemReset();
}
/*..........................................................................*/
/*! callback function to execute a user command (to be implemented in BSP) */
void QS_onCommand(uint8_t cmdId, uint32_t param) {
void assert_failed(char const *module, int loc);
(void)cmdId;
(void)param;
QS_BEGIN(COMMAND_STAT, (void *)1) /* application-specific record begin */
QS_U8(2, cmdId);
QS_U32(8, param);
QS_END()
if (cmdId == 10U) {
Q_ERROR();
}
else if (cmdId == 11U) {
assert_failed("QS_onCommand", 123);
}
}
#endif /* Q_SPY */
/*--------------------------------------------------------------------------*/
/*****************************************************************************
* NOTE00:
* The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest
* ISR priority that is disabled by the QF framework. The value is suitable
* for the NVIC_SetPriority() CMSIS function.
*
* Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e.,
* with the numerical values of priorities equal or higher than
* QF_AWARE_ISR_CMSIS_PRI) are allowed to call the QK_ISR_ENTRY/QK_ISR_ENTRY
* macros or any other QF/QK services. These ISRs are "QF-aware".
*
* Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority
* level (i.e., with the numerical values of priorities less than
* QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel.
* Such "QF-unaware" ISRs cannot call any QF/QK services. In particular they
* can NOT call the macros QK_ISR_ENTRY/QK_ISR_ENTRY. The only mechanism
* by which a "QF-unaware" ISR can communicate with the QF framework is by
* triggering a "QF-aware" ISR, which can post/publish events.
*
* NOTE02:
* The User LED is used to visualize the idle loop activity. The brightness
* of the LED is proportional to the frequency of invcations of the idle loop.
* Please note that the LED is toggled with interrupts locked, so no interrupt
* execution time contributes to the brightness of the User LED.
*/