mirror of
https://github.com/QuantumLeaps/qpc.git
synced 2025-02-04 07:13:16 +08:00
402 lines
14 KiB
C
402 lines
14 KiB
C
/*****************************************************************************
|
|
* Product: "Dining Philosophers Problem" example, embOS kernel
|
|
* Last updated for version 5.6.0
|
|
* Last updated on 2015-12-18
|
|
*
|
|
* Q u a n t u m L e a P s
|
|
* ---------------------------
|
|
* innovating embedded systems
|
|
*
|
|
* Copyright (C) Quantum Leaps, LLC. All rights reserved.
|
|
*
|
|
* This program is open source software: you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as published
|
|
* by the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* Alternatively, this program may be distributed and modified under the
|
|
* terms of Quantum Leaps commercial licenses, which expressly supersede
|
|
* the GNU General Public License and are specifically designed for
|
|
* licensees interested in retaining the proprietary status of their code.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Contact information:
|
|
* http://www.state-machine.com
|
|
* mailto:info@state-machine.com
|
|
*****************************************************************************/
|
|
#include "qpc.h"
|
|
#include "dpp.h"
|
|
#include "bsp.h"
|
|
|
|
#include "stm32f4xx.h" /* CMSIS-compliant header file for the MCU used */
|
|
#include "stm32f4xx_exti.h"
|
|
#include "stm32f4xx_gpio.h"
|
|
#include "stm32f4xx_rcc.h"
|
|
#include "stm32f4xx_usart.h"
|
|
/* add other drivers if necessary... */
|
|
|
|
Q_DEFINE_THIS_FILE
|
|
|
|
/* Local-scope defines -----------------------------------------------------*/
|
|
#define LED_GPIO_PORT GPIOD
|
|
#define LED_GPIO_CLK RCC_AHB1Periph_GPIOD
|
|
|
|
#define LED4_PIN GPIO_Pin_12
|
|
#define LED3_PIN GPIO_Pin_13
|
|
#define LED5_PIN GPIO_Pin_14
|
|
#define LED6_PIN GPIO_Pin_15
|
|
|
|
#define BTN_GPIO_PORT GPIOA
|
|
#define BTN_GPIO_CLK RCC_AHB1Periph_GPIOA
|
|
#define BTN_B1 GPIO_Pin_0
|
|
|
|
static unsigned l_rnd; /* random seed */
|
|
|
|
#ifdef Q_SPY
|
|
/* event-source identifiers used for tracing */
|
|
static uint8_t const l_embos_ticker = 0U;
|
|
static uint8_t const l_EXTI0_IRQHandler = 0U;
|
|
|
|
QSTimeCtr QS_tickTime_;
|
|
QSTimeCtr QS_tickPeriod_;
|
|
|
|
enum AppRecords { /* application-specific trace records */
|
|
PHILO_STAT = QS_USER
|
|
};
|
|
#endif
|
|
|
|
/* ISRs used in the application ==========================================*/
|
|
/* example ISR handler for embOS */
|
|
void EXTI0_IRQHandler(void);
|
|
void EXTI0_IRQHandler(void) {
|
|
QACTIVE_POST(AO_Table, Q_NEW(QEvt, MAX_SIG), /* for testing... */
|
|
&l_EXTI0_IRQHandler);
|
|
}
|
|
|
|
/* embOS application hooks =================================================*/
|
|
static void tick_handler(void) { /* signature of embOS tick hook routine */
|
|
/* state of the button debouncing, see below */
|
|
static struct ButtonsDebouncing {
|
|
uint32_t depressed;
|
|
uint32_t previous;
|
|
} buttons = { 0U, 0U };
|
|
uint32_t current;
|
|
uint32_t tmp;
|
|
static uint_fast8_t ctr = 1U;
|
|
|
|
#ifdef Q_SPY
|
|
{
|
|
tmp = SysTick->CTRL; /* clear SysTick_CTRL_COUNTFLAG */
|
|
QS_tickTime_ += QS_tickPeriod_; /* account for the clock rollover */
|
|
}
|
|
#endif
|
|
|
|
/* scale down the 1000Hz embOS tick to the desired BSP_TICKS_PER_SEC */
|
|
if (--ctr == 0U) {
|
|
ctr = 1000U/BSP_TICKS_PER_SEC;
|
|
QF_TICK_X(0U, &l_embos_ticker);
|
|
}
|
|
|
|
/* Perform the debouncing of buttons. The algorithm for debouncing
|
|
* adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
|
|
* and Michael Barr, page 71.
|
|
*/
|
|
current = BTN_GPIO_PORT->IDR; /* read BTN GPIO */
|
|
tmp = buttons.depressed; /* save the debounced depressed buttons */
|
|
buttons.depressed |= (buttons.previous & current); /* set depressed */
|
|
buttons.depressed &= (buttons.previous | current); /* clear released */
|
|
buttons.previous = current; /* update the history */
|
|
tmp ^= buttons.depressed; /* changed debounced depressed */
|
|
if ((tmp & BTN_B1) != 0U) { /* debounced B1 state changed? */
|
|
if ((buttons.depressed & BTN_B1) != 0U) { /* is B1 depressed? */
|
|
static QEvt const pauseEvt = { PAUSE_SIG, 0U, 0U};
|
|
QF_PUBLISH(&pauseEvt, &l_embos_ticker);
|
|
}
|
|
else { /* the button is released */
|
|
static QEvt const serveEvt = { SERVE_SIG, 0U, 0U};
|
|
QF_PUBLISH(&serveEvt, &l_embos_ticker);
|
|
}
|
|
}
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_onIdle(void) { /* idle callback from embOS RTOSInit.c */
|
|
QF_INT_DISABLE();
|
|
LED_GPIO_PORT->BSRRL = LED6_PIN; /* turn LED on */
|
|
__NOP(); /* wait a little to actually see the LED glow */
|
|
__NOP();
|
|
__NOP();
|
|
__NOP();
|
|
LED_GPIO_PORT->BSRRH = LED6_PIN; /* turn LED off */
|
|
QF_INT_ENABLE();
|
|
|
|
#ifdef Q_SPY
|
|
if ((USART2->SR & 0x0080U) != 0) { /* is TXE empty? */
|
|
uint16_t b;
|
|
|
|
QF_INT_DISABLE();
|
|
b = QS_getByte();
|
|
QF_INT_ENABLE();
|
|
|
|
if (b != QS_EOD) { /* not End-Of-Data? */
|
|
USART2->DR = (b & 0xFFU); /* put into the DR register */
|
|
}
|
|
}
|
|
#elif defined NDEBUG
|
|
/* Put the CPU and peripherals to the low-power mode.
|
|
* you might need to customize the clock management for your application,
|
|
* see the datasheet for your particular Cortex-M3 MCU.
|
|
*/
|
|
/* !!!CAUTION!!!
|
|
* The WFI instruction stops the CPU clock, which unfortunately disables
|
|
* the JTAG port, so the ST-Link debugger can no longer connect to the
|
|
* board. For that reason, the call to __WFI() has to be used with CAUTION.
|
|
*
|
|
* NOTE: If you find your board "frozen" like this, strap BOOT0 to VDD and
|
|
* reset the board, then connect with ST-Link Utilities and erase the part.
|
|
* The trick with BOOT(0) is it gets the part to run the System Loader
|
|
* instead of your broken code. When done disconnect BOOT0, and start over.
|
|
*/
|
|
//__WFI(); /* Wait-For-Interrupt */
|
|
#endif
|
|
}
|
|
|
|
/* BSP functions ===========================================================*/
|
|
void BSP_init(void) {
|
|
GPIO_InitTypeDef GPIO_struct;
|
|
|
|
/* NOTE: SystemInit() already called from the startup code
|
|
* but SystemCoreClock needs to be updated
|
|
*/
|
|
SystemCoreClockUpdate();
|
|
|
|
/* Explictily Disable the automatic FPU state preservation as well as
|
|
* the FPU lazy stacking
|
|
*/
|
|
FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos));
|
|
|
|
/* Initialize thr port for the LEDs */
|
|
RCC_AHB1PeriphClockCmd(LED_GPIO_CLK , ENABLE);
|
|
|
|
/* GPIO Configuration for the LEDs... */
|
|
GPIO_struct.GPIO_Mode = GPIO_Mode_OUT;
|
|
GPIO_struct.GPIO_OType = GPIO_OType_PP;
|
|
GPIO_struct.GPIO_PuPd = GPIO_PuPd_UP;
|
|
GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz;
|
|
|
|
GPIO_struct.GPIO_Pin = LED3_PIN;
|
|
GPIO_Init(LED_GPIO_PORT, &GPIO_struct);
|
|
LED_GPIO_PORT->BSRRH = LED3_PIN; /* turn LED off */
|
|
|
|
GPIO_struct.GPIO_Pin = LED4_PIN;
|
|
GPIO_Init(LED_GPIO_PORT, &GPIO_struct);
|
|
LED_GPIO_PORT->BSRRH = LED4_PIN; /* turn LED off */
|
|
|
|
GPIO_struct.GPIO_Pin = LED5_PIN;
|
|
GPIO_Init(LED_GPIO_PORT, &GPIO_struct);
|
|
LED_GPIO_PORT->BSRRH = LED5_PIN; /* turn LED off */
|
|
|
|
GPIO_struct.GPIO_Pin = LED6_PIN;
|
|
GPIO_Init(LED_GPIO_PORT, &GPIO_struct);
|
|
LED_GPIO_PORT->BSRRH = LED6_PIN; /* turn LED off */
|
|
|
|
/* Initialize thr port for Button */
|
|
RCC_AHB1PeriphClockCmd(BTN_GPIO_CLK , ENABLE);
|
|
|
|
/* GPIO Configuration for the Button... */
|
|
GPIO_struct.GPIO_Pin = BTN_B1;
|
|
GPIO_struct.GPIO_Mode = GPIO_Mode_IN;
|
|
GPIO_struct.GPIO_OType = GPIO_OType_PP;
|
|
GPIO_struct.GPIO_PuPd = GPIO_PuPd_DOWN;
|
|
GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz;
|
|
GPIO_Init(BTN_GPIO_PORT, &GPIO_struct);
|
|
|
|
/* seed the random number generator */
|
|
BSP_randomSeed(1234U);
|
|
|
|
if (QS_INIT((void *)0) == 0U) { /* initialize the QS software tracing */
|
|
Q_ERROR();
|
|
}
|
|
QS_OBJ_DICTIONARY(&l_embos_ticker);
|
|
QS_OBJ_DICTIONARY(&l_EXTI0_IRQHandler);
|
|
QS_USR_DICTIONARY(PHILO_STAT);
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_displayPhilStat(uint8_t n, char const *stat) {
|
|
(void)n;
|
|
|
|
if (stat[0] == 'h') {
|
|
LED_GPIO_PORT->BSRRL = LED3_PIN; /* turn LED on */
|
|
}
|
|
else {
|
|
LED_GPIO_PORT->BSRRH = LED3_PIN; /* turn LED off */
|
|
}
|
|
if (stat[0] == 'e') {
|
|
LED_GPIO_PORT->BSRRL = LED5_PIN; /* turn LED on */
|
|
}
|
|
else {
|
|
LED_GPIO_PORT->BSRRH = LED5_PIN; /* turn LED on */
|
|
}
|
|
|
|
QS_BEGIN(PHILO_STAT, AO_Philo[n]) /* application-specific record begin */
|
|
QS_U8(1, n); /* Philosopher number */
|
|
QS_STR(stat); /* Philosopher status */
|
|
QS_END() /* application-specific record end */
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_displayPaused(uint8_t paused) {
|
|
if (paused) {
|
|
LED_GPIO_PORT->BSRRL = LED4_PIN; /* turn LED on */
|
|
}
|
|
else {
|
|
LED_GPIO_PORT->BSRRH = LED4_PIN; /* turn LED on */
|
|
}
|
|
}
|
|
/*..........................................................................*/
|
|
uint32_t BSP_random(void) { /* a very cheap pseudo-random-number generator */
|
|
/* exercise the FPU with some floating point computations */
|
|
/* NOTE: this code can be only called from a task that created with
|
|
* the option OS_TASK_OPT_SAVE_FP.
|
|
*/
|
|
float volatile x = 3.1415926F;
|
|
x = x + 2.7182818F;
|
|
|
|
/* "Super-Duper" Linear Congruential Generator (LCG)
|
|
* LCG(2^32, 3*7*11*13*23, 0, seed)
|
|
*/
|
|
l_rnd = l_rnd * (3U*7U*11U*13U*23U);
|
|
|
|
return l_rnd >> 8;
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_randomSeed(uint32_t seed) {
|
|
l_rnd = seed;
|
|
}
|
|
/*..........................................................................*/
|
|
void BSP_terminate(int16_t result) {
|
|
(void)result;
|
|
}
|
|
|
|
|
|
/* QF callbacks ============================================================*/
|
|
void QF_onStartup(void) {
|
|
static OS_TICK_HOOK tick_hook;
|
|
OS_TICK_AddHook(&tick_hook, &tick_handler);
|
|
}
|
|
/*..........................................................................*/
|
|
void QF_onCleanup(void) {
|
|
}
|
|
|
|
/*..........................................................................*/
|
|
void Q_onAssert(char const *module, int loc) {
|
|
/*
|
|
* NOTE: add here your application-specific error handling
|
|
*/
|
|
(void)module;
|
|
(void)loc;
|
|
QS_ASSERTION(module, loc, (uint32_t)10000U); /* report assertion to QS */
|
|
NVIC_SystemReset();
|
|
}
|
|
|
|
/* QS callbacks ============================================================*/
|
|
#ifdef Q_SPY
|
|
/*..........................................................................*/
|
|
uint8_t QS_onStartup(void const *arg) {
|
|
static uint8_t qsBuf[2*1024]; /* buffer for Quantum Spy */
|
|
GPIO_InitTypeDef GPIO_struct;
|
|
USART_InitTypeDef USART_struct;
|
|
|
|
(void)arg; /* avoid the "unused parameter" compiler warning */
|
|
QS_initBuf(qsBuf, sizeof(qsBuf));
|
|
|
|
/* enable peripheral clock for USART2 */
|
|
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
|
|
|
|
/* GPIOA clock enable */
|
|
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
|
|
|
|
/* GPIOA Configuration: USART2 TX on PA2 */
|
|
GPIO_struct.GPIO_Pin = GPIO_Pin_2;
|
|
GPIO_struct.GPIO_Mode = GPIO_Mode_AF;
|
|
GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz;
|
|
GPIO_struct.GPIO_OType = GPIO_OType_PP;
|
|
GPIO_struct.GPIO_PuPd = GPIO_PuPd_UP ;
|
|
GPIO_Init(GPIOA, &GPIO_struct);
|
|
|
|
/* Connect USART2 pins to AF2 */
|
|
GPIO_PinAFConfig(GPIOA, GPIO_PinSource2, GPIO_AF_USART2); /* TX = PA2 */
|
|
GPIO_PinAFConfig(GPIOA, GPIO_PinSource3, GPIO_AF_USART2); /* RX = PA3 */
|
|
|
|
USART_struct.USART_BaudRate = 115200;
|
|
USART_struct.USART_WordLength = USART_WordLength_8b;
|
|
USART_struct.USART_StopBits = USART_StopBits_1;
|
|
USART_struct.USART_Parity = USART_Parity_No;
|
|
USART_struct.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
|
|
USART_struct.USART_Mode = USART_Mode_Tx;
|
|
USART_Init(USART2, &USART_struct);
|
|
|
|
USART_Cmd(USART2, ENABLE); // enable USART2
|
|
|
|
QS_tickPeriod_ = SystemCoreClock / BSP_TICKS_PER_SEC;
|
|
QS_tickTime_ = QS_tickPeriod_; /* to start the timestamp at zero */
|
|
|
|
/* setup the QS filters... */
|
|
QS_FILTER_ON(QS_QEP_STATE_ENTRY);
|
|
QS_FILTER_ON(QS_QEP_STATE_EXIT);
|
|
QS_FILTER_ON(QS_QEP_STATE_INIT);
|
|
QS_FILTER_ON(QS_QEP_INIT_TRAN);
|
|
QS_FILTER_ON(QS_QEP_INTERN_TRAN);
|
|
QS_FILTER_ON(QS_QEP_TRAN);
|
|
QS_FILTER_ON(QS_QEP_IGNORED);
|
|
QS_FILTER_ON(QS_QEP_DISPATCH);
|
|
QS_FILTER_ON(QS_QEP_UNHANDLED);
|
|
|
|
QS_FILTER_ON(PHILO_STAT);
|
|
|
|
return (uint8_t)1; /* return success */
|
|
}
|
|
/*..........................................................................*/
|
|
void QS_onCleanup(void) {
|
|
}
|
|
/*..........................................................................*/
|
|
QSTimeCtr QS_onGetTime(void) { /* NOTE: invoked with interrupts DISABLED */
|
|
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { /* not set? */
|
|
return QS_tickTime_ - (QSTimeCtr)SysTick->VAL;
|
|
}
|
|
else { /* the rollover occured, but the SysTick_ISR did not run yet */
|
|
return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL;
|
|
}
|
|
}
|
|
/*..........................................................................*/
|
|
void QS_onFlush(void) {
|
|
uint16_t b;
|
|
|
|
QF_INT_DISABLE();
|
|
while ((b = QS_getByte()) != QS_EOD) { /* while not End-Of-Data... */
|
|
QF_INT_ENABLE();
|
|
while ((USART2->SR & USART_FLAG_TXE) == 0) { /* while TXE not empty */
|
|
}
|
|
USART2->DR = (b & 0xFF); /* put into the DR register */
|
|
QF_INT_DISABLE();
|
|
}
|
|
QF_INT_ENABLE();
|
|
}
|
|
|
|
#endif /* Q_SPY */
|
|
/*--------------------------------------------------------------------------*/
|
|
|
|
/*****************************************************************************
|
|
* NOTE01:
|
|
* The User LED is used to visualize the idle loop activity. The brightness
|
|
* of the LED is proportional to the frequency of invcations of the idle loop.
|
|
* Please note that the LED is toggled with interrupts locked, so no interrupt
|
|
* execution time contributes to the brightness of the User LED.
|
|
*/
|
|
|