Quantum Leaps f165ec4842 5.6.0-beta
2015-12-24 14:33:20 -05:00

230 lines
8.7 KiB
C

/*****************************************************************************
* Product: "Blinky" example, EK-TM4C123GXL board, preemptive QK kernel
* Last updated for version 5.6.0
* Last updated on 2015-12-18
*
* Q u a n t u m L e a P s
* ---------------------------
* innovating embedded systems
*
* Copyright (C) Quantum Leaps, LLC. All rights reserved.
*
* This program is open source software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Alternatively, this program may be distributed and modified under the
* terms of Quantum Leaps commercial licenses, which expressly supersede
* the GNU General Public License and are specifically designed for
* licensees interested in retaining the proprietary status of their code.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Contact information:
* http://www.state-machine.com
* mailto:info@state-machine.com
*****************************************************************************/
#include "qpc.h"
#include "blinky.h"
#include "bsp.h"
#include "TM4C123GH6PM.h" /* the device specific header (TI) */
#include "rom.h" /* the built-in ROM functions (TI) */
#include "sysctl.h" /* system control driver (TI) */
#include "gpio.h" /* GPIO driver (TI) */
/* add other drivers if necessary... */
//Q_DEFINE_THIS_FILE
#ifdef Q_SPY
#error Simple Blinky Application does not provide Spy build configuration
#endif
/*!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
* Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
* DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
*/
enum KernelUnawareISRs { /* see NOTE00 */
/* ... */
MAX_KERNEL_UNAWARE_CMSIS_PRI /* keep always last */
};
/* "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts */
Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI);
enum KernelAwareISRs {
SYSTICK_PRIO = QF_AWARE_ISR_CMSIS_PRI, /* see NOTE00 */
/* ... */
MAX_KERNEL_AWARE_CMSIS_PRI /* keep always last */
};
/* "kernel-aware" interrupts should not overlap the PendSV priority */
Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS)));
/* ISRs defined in this BSP ------------------------------------------------*/
void SysTick_Handler(void);
void GPIOPortA_IRQHandler(void);
/* Local-scope objects -----------------------------------------------------*/
#define LED_RED (1U << 1)
#define LED_GREEN (1U << 3)
#define LED_BLUE (1U << 2)
static uint32_t const l_led_pin[] = {
LED_GREEN,
LED_RED,
LED_BLUE
};
#define BTN_SW1 (1U << 4)
#define BTN_SW2 (1U << 0)
/* ISRs used in this project ===============================================*/
void SysTick_Handler(void) {
QK_ISR_ENTRY(); /* inform QK about entering an ISR */
QF_TICK_X(0U, (void *)0); /* process time events for rate 0 */
QK_ISR_EXIT(); /* inform QK about exiting an ISR */
}
/* BSP functions ===========================================================*/
void BSP_init(void) {
/* NOTE: SystemInit() already called from the startup code
* but SystemCoreClock needs to be updated
*/
SystemCoreClockUpdate();
/* configure the FPU usage by choosing one of the options... */
#if 1
/* OPTION 1:
* Use the automatic FPU state preservation and the FPU lazy stacking.
*
* NOTE:
* Use the following setting when FPU is used in more than one task or
* in any ISRs. This setting is the safest and recommended, but requires
* extra stack space and CPU cycles.
*/
FPU->FPCCR |= (1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos);
#else
/* OPTION 2:
* Do NOT to use the automatic FPU state preservation and
* do NOT to use the FPU lazy stacking.
*
* NOTE:
* Use the following setting when FPU is used in ONE task only and not
* in any ISR. This setting is very efficient, but if more than one task
* (or ISR) start using the FPU, this can lead to corruption of the
* FPU registers. This option should be used with CAUTION.
*/
FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos)
| (1U << FPU_FPCCR_LSPEN_Pos));
#endif
/* enable clock for to the peripherals used by this application... */
SYSCTL->RCGCGPIO |= (1U << 5); /* enable Run mode for GPIOF */
/* configure the LEDs and push buttons */
GPIOF->DIR |= (LED_RED | LED_GREEN | LED_BLUE);/* set direction: output */
GPIOF->DEN |= (LED_RED | LED_GREEN | LED_BLUE); /* digital enable */
GPIOF->DATA_Bits[LED_RED] = 0U; /* turn the LED off */
GPIOF->DATA_Bits[LED_GREEN] = 0U; /* turn the LED off */
GPIOF->DATA_Bits[LED_BLUE] = 0U; /* turn the LED off */
/* configure the Buttons */
GPIOF->DIR &= ~(BTN_SW1 | BTN_SW2); /* set direction: input */
ROM_GPIOPadConfigSet(GPIOF_BASE, (BTN_SW1 | BTN_SW2),
GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU);
}
/*..........................................................................*/
void BSP_ledOff(uint_fast8_t n) {
GPIOF->DATA_Bits[l_led_pin[n]] = 0U;
}
/*..........................................................................*/
void BSP_ledOn(uint_fast8_t n) {
/* exercise the FPU with some floating point computations */
float volatile x = 3.1415926F;
x = x + 2.7182818F;
GPIOF->DATA_Bits[l_led_pin[n]] = 0xFFU;
}
/* QF callbacks ============================================================*/
void QF_onStartup(void) {
/* set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate */
SysTick_Config(SystemCoreClock / BSP_TICKS_PER_SEC);
/* assing all priority bits for preemption-prio. and none to sub-prio. */
NVIC_SetPriorityGrouping(0U);
/* set priorities of ALL ISRs used in the system, see NOTE00
*
* !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
* Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
* DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
*/
NVIC_SetPriority(SysTick_IRQn, SYSTICK_PRIO);
/* ... */
/* enable IRQs... */
}
/*..........................................................................*/
void QF_onCleanup(void) {
}
/*..........................................................................*/
void QK_onIdle(void) {
/* toggle LED2 on and then off, see NOTE01 */
QF_INT_DISABLE();
GPIOF->DATA_Bits[LED_BLUE] = 0xFFU;
GPIOF->DATA_Bits[LED_BLUE] = 0x00U;
QF_INT_ENABLE();
#ifdef NDEBUG
/* Put the CPU and peripherals to the low-power mode.
* you might need to customize the clock management for your application,
* see the datasheet for your particular Cortex-M3 MCU.
*/
__WFI(); /* Wait-For-Interrupt */
#endif
}
/*..........................................................................*/
void Q_onAssert(char const *module, int loc) {
/*
* NOTE: add here your application-specific error handling
*/
(void)module;
(void)loc;
QS_ASSERTION(module, loc, (uint32_t)10000U); /* report assertion to QS */
NVIC_SystemReset();
}
/*****************************************************************************
* NOTE00:
* The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest
* ISR priority that is disabled by the QF framework. The value is suitable
* for the NVIC_SetPriority() CMSIS function.
*
* Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e.,
* with the numerical values of priorities equal or higher than
* QF_AWARE_ISR_CMSIS_PRI) are allowed to call any QF services. These ISRs
* are "QF-aware".
*
* Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority
* level (i.e., with the numerical values of priorities less than
* QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel.
* Such "QF-unaware" ISRs cannot call any QF services. The only mechanism
* by which a "QF-unaware" ISR can communicate with the QF framework is by
* triggering a "QF-aware" ISR, which can post/publish events.
*
* NOTE01:
* One of the LEDs is used to visualize the idle loop activity. The brightness
* of the LED is proportional to the frequency of invcations of the idle loop.
* Please note that the LED is toggled with interrupts locked, so no interrupt
* execution time contributes to the brightness of the User LED.
*/