mirror of
https://github.com/QuantumLeaps/qpcpp.git
synced 2025-01-28 06:02:56 +08:00
422 lines
15 KiB
C++
422 lines
15 KiB
C++
|
///***************************************************************************
|
||
|
// Product: DPP example, EK-TM4C123GXL board, CMSIS-RTOS RTX kernel
|
||
|
// Last updated for version 5.4.0
|
||
|
// Last updated on 2015-05-09
|
||
|
//
|
||
|
// Q u a n t u m L e a P s
|
||
|
// ---------------------------
|
||
|
// innovating embedded systems
|
||
|
//
|
||
|
// Copyright (C) Quantum Leaps, LLC. All rights reserved.
|
||
|
//
|
||
|
// This program is open source software: you can redistribute it and/or
|
||
|
// modify it under the terms of the GNU General Public License as published
|
||
|
// by the Free Software Foundation, either version 3 of the License, or
|
||
|
// (at your option) any later version.
|
||
|
//
|
||
|
// Alternatively, this program may be distributed and modified under the
|
||
|
// terms of Quantum Leaps commercial licenses, which expressly supersede
|
||
|
// the GNU General Public License and are specifically designed for
|
||
|
// licensees interested in retaining the proprietary status of their code.
|
||
|
//
|
||
|
// This program is distributed in the hope that it will be useful,
|
||
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
// GNU General Public License for more details.
|
||
|
//
|
||
|
// You should have received a copy of the GNU General Public License
|
||
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
|
//
|
||
|
// Contact information:
|
||
|
// Web: www.state-machine.com
|
||
|
// Email: info@state-machine.com
|
||
|
//****************************************************************************
|
||
|
#include "qpcpp.h"
|
||
|
#include "dpp.h"
|
||
|
#include "bsp.h"
|
||
|
|
||
|
#include "TM4C123GH6PM.h" // the device specific header (TI)
|
||
|
#include "rom.h" // the built-in ROM functions (TI)
|
||
|
#include "sysctl.h" // system control driver (TI)
|
||
|
#include "gpio.h" // GPIO driver (TI)
|
||
|
// add other drivers if necessary...
|
||
|
|
||
|
// namespace DPP *************************************************************
|
||
|
namespace DPP {
|
||
|
|
||
|
Q_DEFINE_THIS_FILE
|
||
|
|
||
|
// Local-scope objects -------------------------------------------------------
|
||
|
#define LED_RED (1U << 1)
|
||
|
#define LED_GREEN (1U << 3)
|
||
|
#define LED_BLUE (1U << 2)
|
||
|
|
||
|
#define BTN_SW1 (1U << 4)
|
||
|
#define BTN_SW2 (1U << 0)
|
||
|
|
||
|
static uint32_t l_rnd; // random seed
|
||
|
|
||
|
#ifdef Q_SPY
|
||
|
// event-source identifiers used for tracing
|
||
|
static uint8_t const l_rtx_ticker = 0U;
|
||
|
static uint8_t const l_GPIOPortA_IRQHandler = 0U;
|
||
|
|
||
|
#define UART_BAUD_RATE 115200U
|
||
|
#define UART_FR_TXFE 0x80U
|
||
|
#define UART_TXFIFO_DEPTH 16U
|
||
|
|
||
|
enum AppRecords { // application-specific trace records
|
||
|
PHILO_STAT = QP::QS_USER
|
||
|
};
|
||
|
|
||
|
#endif
|
||
|
|
||
|
extern "C" {
|
||
|
|
||
|
// ISRs used in this project =================================================
|
||
|
void GPIOPortA_IRQHandler(void); // prototype
|
||
|
void GPIOPortA_IRQHandler(void) {
|
||
|
DPP::AO_Table->POST(Q_NEW(QP::QEvt, DPP::MAX_SIG), // for testing...
|
||
|
&l_GPIOPortA_IRQHandler);
|
||
|
// NOTE:
|
||
|
// There is no need to explicitly pend the PendSV exception, because
|
||
|
// RTX handles this when signaling the task. (See OS_PEND_IRQ() macro
|
||
|
// in RTX source code).
|
||
|
//
|
||
|
}
|
||
|
|
||
|
// RTX callbacks =============================================================
|
||
|
void os_idle_demon(void); // prototype
|
||
|
void os_idle_demon(void) {
|
||
|
// The RTX idle demon is a system thread, running when no other thread
|
||
|
// is ready to run.
|
||
|
|
||
|
for (;;) { // idle-loop
|
||
|
QF_INT_DISABLE();
|
||
|
GPIOF->DATA_Bits[LED_BLUE] = 0xFFU; // turn LED on
|
||
|
GPIOF->DATA_Bits[LED_BLUE] = 0x00U; // turn LED off
|
||
|
QF_INT_ENABLE();
|
||
|
|
||
|
#ifdef Q_SPY
|
||
|
if ((UART0->FR & UART_FR_TXFE) != 0U) { // TX done?
|
||
|
uint16_t fifo = UART_TXFIFO_DEPTH; // max bytes we can accept
|
||
|
|
||
|
QF_INT_DISABLE();
|
||
|
// get next block to transmit
|
||
|
uint8_t const *block = QP::QS::getBlock(&fifo);
|
||
|
QF_INT_ENABLE();
|
||
|
|
||
|
while (fifo-- != 0U) { // any bytes in the block?
|
||
|
UART0->DR = *block++; // put into the FIFO
|
||
|
}
|
||
|
}
|
||
|
#elif defined NDEBUG
|
||
|
// Put the CPU and peripherals to the low-power mode.
|
||
|
// You might need to customize the clock management for your project,
|
||
|
// see the datasheet for your particular Cortex-M3 MCU.
|
||
|
//
|
||
|
__WFI(); // Wait-For-Interrupt
|
||
|
#endif
|
||
|
} // idle-loop
|
||
|
}
|
||
|
//............................................................................
|
||
|
// This function is called when RTX detects a runtime error.
|
||
|
// Parameter 'error_code' holds the runtime error code.
|
||
|
//
|
||
|
void os_error(uint32_t err_code); // prototype
|
||
|
void os_error(uint32_t error_code) {
|
||
|
// perform customized error handling...
|
||
|
GPIOF->DATA_Bits[LED_RED] = 0xFFU; // turn LED on
|
||
|
Q_ERROR_ID(error_code); // NOTE: does not return
|
||
|
}
|
||
|
|
||
|
} // extern "C"
|
||
|
|
||
|
// BSP functions =============================================================
|
||
|
void BSP_init(void) {
|
||
|
// NOTE: SystemInit() already called from the startup code
|
||
|
// but SystemCoreClock needs to be updated
|
||
|
//
|
||
|
SystemCoreClockUpdate();
|
||
|
|
||
|
// enable clock to the peripherals used by the application
|
||
|
SYSCTL->RCGC2 |= (1U << 5); // enable clock to GPIOF
|
||
|
__NOP(); // wait after enabling clocks
|
||
|
__NOP();
|
||
|
__NOP();
|
||
|
|
||
|
// configure the LEDs and push buttons
|
||
|
GPIOF->DIR |= (LED_RED | LED_GREEN | LED_BLUE); // set direction: output
|
||
|
GPIOF->DEN |= (LED_RED | LED_GREEN | LED_BLUE); // digital enable
|
||
|
GPIOF->DATA_Bits[LED_RED] = 0U; // turn the LED off
|
||
|
GPIOF->DATA_Bits[LED_GREEN] = 0U; // turn the LED off
|
||
|
GPIOF->DATA_Bits[LED_BLUE] = 0U; // turn the LED off
|
||
|
|
||
|
// configure the Buttons
|
||
|
GPIOF->DIR &= ~(BTN_SW1 | BTN_SW2); // set direction: input
|
||
|
ROM_GPIOPadConfigSet(GPIOF_BASE, (BTN_SW1 | BTN_SW2),
|
||
|
GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU);
|
||
|
|
||
|
BSP_randomSeed(1234U);
|
||
|
|
||
|
if (!QS_INIT((void *)0)) { // initialize the QS software tracing
|
||
|
Q_ERROR();
|
||
|
}
|
||
|
QS_OBJ_DICTIONARY(&l_rtx_ticker);
|
||
|
QS_OBJ_DICTIONARY(&l_GPIOPortA_IRQHandler);
|
||
|
}
|
||
|
//............................................................................
|
||
|
void BSP_displayPhilStat(uint8_t n, char const *stat) {
|
||
|
// exercise the FPU with some floating point computations
|
||
|
float volatile x;
|
||
|
x = 3.1415926F;
|
||
|
x = x + 2.7182818F;
|
||
|
|
||
|
GPIOF->DATA_Bits[LED_RED] = ((stat[0] == 'h') ? 0xFFU : 0U);
|
||
|
GPIOF->DATA_Bits[LED_GREEN] = ((stat[0] == 'e') ? 0xFFU : 0U);
|
||
|
|
||
|
QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin
|
||
|
QS_U8(1, n); // Philosopher number
|
||
|
QS_STR(stat); // Philosopher status
|
||
|
QS_END()
|
||
|
}
|
||
|
//............................................................................
|
||
|
void BSP_displayPaused(uint8_t paused) {
|
||
|
GPIOF->DATA_Bits[LED_RED] = ((paused != 0U) ? 0xFFU : 0U);
|
||
|
}
|
||
|
//............................................................................
|
||
|
uint32_t BSP_random(void) { // a very cheap pseudo-random-number generator
|
||
|
// "Super-Duper" Linear Congruential Generator (LCG)
|
||
|
// LCG(2^32, 3*7*11*13*23, 0, seed)
|
||
|
//
|
||
|
l_rnd = l_rnd * (3U*7U*11U*13U*23U);
|
||
|
|
||
|
return l_rnd >> 8;
|
||
|
}
|
||
|
//............................................................................
|
||
|
void BSP_randomSeed(uint32_t seed) {
|
||
|
l_rnd = seed;
|
||
|
}
|
||
|
//............................................................................
|
||
|
void BSP_terminate(int16_t result) {
|
||
|
(void)result;
|
||
|
}
|
||
|
|
||
|
} // namespace DPP
|
||
|
|
||
|
|
||
|
// namespace QP **************************************************************
|
||
|
namespace QP {
|
||
|
|
||
|
// QF callbacks ==============================================================
|
||
|
void QF::onStartup(void) {
|
||
|
// configure the QF ticker thread
|
||
|
QF_setRtxTicker(1000U/DPP::BSP_TICKS_PER_SEC, osPriorityAboveNormal );
|
||
|
|
||
|
// set priorities of ISRs used in the system...
|
||
|
NVIC_SetPriority(GPIOA_IRQn, 1U);
|
||
|
// ...
|
||
|
|
||
|
// enable IRQs in the NVIC...
|
||
|
NVIC_EnableIRQ(GPIOA_IRQn);
|
||
|
// ...
|
||
|
}
|
||
|
//............................................................................
|
||
|
void QF::onCleanup(void) {
|
||
|
}
|
||
|
//............................................................................
|
||
|
void QF_onRtxTicker() {
|
||
|
|
||
|
// process all QF time events at tick rate 0
|
||
|
QF::TICK_X(0U, &DPP::l_rtx_ticker);
|
||
|
|
||
|
// state of the button debouncing, see below
|
||
|
static struct ButtonsDebouncing {
|
||
|
uint32_t depressed;
|
||
|
uint32_t previous;
|
||
|
} buttons = { ~0U, ~0U };
|
||
|
uint32_t current;
|
||
|
uint32_t tmp;
|
||
|
|
||
|
// Perform the debouncing of buttons. The algorithm for debouncing
|
||
|
// adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
|
||
|
// and Michael Barr, page 71.
|
||
|
//
|
||
|
current = ~GPIOF->DATA_Bits[BTN_SW1 | BTN_SW2]; // read SW1 and SW2
|
||
|
tmp = buttons.depressed; // save the debounced depressed buttons
|
||
|
buttons.depressed |= (buttons.previous & current); // set depressed
|
||
|
buttons.depressed &= (buttons.previous | current); // clear released
|
||
|
buttons.previous = current; // update the history
|
||
|
tmp ^= buttons.depressed; // changed debounced depressed
|
||
|
if ((tmp & BTN_SW1) != 0U) { // debounced SW1 state changed?
|
||
|
if ((buttons.depressed & BTN_SW1) != 0U) { // is SW1 depressed?
|
||
|
static QEvt const pauseEvt = { DPP::PAUSE_SIG, 0U, 0U};
|
||
|
QF::PUBLISH(&pauseEvt, &DPP::l_rtx_ticker);
|
||
|
}
|
||
|
else { // the button is released
|
||
|
static QEvt const serveEvt = { DPP::SERVE_SIG, 0U, 0U};
|
||
|
QF::PUBLISH(&serveEvt, &DPP::l_rtx_ticker);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//............................................................................
|
||
|
// NOTE Q_onAssert() defined in assembly in startup_TM4C123GH6PM.s
|
||
|
|
||
|
// QS callbacks ==============================================================
|
||
|
#ifdef Q_SPY
|
||
|
//............................................................................
|
||
|
bool QS::onStartup(void const *arg) {
|
||
|
static uint8_t qsBuf[1024]; // buffer for Quantum Spy
|
||
|
uint32_t tmp;
|
||
|
initBuf(qsBuf, sizeof(qsBuf));
|
||
|
|
||
|
// enable the peripherals used by the UART0
|
||
|
SYSCTL->RCGC1 |= (1U << 0); // enable clock to UART0
|
||
|
SYSCTL->RCGC2 |= (1U << 0); // enable clock to GPIOA
|
||
|
__NOP(); // wait after enabling clocks
|
||
|
__NOP();
|
||
|
__NOP();
|
||
|
|
||
|
// configure UART0 pins for UART operation
|
||
|
tmp = (1U << 0) | (1U << 1);
|
||
|
GPIOA->DIR &= ~tmp;
|
||
|
GPIOA->AFSEL |= tmp;
|
||
|
GPIOA->DR2R |= tmp; // set 2mA drive, DR4R and DR8R are cleared
|
||
|
GPIOA->SLR &= ~tmp;
|
||
|
GPIOA->ODR &= ~tmp;
|
||
|
GPIOA->PUR &= ~tmp;
|
||
|
GPIOA->PDR &= ~tmp;
|
||
|
GPIOA->DEN |= tmp;
|
||
|
|
||
|
// configure the UART for the desired baud rate, 8-N-1 operation
|
||
|
tmp = (((SystemCoreClock * 8U) / UART_BAUD_RATE) + 1U) / 2U;
|
||
|
UART0->IBRD = tmp / 64U;
|
||
|
UART0->FBRD = tmp % 64U;
|
||
|
UART0->LCRH = 0x60U; // configure 8-N-1 operation
|
||
|
UART0->LCRH |= 0x10U;
|
||
|
UART0->CTL |= (1U << 0) | (1U << 8) | (1U << 9);
|
||
|
|
||
|
// setup the QS filters...
|
||
|
QS_FILTER_ON(QS_QEP_STATE_ENTRY);
|
||
|
QS_FILTER_ON(QS_QEP_STATE_EXIT);
|
||
|
QS_FILTER_ON(QS_QEP_STATE_INIT);
|
||
|
QS_FILTER_ON(QS_QEP_INIT_TRAN);
|
||
|
QS_FILTER_ON(QS_QEP_INTERN_TRAN);
|
||
|
QS_FILTER_ON(QS_QEP_TRAN);
|
||
|
QS_FILTER_ON(QS_QEP_IGNORED);
|
||
|
QS_FILTER_ON(QS_QEP_DISPATCH);
|
||
|
QS_FILTER_ON(QS_QEP_UNHANDLED);
|
||
|
|
||
|
// QS_FILTER_ON(QS_QF_ACTIVE_ADD);
|
||
|
// QS_FILTER_ON(QS_QF_ACTIVE_REMOVE);
|
||
|
// QS_FILTER_ON(QS_QF_ACTIVE_SUBSCRIBE);
|
||
|
// QS_FILTER_ON(QS_QF_ACTIVE_UNSUBSCRIBE);
|
||
|
// QS_FILTER_ON(QS_QF_ACTIVE_POST_FIFO);
|
||
|
// QS_FILTER_ON(QS_QF_ACTIVE_POST_LIFO);
|
||
|
// QS_FILTER_ON(QS_QF_ACTIVE_GET);
|
||
|
// QS_FILTER_ON(QS_QF_ACTIVE_GET_LAST);
|
||
|
// QS_FILTER_ON(QS_QF_EQUEUE_INIT);
|
||
|
// QS_FILTER_ON(QS_QF_EQUEUE_POST_FIFO);
|
||
|
// QS_FILTER_ON(QS_QF_EQUEUE_POST_LIFO);
|
||
|
// QS_FILTER_ON(QS_QF_EQUEUE_GET);
|
||
|
// QS_FILTER_ON(QS_QF_EQUEUE_GET_LAST);
|
||
|
// QS_FILTER_ON(QS_QF_MPOOL_INIT);
|
||
|
// QS_FILTER_ON(QS_QF_MPOOL_GET);
|
||
|
// QS_FILTER_ON(QS_QF_MPOOL_PUT);
|
||
|
// QS_FILTER_ON(QS_QF_PUBLISH);
|
||
|
// QS_FILTER_ON(QS_QF_RESERVED8);
|
||
|
// QS_FILTER_ON(QS_QF_NEW);
|
||
|
// QS_FILTER_ON(QS_QF_GC_ATTEMPT);
|
||
|
// QS_FILTER_ON(QS_QF_GC);
|
||
|
QS_FILTER_ON(QS_QF_TICK);
|
||
|
// QS_FILTER_ON(QS_QF_TIMEEVT_ARM);
|
||
|
// QS_FILTER_ON(QS_QF_TIMEEVT_AUTO_DISARM);
|
||
|
// QS_FILTER_ON(QS_QF_TIMEEVT_DISARM_ATTEMPT);
|
||
|
// QS_FILTER_ON(QS_QF_TIMEEVT_DISARM);
|
||
|
// QS_FILTER_ON(QS_QF_TIMEEVT_REARM);
|
||
|
// QS_FILTER_ON(QS_QF_TIMEEVT_POST);
|
||
|
// QS_FILTER_ON(QS_QF_TIMEEVT_CTR);
|
||
|
// QS_FILTER_ON(QS_QF_CRIT_ENTRY);
|
||
|
// QS_FILTER_ON(QS_QF_CRIT_EXIT);
|
||
|
// QS_FILTER_ON(QS_QF_ISR_ENTRY);
|
||
|
// QS_FILTER_ON(QS_QF_ISR_EXIT);
|
||
|
// QS_FILTER_ON(QS_QF_INT_DISABLE);
|
||
|
// QS_FILTER_ON(QS_QF_INT_ENABLE);
|
||
|
// QS_FILTER_ON(QS_QF_ACTIVE_POST_ATTEMPT);
|
||
|
// QS_FILTER_ON(QS_QF_EQUEUE_POST_ATTEMPT);
|
||
|
// QS_FILTER_ON(QS_QF_MPOOL_GET_ATTEMPT);
|
||
|
// QS_FILTER_ON(QS_QF_RESERVED1);
|
||
|
// QS_FILTER_ON(QS_QF_RESERVED0);
|
||
|
|
||
|
// QS_FILTER_ON(QS_QK_MUTEX_LOCK);
|
||
|
// QS_FILTER_ON(QS_QK_MUTEX_UNLOCK);
|
||
|
// QS_FILTER_ON(QS_QK_SCHEDULE);
|
||
|
// QS_FILTER_ON(QS_QK_RESERVED1);
|
||
|
// QS_FILTER_ON(QS_QK_RESERVED0);
|
||
|
|
||
|
// QS_FILTER_ON(QS_QEP_TRAN_HIST);
|
||
|
// QS_FILTER_ON(QS_QEP_TRAN_EP);
|
||
|
// QS_FILTER_ON(QS_QEP_TRAN_XP);
|
||
|
// QS_FILTER_ON(QS_QEP_RESERVED1);
|
||
|
// QS_FILTER_ON(QS_QEP_RESERVED0);
|
||
|
|
||
|
QS_FILTER_ON(QS_SIG_DICT);
|
||
|
QS_FILTER_ON(QS_OBJ_DICT);
|
||
|
QS_FILTER_ON(QS_FUN_DICT);
|
||
|
QS_FILTER_ON(QS_USR_DICT);
|
||
|
QS_FILTER_ON(QS_EMPTY);
|
||
|
QS_FILTER_ON(QS_RESERVED3);
|
||
|
QS_FILTER_ON(QS_RESERVED2);
|
||
|
QS_FILTER_ON(QS_TEST_RUN);
|
||
|
QS_FILTER_ON(QS_TEST_FAIL);
|
||
|
QS_FILTER_ON(QS_ASSERT_FAIL);
|
||
|
|
||
|
return true; // return success
|
||
|
}
|
||
|
//............................................................................
|
||
|
void QS::onCleanup(void) {
|
||
|
}
|
||
|
//............................................................................
|
||
|
extern "C" uint32_t svcKernelSysTick(void); // prototype declaration
|
||
|
QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED
|
||
|
// NOTE:
|
||
|
// QS::onGetTime() cannot call the offical RTX osKernelSysTick() service,
|
||
|
// because osKernelSysTick() is a SVC function, which can't execute
|
||
|
// with interrupts disabled. Therefore, QS::onGetTime() calls directly
|
||
|
// the function svcKernelSysTick().
|
||
|
//
|
||
|
return (QSTimeCtr)svcKernelSysTick();
|
||
|
}
|
||
|
//............................................................................
|
||
|
void QS::onFlush(void) {
|
||
|
uint16_t fifo = UART_TXFIFO_DEPTH; // Tx FIFO depth
|
||
|
uint8_t const *block;
|
||
|
QF_INT_DISABLE();
|
||
|
while ((block = getBlock(&fifo)) != static_cast<uint8_t *>(0)) {
|
||
|
QF_INT_ENABLE();
|
||
|
// busy-wait until TX FIFO empty
|
||
|
while ((UART0->FR & UART_FR_TXFE) == 0U) {
|
||
|
}
|
||
|
|
||
|
while (fifo-- != 0U) { // any bytes in the block?
|
||
|
UART0->DR = *block++; // put into the TX FIFO
|
||
|
}
|
||
|
fifo = UART_TXFIFO_DEPTH; // re-load the Tx FIFO depth
|
||
|
QF_INT_DISABLE();
|
||
|
}
|
||
|
QF_INT_ENABLE();
|
||
|
}
|
||
|
#endif // Q_SPY
|
||
|
//--------------------------------------------------------------------------*/
|
||
|
|
||
|
} // namespace QP
|
||
|
|
||
|
//****************************************************************************
|
||
|
// NOTE01:
|
||
|
// The User LED is used to visualize the idle loop activity. The brightness
|
||
|
// of the LED is proportional to the frequency of invcations of the idle loop.
|
||
|
// Please note that the LED is toggled with interrupts locked, so no interrupt
|
||
|
// execution time contributes to the brightness of the User LED.
|
||
|
//
|