535 lines
19 KiB
C++
Raw Normal View History

2018-01-10 18:26:05 -05:00
///***************************************************************************
// Product: DPP example, STM32746G-Discovery board, FreeRTOS kernel
2018-02-12 18:51:22 -05:00
// Last Updated for Version: 6.1.0
// Date of the Last Update: 2018-02-03
2018-01-10 18:26:05 -05:00
//
// Q u a n t u m L e a P s
// ---------------------------
// innovating embedded systems
//
// Copyright (C) Quantum Leaps, LLC. All rights reserved.
//
// This program is open source software: you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Alternatively, this program may be distributed and modified under the
// terms of Quantum Leaps commercial licenses, which expressly supersede
// the GNU General Public License and are specifically designed for
// licensees interested in retaining the proprietary status of their code.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// Contact information:
// https://state-machine.com
// mailto:info@state-machine.com
//****************************************************************************
#include "qpcpp.h"
#include "dpp.h"
#include "bsp.h"
2018-02-12 18:51:22 -05:00
// STM32CubeF7 include files
2018-01-10 18:26:05 -05:00
#include "stm32f7xx_hal.h"
#include "stm32746g_discovery.h"
// add other drivers if necessary...
Q_DEFINE_THIS_FILE // define the name of this file for assertions
// namespace DPP *************************************************************
namespace DPP {
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
// DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
//
enum KernelUnawareISRs { // see NOTE1
USART1_PRIO,
// ...
MAX_KERNEL_UNAWARE_CMSIS_PRI // keep always last
};
// "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts
Q_ASSERT_COMPILE(
MAX_KERNEL_UNAWARE_CMSIS_PRI
<= (configMAX_SYSCALL_INTERRUPT_PRIORITY >> (8-__NVIC_PRIO_BITS)));
enum KernelAwareISRs {
SYSTICK_PRIO = (configMAX_SYSCALL_INTERRUPT_PRIORITY >> (8-__NVIC_PRIO_BITS)),
EXTI0_PRIO,
// ...
MAX_KERNEL_AWARE_CMSIS_PRI // keep always last
};
// "kernel-aware" interrupts should not overlap the PendSV priority
Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS)));
// Local-scope objects -------------------------------------------------------
static uint32_t l_rnd; // random seed
#ifdef Q_SPY
QP::QSTimeCtr QS_tickTime_;
QP::QSTimeCtr QS_tickPeriod_;
// QS source IDs
static uint8_t const l_TickHook = static_cast<uint8_t>(0);
static uint8_t const l_EXTI0_IRQHandler = static_cast<uint8_t>(0);
static UART_HandleTypeDef l_uartHandle;
enum AppRecords { // application-specific trace records
PHILO_STAT = QP::QS_USER,
PAUSED_STAT,
COMMAND_STAT
};
#endif
extern "C" {
// ISRs used in this project =================================================
// NOTE: only the "FromISR" API variants are allowed in the ISRs!
void EXTI0_IRQHandler(void); // prototype
void EXTI0_IRQHandler(void) {
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
// for testing...
AO_Table->POST_FROM_ISR(
Q_NEW_FROM_ISR(QP::QEvt, DPP::MAX_PUB_SIG),
&xHigherPriorityTaskWoken,
2018-02-12 18:51:22 -05:00
&l_EXTI0_IRQHandler);
2018-01-10 18:26:05 -05:00
// the usual end of FreeRTOS ISR...
portEND_SWITCHING_ISR(xHigherPriorityTaskWoken);
}
//............................................................................
#ifdef Q_SPY
// ISR for receiving bytes from the QSPY Back-End
// NOTE: This ISR is "kernel-unaware" meaning that it does not interact with
// the FreeRTOS or QP and is not disabled. Such ISRs don't need to call
// portEND_SWITCHING_ISR(() at the end, but they also cannot call any
// FreeRTOS or QP APIs.
//
void USART1_IRQHandler(void); // prototype
void USART1_IRQHandler(void) {
// is RX register NOT empty?
if ((DPP::l_uartHandle.Instance->ISR & USART_ISR_RXNE) != 0) {
uint32_t b = DPP::l_uartHandle.Instance->RDR;
QP::QS::rxPut(b);
DPP::l_uartHandle.Instance->ISR &= ~USART_ISR_RXNE; // clear interrupt
}
}
#endif
// Application hooks used in this project ====================================
// NOTE: only the "FromISR" API variants are allowed in vApplicationTickHook
void vApplicationTickHook(void) {
// state of the button debouncing, see below
static struct ButtonsDebouncing {
uint32_t depressed;
uint32_t previous;
} buttons = { ~0U, ~0U };
uint32_t current;
uint32_t tmp;
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
// process time events for rate 0
QP::QF::TICK_X_FROM_ISR(0U, &xHigherPriorityTaskWoken, &l_TickHook);
#ifdef Q_SPY
{
tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG
QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover
}
#endif
// Perform the debouncing of buttons. The algorithm for debouncing
// adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
// and Michael Barr, page 71.
//
current = BSP_PB_GetState(BUTTON_KEY); // read the Key button
tmp = buttons.depressed; // save the debounced depressed buttons
buttons.depressed |= (buttons.previous & current); // set depressed
buttons.depressed &= (buttons.previous | current); // clear released
buttons.previous = current; // update the history
tmp ^= buttons.depressed; // changed debounced depressed
if (tmp != 0U) { // debounced user button state changed?
if (buttons.depressed != 0U) { // user button depressed?
// demonstrate the ISR APIs: PUBLISH_FROM_ISR and Q_NEW_FROM_ISR
QP::QF::PUBLISH_FROM_ISR(Q_NEW_FROM_ISR(QP::QEvt, DPP::PAUSE_SIG),
&xHigherPriorityTaskWoken, &l_TickHook);
}
else { // the button is released
// demonstrate the ISR APIs: POST_FROM_ISR and Q_NEW_FROM_ISR
AO_Table->POST_FROM_ISR(Q_NEW_FROM_ISR(QP::QEvt, DPP::SERVE_SIG),
&xHigherPriorityTaskWoken, &l_TickHook);
}
}
// notify FreeRTOS to perform context switch from ISR, if needed
portEND_SWITCHING_ISR(xHigherPriorityTaskWoken);
}
//............................................................................
void vApplicationIdleHook(void) {
// toggle the User LED on and then off, see NOTE01
QF_INT_DISABLE();
//BSP_LED_On(LED3); not enough LEDs
//BSP_LED_On(LED3); not enough LEDs
QF_INT_ENABLE();
// Some flating point code is to exercise the VFP...
float x = 1.73205F;
x = x * 1.73205F;
#ifdef Q_SPY
QP::QS::rxParse(); // parse all the received bytes
if ((DPP::l_uartHandle.Instance->ISR & UART_FLAG_TXE) != 0U) {//TXE empty?
uint16_t b;
QF_INT_DISABLE();
b = QP::QS::getByte();
QF_INT_ENABLE();
if (b != QP::QS_EOD) { // not End-Of-Data?
DPP::l_uartHandle.Instance->TDR = (b & 0xFFU); // put into TDR
}
}
#elif defined NDEBUG
// Put the CPU and peripherals to the low-power mode.
// you might need to customize the clock management for your application,
// see the datasheet for your particular Cortex-M MCU.
//
// !!!CAUTION!!!
// The WFI instruction stops the CPU clock, which unfortunately disables
// the JTAG port, so the ST-Link debugger can no longer connect to the
// board. For that reason, the call to __WFI() has to be used with CAUTION.
//
// NOTE: If you find your board "frozen" like this, strap BOOT0 to VDD and
// reset the board, then connect with ST-Link Utilities and erase the part.
// The trick with BOOT(0) is it gets the part to run the System Loader
// instead of your broken code. When done disconnect BOOT0, and start over.
//__WFI(); // Wait-For-Interrupt
#endif
}
//............................................................................
void vApplicationStackOverflowHook(TaskHandle_t xTask, char *pcTaskName) {
(void)xTask;
(void)pcTaskName;
Q_ERROR();
}
//............................................................................
// configSUPPORT_STATIC_ALLOCATION is set to 1, so the application must
// provide an implementation of vApplicationGetIdleTaskMemory() to provide
// the memory that is used by the Idle task.
//
void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer,
StackType_t **ppxIdleTaskStackBuffer,
uint32_t *pulIdleTaskStackSize )
{
// If the buffers to be provided to the Idle task are declared inside
// this function then they must be declared static - otherwise they will
// be allocated on the stack and so not exists after this function exits.
//
static StaticTask_t xIdleTaskTCB;
static StackType_t uxIdleTaskStack[ configMINIMAL_STACK_SIZE ];
// Pass out a pointer to the StaticTask_t structure in which the
// Idle task's state will be stored.
//
*ppxIdleTaskTCBBuffer = &xIdleTaskTCB;
// Pass out the array that will be used as the Idle task's stack. */
*ppxIdleTaskStackBuffer = uxIdleTaskStack;
// Pass out the size of the array pointed to by *ppxIdleTaskStackBuffer.
// Note that, as the array is necessarily of type StackType_t,
// configMINIMAL_STACK_SIZE is specified in words, not bytes.
//
*pulIdleTaskStackSize = Q_DIM(uxIdleTaskStack);
}
} // extern "C"
// BSP functions =============================================================
void BSP::init(void) {
// NOTE: SystemInit() has been already called from the startup code
// but SystemCoreClock needs to be updated
SystemCoreClockUpdate();
// NOTE: The VFP (hardware Floating Point) unit is configured by FreeRTOS */
SCB_EnableICache(); // Enable I-Cache
SCB_EnableDCache(); // Enable D-Cache
// Configure Flash prefetch and Instr. cache through ART accelerator
#if (ART_ACCLERATOR_ENABLE != 0)
__HAL_FLASH_ART_ENABLE();
#endif // ART_ACCLERATOR_ENABLE
// Configure LED1
BSP_LED_Init(LED1);
// Configure the User Button in GPIO Mode
BSP_PB_Init(BUTTON_KEY, BUTTON_MODE_GPIO);
//...
BSP::randomSeed(1234U);
// initialize the QS software tracing...
if (!QS_INIT((void *)0)) {
Q_ERROR();
}
QS_OBJ_DICTIONARY(&l_TickHook);
QS_USR_DICTIONARY(PHILO_STAT);
QS_USR_DICTIONARY(PAUSED_STAT);
QS_USR_DICTIONARY(COMMAND_STAT);
}
//............................................................................
void BSP::displayPhilStat(uint8_t n, char const *stat) {
if (stat[0] == 'e') {
BSP_LED_On(LED1);
}
else {
BSP_LED_Off(LED1);
}
QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin
QS_U8(1, n); // Philosopher number
QS_STR(stat); // Philosopher status
QS_END() // application-specific record end
}
//............................................................................
void BSP::displayPaused(uint8_t const paused) {
if (paused != 0U) {
//BSP_LED_On(LED2); not enough LEDs
}
else {
//BSP_LED_Off(LED2); not enough LEDs
}
}
//............................................................................
void BSP::ledOn(void) {
BSP_LED_On(LED_GREEN);
}
//............................................................................
void BSP::ledOff(void) {
BSP_LED_Off(LED_GREEN);
}
//............................................................................
uint32_t BSP::random(void) { // a very cheap pseudo-random-number generator
// Some flating point code is to exercise the VFP...
float volatile x = 3.1415926F;
x = x + 2.7182818F;
vTaskSuspendAll(); // lock FreeRTOS scheduler
// "Super-Duper" Linear Congruential Generator (LCG)
// LCG(2^32, 3*7*11*13*23, 0, seed)
//
uint32_t rnd = l_rnd * (3U*7U*11U*13U*23U);
l_rnd = rnd; // set for the next time
xTaskResumeAll(); // unlock the FreeRTOS scheduler
return (rnd >> 8);
}
//............................................................................
void BSP::randomSeed(uint32_t seed) {
l_rnd = seed;
}
//............................................................................
void BSP::terminate(int16_t result) {
(void)result;
}
} // namespace DPP
// namespace QP **************************************************************
namespace QP {
// QF callbacks ==============================================================
void QF::onStartup(void) {
// set up the SysTick timer to fire at BSP::TICKS_PER_SEC rate
//SysTick_Config(SystemCoreClock / BSP_TICKS_PER_SEC); // done in FreeRTOS
// assing all priority bits for preemption-prio. and none to sub-prio.
NVIC_SetPriorityGrouping(0U);
// assingn all priority bits for preemption-prio. and none to sub-prio.
NVIC_SetPriorityGrouping(0U);
// set priorities of ALL ISRs used in the system, see NOTE00
//
// !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
// DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
//
NVIC_SetPriority(USART1_IRQn, DPP::USART1_PRIO);
NVIC_SetPriority(SysTick_IRQn, DPP::SYSTICK_PRIO);
NVIC_SetPriority(EXTI0_IRQn, DPP::EXTI0_PRIO);
// ...
// enable IRQs...
NVIC_EnableIRQ(EXTI0_IRQn);
#ifdef Q_SPY
NVIC_EnableIRQ(USART1_IRQn); // UART interrupt used for QS-RX
#endif
}
//............................................................................
void QF::onCleanup(void) {
}
//............................................................................
extern "C" void Q_onAssert(char const *module, int loc) {
//
// NOTE: add here your application-specific error handling
//
(void)module;
(void)loc;
QS_ASSERTION(module, loc, static_cast<uint32_t>(10000U));
#ifndef NDEBUG
// light up the LED
BSP_LED_On(LED1);
// for debugging, hang on in an endless loop...
for (;;) {
}
#endif
NVIC_SystemReset();
}
// QS callbacks ==============================================================
#ifdef Q_SPY
//............................................................................
bool QS::onStartup(void const *arg) {
static uint8_t qsTxBuf[2*1024]; // buffer for QS transmit channel
static uint8_t qsRxBuf[100]; // buffer for QS receive channel
initBuf (qsTxBuf, sizeof(qsTxBuf));
rxInitBuf(qsRxBuf, sizeof(qsRxBuf));
DPP::l_uartHandle.Instance = USART1;
DPP::l_uartHandle.Init.BaudRate = 115200;
DPP::l_uartHandle.Init.WordLength = UART_WORDLENGTH_8B;
DPP::l_uartHandle.Init.StopBits = UART_STOPBITS_1;
DPP::l_uartHandle.Init.Parity = UART_PARITY_NONE;
DPP::l_uartHandle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
DPP::l_uartHandle.Init.Mode = UART_MODE_TX_RX;
DPP::l_uartHandle.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&DPP::l_uartHandle) != HAL_OK) {
return false; // return failure
}
// Set UART to receive 1 byte at a time via interrupt
HAL_UART_Receive_IT(&DPP::l_uartHandle, (uint8_t *)qsRxBuf, 1);
// NOTE: wait till QF::onStartup() to enable UART interrupt in NVIC
DPP::QS_tickPeriod_ = SystemCoreClock / DPP::BSP::TICKS_PER_SEC;
DPP::QS_tickTime_ = DPP::QS_tickPeriod_; // to start the timestamp at zero
// setup the QS filters...
QS_FILTER_ON(QS_SM_RECORDS);
QS_FILTER_ON(QS_UA_RECORDS);
return true; // return success
}
//............................................................................
void QS::onCleanup(void) {
}
//............................................................................
QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // not set?
return DPP::QS_tickTime_ - static_cast<QSTimeCtr>(SysTick->VAL);
}
else { // the rollover occured, but the SysTick_ISR did not run yet
return DPP::QS_tickTime_ + DPP::QS_tickPeriod_
- static_cast<QSTimeCtr>(SysTick->VAL);
}
}
//............................................................................
void QS::onFlush(void) {
uint16_t b;
while ((b = getByte()) != QS_EOD) { // while not End-Of-Data...
// while TXE not empty
while ((DPP::l_uartHandle.Instance->ISR & UART_FLAG_TXE) == 0U) {
}
DPP::l_uartHandle.Instance->TDR = (b & 0xFFU); // put into TDR
}
}
//............................................................................
//! callback function to reset the target (to be implemented in the BSP)
void QS::onReset(void) {
NVIC_SystemReset();
}
//............................................................................
//! callback function to execute a user command (to be implemented in BSP)
extern "C" void assert_failed(char const *module, int loc);
void QS::onCommand(uint8_t cmdId,
uint32_t param1, uint32_t param2, uint32_t param3)
{
(void)cmdId;
(void)param1;
(void)param2;
(void)param3;
// application-specific record
QS_BEGIN(DPP::COMMAND_STAT, reinterpret_cast<void *>(1))
QS_U8(2, cmdId);
QS_U32(8, param1);
QS_U32(8, param2);
QS_U32(8, param3);
QS_END()
if (cmdId == 10U) {
Q_ERROR(); // for testing of assertion failure
}
else if (cmdId == 11U) {
assert_failed("QS_onCommand", 123);
}
}
#endif // Q_SPY
//----------------------------------------------------------------------------
} // namespace QP
//****************************************************************************
// NOTE1:
// The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest
// ISR priority that is disabled by the QF framework. The value is suitable
// for the NVIC_SetPriority() CMSIS function.
//
// Only ISRs prioritized at or below the
// configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY level (i.e.,
// with the numerical values of priorities equal or higher than
// configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY) are allowed to call any
// QP/FreeRTOS services. These ISRs are "kernel-aware".
//
// Conversely, any ISRs prioritized above the
// configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY priority level (i.e., with
// the numerical values of priorities less than
// configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY) are never disabled and are
// not aware of the kernel. Such "kernel-unaware" ISRs cannot call any
// QP/FreeRTOS services. The only mechanism by which a "kernel-unaware" ISR
// can communicate with the QF framework is by triggering a "kernel-aware"
// ISR, which can post/publish events.
//
// For more information, see article "Running the RTOS on a ARM Cortex-M Core"
// http://www.freertos.org/RTOS-Cortex-M3-M4.html
//
// NOTE2:
// The User LED is used to visualize the idle loop activity. The brightness
// of the LED is proportional to the frequency of invcations of the idle loop.
// Please note that the LED is toggled with interrupts locked, so no interrupt
// execution time contributes to the brightness of the User LED.
//