qpcpp/examples/win32/dpp/main.cpp

102 lines
4.1 KiB
C++
Raw Normal View History

2014-10-02 10:40:48 -04:00
//****************************************************************************
2016-11-08 12:48:44 -05:00
// DPP example for Windows
// Last updated for version 5.7.5
// Last updated on 2016-11-08
2014-10-02 10:40:48 -04:00
//
// Q u a n t u m L e a P s
// ---------------------------
// innovating embedded systems
//
2016-11-08 12:48:44 -05:00
// Copyright (C) Quantum Leaps, LLC. All rights reserved.
2014-10-02 10:40:48 -04:00
//
// This program is open source software: you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Alternatively, this program may be distributed and modified under the
// terms of Quantum Leaps commercial licenses, which expressly supersede
// the GNU General Public License and are specifically designed for
// licensees interested in retaining the proprietary status of their code.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// Contact information:
2016-11-08 12:48:44 -05:00
// http://www.state-machine.com
// mailto:info@state-machine.com
2014-10-02 10:40:48 -04:00
//****************************************************************************
2015-05-14 16:05:04 -04:00
#include "qpcpp.h"
2014-10-02 10:40:48 -04:00
#include "dpp.h"
#include "bsp.h"
2016-11-08 12:48:44 -05:00
// "fudge factor" for Windows, see NOTE1
enum { WIN_FUDGE_FACTOR = 10 };
2014-10-02 10:40:48 -04:00
//............................................................................
int main() {
2016-11-08 12:48:44 -05:00
static QP::QEvt const *tableQueueSto[N_PHILO*WIN_FUDGE_FACTOR];
static QP::QEvt const *philoQueueSto[N_PHILO][N_PHILO*WIN_FUDGE_FACTOR];
static QF_MPOOL_EL(DPP::TableEvt) smlPoolSto[2*N_PHILO*WIN_FUDGE_FACTOR];
2014-10-02 10:40:48 -04:00
2016-11-08 12:48:44 -05:00
static QP::QSubscrList subscrSto[DPP::MAX_PUB_SIG];
2014-10-02 10:40:48 -04:00
2016-12-01 10:31:49 -05:00
2014-10-02 10:40:48 -04:00
QP::QF::init(); // initialize the framework and the underlying RT kernel
2016-12-01 10:31:49 -05:00
DPP::BSP::init(); // initialize the BSP
2014-10-02 10:40:48 -04:00
// object dictionaries...
QS_OBJ_DICTIONARY(smlPoolSto);
QS_OBJ_DICTIONARY(tableQueueSto);
QS_OBJ_DICTIONARY(philoQueueSto[0]);
QS_OBJ_DICTIONARY(philoQueueSto[1]);
QS_OBJ_DICTIONARY(philoQueueSto[2]);
QS_OBJ_DICTIONARY(philoQueueSto[3]);
QS_OBJ_DICTIONARY(philoQueueSto[4]);
QP::QF::psInit(subscrSto, Q_DIM(subscrSto)); // init publish-subscribe
// initialize event pools...
QP::QF::poolInit(smlPoolSto,
sizeof(smlPoolSto), sizeof(smlPoolSto[0]));
// start the active objects...
for (uint8_t n = 0U; n < N_PHILO; ++n) {
DPP::AO_Philo[n]->start((uint8_t)(n + 1U),
philoQueueSto[n], Q_DIM(philoQueueSto[n]),
2015-05-14 16:05:04 -04:00
(void *)0, 0U);
2014-10-02 10:40:48 -04:00
}
DPP::AO_Table->start((uint8_t)(N_PHILO + 1U),
tableQueueSto, Q_DIM(tableQueueSto),
2015-05-14 16:05:04 -04:00
(void *)0, 0U);
2014-10-02 10:40:48 -04:00
return QP::QF::run(); // run the QF application
}
2016-11-08 12:48:44 -05:00
//****************************************************************************
// NOTE1:
// Windows is not a deterministic real-time system, which means that the
// system can occasionally and unexpectedly "choke and freeze" for a number
// of seconds. The designers of Windows have dealt with these sort of issues
// by massively oversizing the resources available to the applications. For
// example, the default Windows GUI message queues size is 10,000 entries,
// which can dynamically grow to an even larger number. Also the stacks of
// Win32 threads can dynamically grow to several megabytes.
//
// In contrast, the event queues, event pools, and stack size inside the
// real-time embedded (RTE) systems can be (and must be) much smaller,
// because you typically can put an upper bound on the real-time behavior
// and the resulting delays.
//
// To be able to run the unmodified applications designed originally for
// RTE systems on Windows, and to reduce the odds of resource shortages in
// this case, the generous WIN_FUDGE_FACTOR is used to oversize the
// event queues and event pools.
//