qpcpp/ports/posix/qf_port.cpp

325 lines
12 KiB
C++
Raw Normal View History

//============================================================================
2022-08-11 15:36:19 -04:00
// Copyright (C) 2005 Quantum Leaps, LLC <state-machine.com>.
//
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-QL-commercial
//
// This software is dual-licensed under the terms of the open source GNU
// General Public License version 3 (or any later version), or alternatively,
// under the terms of one of the closed source Quantum Leaps commercial
// licenses.
//
// The terms of the open source GNU General Public License version 3
// can be found at: <www.gnu.org/licenses/gpl-3.0>
//
// The terms of the closed source Quantum Leaps commercial licenses
// can be found at: <www.state-machine.com/licensing>
//
// Redistributions in source code must retain this top-level comment block.
// Plagiarizing this software to sidestep the license obligations is illegal.
//
// Contact information:
// <www.state-machine.com/licensing>
// <info@state-machine.com>
//============================================================================
2022-08-29 14:42:32 -04:00
//! @date Last updated on: 2022-08-29
2022-08-28 22:12:27 -04:00
//! @version Last updated for: @ref qpcpp_7_1_0
//!
2022-08-11 15:36:19 -04:00
//! @file
//! @brief QF/C++ port to POSIX/P-threads
2019-02-10 21:01:38 -05:00
// expose features from the 2008 POSIX standard (IEEE Standard 1003.1-2008)
#define _POSIX_C_SOURCE 200809L
2014-04-13 21:35:34 -04:00
2019-10-27 12:26:31 -04:00
#define QP_IMPL // this is QP implementation
#include "qf_port.hpp" // QF port
#include "qf_pkg.hpp" // QF package-scope interface
#include "qassert.h" // QP embedded systems-friendly assertions
#ifdef Q_SPY // QS software tracing enabled?
2020-03-17 21:33:58 -04:00
#include "qs_port.hpp" // QS port
#include "qs_pkg.hpp" // QS package-scope internal interface
2014-04-13 21:35:34 -04:00
#else
2019-10-27 12:26:31 -04:00
#include "qs_dummy.hpp" // disable the QS software tracing
2014-04-13 21:35:34 -04:00
#endif // Q_SPY
2019-10-27 12:26:31 -04:00
#include <limits.h> // for PTHREAD_STACK_MIN
#include <sys/mman.h> // for mlockall()
2018-10-25 11:13:01 -04:00
#include <sys/select.h>
#include <sys/ioctl.h>
2019-10-27 12:26:31 -04:00
#include <string.h> // for memcpy() and memset()
2018-10-25 11:13:01 -04:00
#include <stdlib.h>
#include <stdio.h>
#include <termios.h>
#include <unistd.h>
#include <signal.h>
2022-08-11 15:36:19 -04:00
namespace { // unnamed local namespace
2012-08-14 18:00:48 -04:00
Q_DEFINE_THIS_MODULE("qf_port")
2017-08-29 16:01:46 -04:00
static pthread_mutex_t l_startupMutex;
2018-10-25 11:13:01 -04:00
static bool l_isRunning; // flag indicating when QF is running
static struct termios l_tsav; // structure with saved terminal attributes
2016-04-29 08:52:53 -04:00
static struct timespec l_tick;
2018-06-16 17:21:53 -04:00
static int_t l_tickPrio;
2016-04-29 08:52:53 -04:00
enum { NANOSLEEP_NSEC_PER_SEC = 1000000000 }; // see NOTE05
2012-08-14 18:00:48 -04:00
2022-08-11 15:36:19 -04:00
static void sigIntHandler(int /* dummy */) {
QP::QF::onCleanup();
exit(-1);
}
static void *ao_thread(void *arg) { // thread routine for all AOs
QP::QActive::thread_(static_cast<QP::QActive *>(arg));
return nullptr; // return success
}
} // unnamed local namespace
//============================================================================
namespace QP {
pthread_mutex_t QF::pThreadMutex_; // mutex for QF critical section
2015-05-14 16:05:04 -04:00
2022-08-11 15:36:19 -04:00
//............................................................................
2012-08-14 18:00:48 -04:00
void QF::init(void) {
2014-04-13 21:35:34 -04:00
// lock memory so we're never swapped out to disk
//mlockall(MCL_CURRENT | MCL_FUTURE); // uncomment when supported
2016-02-10 16:27:39 -05:00
2016-06-10 21:51:18 -04:00
// init the global mutex with the default non-recursive initializer
2022-08-11 15:36:19 -04:00
pthread_mutex_init(&QF::pThreadMutex_, NULL);
2016-06-10 21:51:18 -04:00
2017-08-29 16:01:46 -04:00
// init the startup mutex with the default non-recursive initializer
pthread_mutex_init(&l_startupMutex, NULL);
// lock the startup mutex to block any active objects started before
// calling QF::run()
pthread_mutex_lock(&l_startupMutex);
2016-04-29 08:52:53 -04:00
l_tick.tv_sec = 0;
l_tick.tv_nsec = NANOSLEEP_NSEC_PER_SEC/100L; // default clock tick
2018-06-16 17:21:53 -04:00
l_tickPrio = sched_get_priority_min(SCHED_FIFO); // default tick prio
2018-10-25 11:13:01 -04:00
// install the SIGINT (Ctrl-C) signal handler
struct sigaction sig_act;
memset(&sig_act, 0, sizeof(sig_act));
2018-10-25 11:13:01 -04:00
sig_act.sa_handler = &sigIntHandler;
sigaction(SIGINT, &sig_act, NULL);
2012-08-14 18:00:48 -04:00
}
2022-08-11 15:36:19 -04:00
//............................................................................
void QF::enterCriticalSection_(void) {
pthread_mutex_lock(&QF::pThreadMutex_);
2018-11-22 11:34:13 -05:00
}
2022-08-11 15:36:19 -04:00
//............................................................................
void QF::leaveCriticalSection_(void) {
pthread_mutex_unlock(&QF::pThreadMutex_);
2018-11-22 11:34:13 -05:00
}
2022-08-11 15:36:19 -04:00
//............................................................................
2013-12-30 17:41:15 -05:00
int_t QF::run(void) {
2022-08-11 15:36:19 -04:00
2019-11-04 12:29:48 -05:00
onStartup(); // application-specific startup callback
2012-08-14 18:00:48 -04:00
2020-08-24 16:42:48 -04:00
// produce the QS_QF_RUN trace record
2020-10-01 12:50:17 -04:00
QS_BEGIN_NOCRIT_PRE_(QS_QF_RUN, 0U)
2020-08-24 16:42:48 -04:00
QS_END_NOCRIT_PRE_()
2018-10-25 11:13:01 -04:00
// try to set the priority of the ticker thread, see NOTE01
2015-05-14 16:05:04 -04:00
struct sched_param sparam;
2018-06-16 17:21:53 -04:00
sparam.sched_priority = l_tickPrio;
2012-08-14 18:00:48 -04:00
if (pthread_setschedparam(pthread_self(), SCHED_FIFO, &sparam) == 0) {
2014-04-13 21:35:34 -04:00
// success, this application has sufficient privileges
2012-08-14 18:00:48 -04:00
}
else {
2022-08-11 15:36:19 -04:00
// setting priority failed, probably due to insufficient privileges
2012-08-14 18:00:48 -04:00
}
2017-08-29 16:01:46 -04:00
// unlock the startup mutex to unblock any active objects started before
// calling QF::run()
pthread_mutex_unlock(&l_startupMutex);
l_isRunning = true;
while (l_isRunning) { // the clock tick loop...
2022-08-11 15:36:19 -04:00
QF::onClockTick(); // clock tick callback (must call TICK_X())
2012-08-14 18:00:48 -04:00
2016-04-29 08:52:53 -04:00
nanosleep(&l_tick, NULL); // sleep for the number of ticks, NOTE05
2012-08-14 18:00:48 -04:00
}
2019-11-04 12:29:48 -05:00
onCleanup(); // cleanup callback
2017-08-29 16:01:46 -04:00
pthread_mutex_destroy(&l_startupMutex);
2022-08-11 15:36:19 -04:00
pthread_mutex_destroy(&QF::pThreadMutex_);
2019-11-04 12:29:48 -05:00
2020-03-17 21:33:58 -04:00
return 0; // return success
2012-08-14 18:00:48 -04:00
}
2019-11-04 12:29:48 -05:00
//............................................................................
2012-08-14 18:00:48 -04:00
void QF::stop(void) {
2017-08-29 16:01:46 -04:00
l_isRunning = false; // stop the loop in QF::run()
2012-08-14 18:00:48 -04:00
}
//............................................................................
2022-08-11 15:36:19 -04:00
void QF::setTickRate(std::uint32_t ticksPerSec, int_t tickPrio) {
Q_REQUIRE_ID(300, ticksPerSec != 0U);
l_tick.tv_nsec = NANOSLEEP_NSEC_PER_SEC / ticksPerSec;
l_tickPrio = tickPrio;
2012-08-14 18:00:48 -04:00
}
2022-08-28 22:12:27 -04:00
2018-10-25 11:13:01 -04:00
//............................................................................
2022-08-11 15:36:19 -04:00
void QF::consoleSetup(void) {
2018-10-25 11:13:01 -04:00
struct termios tio; // modified terminal attributes
tcgetattr(0, &l_tsav); // save the current terminal attributes
tcgetattr(0, &tio); // obtain the current terminal attributes
tio.c_lflag &= ~(ICANON | ECHO); // disable the canonical mode & echo
tcsetattr(0, TCSANOW, &tio); // set the new attributes
}
//............................................................................
2022-08-11 15:36:19 -04:00
void QF::consoleCleanup(void) {
2018-10-25 11:13:01 -04:00
tcsetattr(0, TCSANOW, &l_tsav); // restore the saved attributes
}
//............................................................................
2022-08-11 15:36:19 -04:00
int QF::consoleGetKey(void) {
2018-10-25 11:13:01 -04:00
int byteswaiting;
ioctl(0, FIONREAD, &byteswaiting);
if (byteswaiting > 0) {
char ch;
2022-08-11 15:36:19 -04:00
(void)read(0, &ch, 1);
2018-10-25 11:13:01 -04:00
return (int)ch;
}
return 0; // no input at this time
}
2022-08-28 22:12:27 -04:00
//............................................................................
2022-08-11 15:36:19 -04:00
int QF::consoleWaitForKey(void) {
2018-10-25 11:13:01 -04:00
return getchar();
}
2022-08-11 15:36:19 -04:00
//............................................................................
void QActive::thread_(QActive *act) {
// block this thread until the startup mutex is unlocked from QF::run()
pthread_mutex_lock(&l_startupMutex);
pthread_mutex_unlock(&l_startupMutex);
#ifdef QF_ACTIVE_STOP
act->m_thread = true;
while (act->m_thread)
#else
for (;;) // for-ever
#endif
{
QEvt const *e = act->get_(); // wait for event
act->dispatch(e, act->m_prio); // dispatch to the AO's state machine
QF::gc(e); // check if the event is garbage, and collect it if so
}
#ifdef QF_ACTIVE_STOP
act->unregister_(); // remove this object from QF
#endif
}
2018-10-25 11:13:01 -04:00
//============================================================================
2022-08-28 22:12:27 -04:00
void QActive::start(QPrioSpec const prioSpec,
2020-03-17 21:33:58 -04:00
QEvt const * * const qSto, std::uint_fast16_t const qLen,
void * const stkSto, std::uint_fast16_t const stkSize,
2019-10-27 12:26:31 -04:00
void const * const par)
2012-08-14 18:00:48 -04:00
{
2022-08-28 22:12:27 -04:00
Q_UNUSED_PAR(stkSto);
Q_UNUSED_PAR(stkSize);
2015-05-14 16:05:04 -04:00
// p-threads allocate stack internally
2020-03-17 21:33:58 -04:00
Q_REQUIRE_ID(600, stkSto == nullptr);
2012-08-14 18:00:48 -04:00
2022-08-29 14:42:32 -04:00
m_prio = static_cast<std::uint8_t>(prioSpec & 0xFFU); // QF-priority
m_pthre = static_cast<std::uint8_t>(prioSpec >> 8U); // preemption-thre.
2022-08-28 22:12:27 -04:00
register_(); // make QF aware of this AO
2012-08-14 18:00:48 -04:00
2022-08-28 22:12:27 -04:00
pthread_cond_init(&m_osObject, 0);
2013-12-30 17:41:15 -05:00
m_eQueue.init(qSto, qLen);
2019-10-27 12:26:31 -04:00
2020-10-01 12:50:17 -04:00
this->init(par, m_prio); // execute initial transition (virtual call)
2019-10-27 12:26:31 -04:00
QS_FLUSH(); // flush the QS trace buffer to the host
2012-08-14 18:00:48 -04:00
pthread_attr_t attr;
pthread_attr_init(&attr);
// SCHED_FIFO corresponds to real-time preemptive priority-based scheduler
// NOTE: This scheduling policy requires the superuser privileges
pthread_attr_setschedpolicy (&attr, SCHED_FIFO);
pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_DETACHED);
2014-04-13 21:35:34 -04:00
// priority of the p-thread, see NOTE04
2012-08-14 18:00:48 -04:00
struct sched_param param;
2022-08-29 14:42:32 -04:00
param.sched_priority = m_prio
+ (sched_get_priority_max(SCHED_FIFO)
- QF_MAX_ACTIVE - 3U);
2012-08-14 18:00:48 -04:00
pthread_attr_setschedparam(&attr, &param);
2020-01-26 20:09:37 -05:00
pthread_attr_setstacksize(&attr, (stkSize < PTHREAD_STACK_MIN
? PTHREAD_STACK_MIN
: stkSize));
2012-08-14 18:00:48 -04:00
pthread_t thread;
int err = pthread_create(&thread, &attr, &ao_thread, this);
if (err != 0) {
// Creating p-thread with the SCHED_FIFO policy failed. Most likely
// this application has no superuser privileges, so we just fall
// back to the default SCHED_OTHER policy and priority 0.
//
2012-08-14 18:00:48 -04:00
pthread_attr_setschedpolicy(&attr, SCHED_OTHER);
param.sched_priority = 0;
pthread_attr_setschedparam(&attr, &param);
err = pthread_create(&thread, &attr, &ao_thread, this);
2012-08-14 18:00:48 -04:00
}
Q_ASSERT_ID(610, err == 0); // AO thread must be created
//pthread_attr_getschedparam(&attr, &param);
//printf("param.sched_priority==%d\n", param.sched_priority);
2012-08-14 18:00:48 -04:00
pthread_attr_destroy(&attr);
}
2020-07-18 17:58:58 -04:00
//............................................................................
#ifdef QF_ACTIVE_STOP
void QActive::stop(void) {
unsubscribeAll(); // unsubscribe this AO from all events
m_thread = false; // stop the thread loop (see QF::thread_)
}
#endif
2015-05-14 16:05:04 -04:00
2014-04-13 21:35:34 -04:00
} // namespace QP
2012-08-14 18:00:48 -04:00
//============================================================================
2012-08-14 18:00:48 -04:00
// NOTE01:
// In Linux, the scheduler policy closest to real-time is the SCHED_FIFO
// policy, available only with superuser privileges. QF::run() attempts to set
// this policy as well as to maximize its priority, so that the ticking
// occurrs in the most timely manner (as close to an interrupt as possible).
// However, setting the SCHED_FIFO policy might fail, most probably due to
// insufficient privileges.
//
// NOTE02:
// On some Linux systems nanosleep() might actually not deliver the finest
// time granularity. For example, on some Linux implementations, nanosleep()
// could not block for shorter intervals than 20ms, while the underlying
// clock tick period was only 10ms. Sometimes, the select() system call can
// provide a finer granularity.
//
// NOTE03:
// Any blocking system call, such as nanosleep() or select() system call can
// be interrupted by a signal, such as ^C from the keyboard. In this case this
// QF port breaks out of the event-loop and returns to main() that exits and
// terminates all spawned p-threads.
//
// NOTE04:
// According to the man pages (for pthread_attr_setschedpolicy) the only value
// supported in the Linux p-threads implementation is PTHREAD_SCOPE_SYSTEM,
// meaning that the threads contend for CPU time with all processes running on
// the machine. In particular, thread priorities are interpreted relative to
// the priorities of all other processes on the machine.
//
// This is good, because it seems that if we set the priorities high enough,
// no other process (or thread running within) can gain control over the CPU.
//
// However, QF limits the number of priority levels to QF_MAX_ACTIVE.
// Assuming that a QF application will be real-time, this port reserves the
// three highest p-thread priorities for the ISR-like threads (e.g., I/O),
// and the rest highest-priorities for the active objects.
2012-08-14 18:00:48 -04:00
//
// NOTE05:
2016-04-29 08:52:53 -04:00
// In some (older) Linux kernels, the POSIX nanosleep() system call might
// deliver only 2*actual-system-tick granularity. To compensate for this,
// you would need to reduce the constant NANOSLEEP_NSEC_PER_SEC by factor 2.
2012-08-14 18:00:48 -04:00
//
2018-04-05 17:04:31 -04:00