2017-02-07 19:55:33 -05:00
|
|
|
///***************************************************************************
|
|
|
|
// Product: DPP example, STM32746G-Discovery board, cooperative QV kernel
|
2018-01-10 18:26:05 -05:00
|
|
|
// Last Updated for Version: 6.0.4
|
|
|
|
// Date of the Last Update: 2018-01-09
|
2017-02-07 19:55:33 -05:00
|
|
|
//
|
|
|
|
// Q u a n t u m L e a P s
|
|
|
|
// ---------------------------
|
|
|
|
// innovating embedded systems
|
|
|
|
//
|
|
|
|
// Copyright (C) Quantum Leaps, LLC. All rights reserved.
|
|
|
|
//
|
|
|
|
// This program is open source software: you can redistribute it and/or
|
|
|
|
// modify it under the terms of the GNU General Public License as published
|
|
|
|
// by the Free Software Foundation, either version 3 of the License, or
|
|
|
|
// (at your option) any later version.
|
|
|
|
//
|
|
|
|
// Alternatively, this program may be distributed and modified under the
|
|
|
|
// terms of Quantum Leaps commercial licenses, which expressly supersede
|
|
|
|
// the GNU General Public License and are specifically designed for
|
|
|
|
// licensees interested in retaining the proprietary status of their code.
|
|
|
|
//
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
// GNU General Public License for more details.
|
|
|
|
//
|
|
|
|
// You should have received a copy of the GNU General Public License
|
2019-12-31 15:56:23 -05:00
|
|
|
// along with this program. If not, see <www.gnu.org/licenses/>.
|
2017-02-07 19:55:33 -05:00
|
|
|
//
|
|
|
|
// Contact information:
|
2017-05-17 13:15:09 -04:00
|
|
|
// https://state-machine.com
|
2019-12-31 15:56:23 -05:00
|
|
|
// <info@state-machine.com>
|
2017-02-07 19:55:33 -05:00
|
|
|
//****************************************************************************
|
2019-10-27 12:26:31 -04:00
|
|
|
#include "qpcpp.hpp"
|
|
|
|
#include "dpp.hpp"
|
|
|
|
#include "bsp.hpp"
|
2017-02-07 19:55:33 -05:00
|
|
|
|
|
|
|
// STM32Cube include files
|
|
|
|
#include "stm32f7xx_hal.h"
|
|
|
|
#include "stm32746g_discovery.h"
|
|
|
|
// add other drivers if necessary...
|
|
|
|
|
2017-07-20 13:06:27 -04:00
|
|
|
Q_DEFINE_THIS_FILE
|
|
|
|
|
2017-02-07 19:55:33 -05:00
|
|
|
// namespace DPP *************************************************************
|
|
|
|
namespace DPP {
|
|
|
|
|
|
|
|
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
|
|
// Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
|
|
|
|
// DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
|
|
|
|
//
|
|
|
|
enum KernelUnawareISRs { // see NOTE00
|
|
|
|
USART1_PRIO,
|
|
|
|
// ...
|
|
|
|
MAX_KERNEL_UNAWARE_CMSIS_PRI // keep always last
|
|
|
|
};
|
|
|
|
// "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts
|
|
|
|
Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI);
|
|
|
|
|
|
|
|
enum KernelAwareISRs {
|
|
|
|
GPIO_EVEN_PRIO = QF_AWARE_ISR_CMSIS_PRI, // see NOTE00
|
|
|
|
SYSTICK_PRIO,
|
|
|
|
// ...
|
|
|
|
MAX_KERNEL_AWARE_CMSIS_PRI // keep always last
|
|
|
|
};
|
|
|
|
// "kernel-aware" interrupts should not overlap the PendSV priority
|
|
|
|
Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS)));
|
|
|
|
|
|
|
|
// Local-scope objects -------------------------------------------------------
|
|
|
|
static uint32_t l_rnd; // random seed
|
|
|
|
|
|
|
|
#ifdef Q_SPY
|
|
|
|
|
|
|
|
QP::QSTimeCtr QS_tickTime_;
|
|
|
|
QP::QSTimeCtr QS_tickPeriod_;
|
|
|
|
|
|
|
|
// QS source IDs
|
|
|
|
static uint8_t const l_SysTick_Handler = (uint8_t)0;
|
|
|
|
static uint8_t const l_GPIO_EVEN_IRQHandler = (uint8_t)0;
|
|
|
|
static UART_HandleTypeDef l_uartHandle;
|
|
|
|
|
|
|
|
enum AppRecords { // application-specific trace records
|
|
|
|
PHILO_STAT = QP::QS_USER,
|
|
|
|
COMMAND_STAT
|
|
|
|
};
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// ISRs used in this project =================================================
|
|
|
|
extern "C" {
|
|
|
|
|
|
|
|
//............................................................................
|
|
|
|
void SysTick_Handler(void); // prototype
|
|
|
|
void SysTick_Handler(void) {
|
|
|
|
// state of the button debouncing, see below
|
|
|
|
static struct ButtonsDebouncing {
|
|
|
|
uint32_t depressed;
|
|
|
|
uint32_t previous;
|
|
|
|
} buttons = { ~0U, ~0U };
|
|
|
|
uint32_t current;
|
|
|
|
uint32_t tmp;
|
|
|
|
|
|
|
|
#ifdef Q_SPY
|
|
|
|
{
|
|
|
|
tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG
|
|
|
|
QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
QP::QF::TICK_X(0U, &l_SysTick_Handler); // process time events for rate 0
|
|
|
|
|
|
|
|
// Perform the debouncing of buttons. The algorithm for debouncing
|
|
|
|
// adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
|
|
|
|
// and Michael Barr, page 71.
|
|
|
|
//
|
|
|
|
current = BSP_PB_GetState(BUTTON_KEY); // read the Key button
|
|
|
|
tmp = buttons.depressed; // save the debounced depressed buttons
|
|
|
|
buttons.depressed |= (buttons.previous & current); // set depressed
|
|
|
|
buttons.depressed &= (buttons.previous | current); // clear released
|
|
|
|
buttons.previous = current; // update the history
|
|
|
|
tmp ^= buttons.depressed; // changed debounced depressed
|
|
|
|
if (tmp != 0U) { // debounced user button state changed?
|
|
|
|
if (buttons.depressed != 0U) { // user button depressed?
|
|
|
|
static QP::QEvt const pauseEvt = { DPP::PAUSE_SIG, 0U, 0U};
|
|
|
|
QP::QF::PUBLISH(&pauseEvt, &l_SysTick_Handler);
|
|
|
|
}
|
|
|
|
else { // the button is released
|
|
|
|
static QP::QEvt const serveEvt = { DPP::SERVE_SIG, 0U, 0U};
|
|
|
|
QP::QF::PUBLISH(&serveEvt, &l_SysTick_Handler);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
//............................................................................
|
|
|
|
//void GPIO_EVEN_IRQHandler(void); // prototype
|
|
|
|
//void GPIO_EVEN_IRQHandler(void) {
|
|
|
|
// // for testing...
|
|
|
|
// AO_Table->POST(Q_NEW(QP::QEvt, MAX_PUB_SIG), &l_GPIO_EVEN_IRQHandler);
|
|
|
|
//}
|
|
|
|
|
|
|
|
//............................................................................
|
|
|
|
void USART1_IRQHandler(void); // prototype
|
|
|
|
#ifdef Q_SPY
|
|
|
|
// ISR for receiving bytes from the QSPY Back-End
|
|
|
|
// NOTE: This ISR is "QF-unaware" meaning that it does not interact with
|
|
|
|
// the QF/QK and is not disabled.
|
|
|
|
//
|
|
|
|
void USART1_IRQHandler(void) {
|
|
|
|
// is RX register NOT empty?
|
|
|
|
if ((DPP::l_uartHandle.Instance->ISR & USART_ISR_RXNE) != 0) {
|
|
|
|
uint32_t b = DPP::l_uartHandle.Instance->RDR;
|
|
|
|
QP::QS::rxPut(b);
|
|
|
|
DPP::l_uartHandle.Instance->ISR &= ~USART_ISR_RXNE; /* clear interrupt */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif // Q_SPY
|
|
|
|
|
|
|
|
} // extern "C"
|
|
|
|
|
|
|
|
// BSP functions =============================================================
|
|
|
|
void BSP::init(void) {
|
2018-01-10 18:26:05 -05:00
|
|
|
// NOTE: SystemInit() has been already called from the startup code
|
|
|
|
// but SystemCoreClock needs to be updated
|
2017-02-07 19:55:33 -05:00
|
|
|
//
|
2018-01-10 18:26:05 -05:00
|
|
|
SystemCoreClockUpdate();
|
2017-02-07 19:55:33 -05:00
|
|
|
|
|
|
|
SCB_EnableICache(); // Enable I-Cache
|
|
|
|
SCB_EnableDCache(); // Enable D-Cache
|
|
|
|
|
|
|
|
// Configure Flash prefetch and Instr. cache through ART accelerator
|
|
|
|
#if (ART_ACCLERATOR_ENABLE != 0)
|
|
|
|
__HAL_FLASH_ART_ENABLE();
|
|
|
|
#endif // ART_ACCLERATOR_ENABLE
|
|
|
|
|
|
|
|
// configure the FPU usage by choosing one of the options...
|
|
|
|
// Do NOT to use the automatic FPU state preservation and
|
|
|
|
// do NOT to use the FPU lazy stacking.
|
|
|
|
//
|
|
|
|
// NOTE:
|
|
|
|
// Use the following setting when FPU is used in ONE task only and not
|
|
|
|
// in any ISR. This option should be used with CAUTION.
|
|
|
|
//
|
|
|
|
FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos));
|
|
|
|
|
|
|
|
// Configure LED1
|
|
|
|
BSP_LED_Init(LED1);
|
|
|
|
|
|
|
|
// Configure the User Button in GPIO Mode
|
|
|
|
BSP_PB_Init(BUTTON_KEY, BUTTON_MODE_GPIO);
|
|
|
|
|
|
|
|
//...
|
|
|
|
BSP::randomSeed(1234U);
|
|
|
|
|
2020-04-02 21:21:53 -04:00
|
|
|
if (!QS_INIT(nullptr)) { // initialize the QS software tracing
|
2017-02-07 19:55:33 -05:00
|
|
|
Q_ERROR();
|
|
|
|
}
|
|
|
|
QS_OBJ_DICTIONARY(&l_SysTick_Handler);
|
|
|
|
QS_OBJ_DICTIONARY(&l_GPIO_EVEN_IRQHandler);
|
|
|
|
QS_USR_DICTIONARY(PHILO_STAT);
|
|
|
|
QS_USR_DICTIONARY(COMMAND_STAT);
|
|
|
|
}
|
2018-01-10 18:26:05 -05:00
|
|
|
/*..........................................................................*/
|
|
|
|
void BSP::ledOn(void) {
|
|
|
|
//BSP_LED_On(LED1); not enough LEDs
|
|
|
|
}
|
|
|
|
/*..........................................................................*/
|
|
|
|
void BSP::ledOff(void) {
|
|
|
|
//BSP_LED_Off(LED1); not enough LEDs
|
|
|
|
}
|
2017-02-07 19:55:33 -05:00
|
|
|
//............................................................................
|
|
|
|
void BSP::displayPhilStat(uint8_t n, char const *stat) {
|
|
|
|
if (stat[0] == 'e') {
|
|
|
|
BSP_LED_On(LED1);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
BSP_LED_Off(LED1);
|
|
|
|
}
|
|
|
|
|
|
|
|
QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin
|
|
|
|
QS_U8(1, n); // Philosopher number
|
|
|
|
QS_STR(stat); // Philosopher status
|
|
|
|
QS_END()
|
|
|
|
}
|
|
|
|
//............................................................................
|
|
|
|
void BSP::displayPaused(uint8_t paused) {
|
|
|
|
if (paused != 0U) {
|
|
|
|
//BSP_LED_On(LED2); not enough LEDs
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
//BSP_LED_Off(LED2); not enough LEDs
|
|
|
|
}
|
|
|
|
}
|
|
|
|
//............................................................................
|
|
|
|
uint32_t BSP::random(void) { // a very cheap pseudo-random-number generator
|
2018-01-10 18:26:05 -05:00
|
|
|
// The flating point code is to exercise the FPU
|
2017-02-07 19:55:33 -05:00
|
|
|
float volatile x = 3.1415926F;
|
|
|
|
x = x + 2.7182818F;
|
|
|
|
|
|
|
|
// "Super-Duper" Linear Congruential Generator (LCG)
|
|
|
|
// LCG(2^32, 3*7*11*13*23, 0, seed)
|
|
|
|
//
|
|
|
|
uint32_t rnd = l_rnd * (3U*7U*11U*13U*23U);
|
|
|
|
l_rnd = rnd; // set for the next time
|
|
|
|
|
|
|
|
return (rnd >> 8);
|
|
|
|
}
|
|
|
|
//............................................................................
|
|
|
|
void BSP::randomSeed(uint32_t seed) {
|
|
|
|
l_rnd = seed;
|
|
|
|
}
|
|
|
|
|
|
|
|
//............................................................................
|
|
|
|
void BSP::terminate(int16_t result) {
|
|
|
|
(void)result;
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace DPP
|
|
|
|
|
|
|
|
|
|
|
|
// namespace QP **************************************************************
|
|
|
|
namespace QP {
|
|
|
|
|
|
|
|
// QF callbacks ==============================================================
|
|
|
|
void QF::onStartup(void) {
|
|
|
|
// assing all priority bits for preemption-prio. and none to sub-prio.
|
|
|
|
NVIC_SetPriorityGrouping(0U);
|
|
|
|
|
|
|
|
// set up the SysTick timer to fire at BSP::TICKS_PER_SEC rate
|
|
|
|
SysTick_Config(SystemCoreClock / DPP::BSP::TICKS_PER_SEC);
|
|
|
|
|
|
|
|
// assing all priority bits for preemption-prio. and none to sub-prio.
|
|
|
|
NVIC_SetPriorityGrouping(0U);
|
|
|
|
|
|
|
|
// set priorities of ALL ISRs used in the system, see NOTE00
|
|
|
|
//
|
|
|
|
// !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
|
|
// Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
|
|
|
|
// DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
|
|
|
|
//
|
2018-01-10 18:26:05 -05:00
|
|
|
NVIC_SetPriority(USART1_IRQn, DPP::USART1_PRIO);
|
|
|
|
NVIC_SetPriority(SysTick_IRQn, DPP::SYSTICK_PRIO);
|
2017-02-07 19:55:33 -05:00
|
|
|
//NVIC_SetPriority(GPIO_EVEN_IRQn, DPP::GPIO_EVEN_PRIO);
|
|
|
|
// ...
|
|
|
|
|
|
|
|
// enable IRQs...
|
|
|
|
//NVIC_EnableIRQ(GPIO_EVEN_IRQn);
|
|
|
|
#ifdef Q_SPY
|
|
|
|
NVIC_EnableIRQ(USART1_IRQn); // UART1 interrupt used for QS-RX
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
//............................................................................
|
|
|
|
void QF::onCleanup(void) {
|
|
|
|
}
|
|
|
|
//............................................................................
|
|
|
|
void QV::onIdle(void) { // called with interrupts disabled, see NOTE01
|
|
|
|
// toggle the User LED on and then off, see NOTE01
|
|
|
|
//BSP_LED_On(LED3); not enough LEDs
|
|
|
|
//BSP_LED_On(LED3); not enough LEDs
|
|
|
|
|
|
|
|
#ifdef Q_SPY
|
|
|
|
QF_INT_ENABLE();
|
|
|
|
QS::rxParse(); // parse all the received bytes
|
|
|
|
|
|
|
|
if ((DPP::l_uartHandle.Instance->ISR & UART_FLAG_TXE) != 0U) {//TXE empty?
|
|
|
|
uint16_t b;
|
|
|
|
|
|
|
|
QF_INT_DISABLE();
|
|
|
|
b = QS::getByte();
|
|
|
|
QF_INT_ENABLE();
|
|
|
|
|
|
|
|
if (b != QS_EOD) { // not End-Of-Data?
|
|
|
|
DPP::l_uartHandle.Instance->TDR = (b & 0xFFU); // put into TDR
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#elif defined NDEBUG
|
|
|
|
// Put the CPU and peripherals to the low-power mode.
|
|
|
|
// you might need to customize the clock management for your application,
|
|
|
|
// see the datasheet for your particular Cortex-M MCU.
|
|
|
|
//
|
|
|
|
// !!!CAUTION!!!
|
|
|
|
// The WFI instruction stops the CPU clock, which unfortunately disables
|
|
|
|
// the JTAG port, so the ST-Link debugger can no longer connect to the
|
|
|
|
// board. For that reason, the call to __WFI() has to be used with CAUTION.
|
|
|
|
//
|
|
|
|
// NOTE: If you find your board "frozen" like this, strap BOOT0 to VDD and
|
|
|
|
// reset the board, then connect with ST-Link Utilities and erase the part.
|
|
|
|
// The trick with BOOT(0) is it gets the part to run the System Loader
|
|
|
|
// instead of your broken code. When done disconnect BOOT0, and start over.
|
|
|
|
//QV_CPU_SLEEP(); // Wait-For-Interrupt
|
|
|
|
QF_INT_ENABLE(); // just enable interrupts
|
|
|
|
#else
|
|
|
|
QF_INT_ENABLE(); // just enable interrupts
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//............................................................................
|
2020-03-17 21:33:58 -04:00
|
|
|
extern "C" Q_NORETURN Q_onAssert(char const * const module, int_t const loc) {
|
2017-02-07 19:55:33 -05:00
|
|
|
//
|
|
|
|
// NOTE: add here your application-specific error handling
|
|
|
|
//
|
|
|
|
(void)module;
|
|
|
|
(void)loc;
|
|
|
|
QS_ASSERTION(module, loc, static_cast<uint32_t>(10000U));
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
// light up both LEDs
|
|
|
|
BSP_LED_On(LED1);
|
|
|
|
// for debugging, hang on in an endless loop...
|
|
|
|
for (;;) {
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
NVIC_SystemReset();
|
|
|
|
}
|
|
|
|
|
|
|
|
// QS callbacks ==============================================================
|
|
|
|
#ifdef Q_SPY
|
|
|
|
//............................................................................
|
|
|
|
bool QS::onStartup(void const *arg) {
|
|
|
|
static uint8_t qsTxBuf[2*1024]; // buffer for QS transmit channel
|
|
|
|
static uint8_t qsRxBuf[100]; // buffer for QS receive channel
|
|
|
|
|
|
|
|
initBuf (qsTxBuf, sizeof(qsTxBuf));
|
|
|
|
rxInitBuf(qsRxBuf, sizeof(qsRxBuf));
|
|
|
|
|
|
|
|
DPP::l_uartHandle.Instance = USART1;
|
|
|
|
DPP::l_uartHandle.Init.BaudRate = 115200;
|
|
|
|
DPP::l_uartHandle.Init.WordLength = UART_WORDLENGTH_8B;
|
|
|
|
DPP::l_uartHandle.Init.StopBits = UART_STOPBITS_1;
|
|
|
|
DPP::l_uartHandle.Init.Parity = UART_PARITY_NONE;
|
|
|
|
DPP::l_uartHandle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
|
|
|
|
DPP::l_uartHandle.Init.Mode = UART_MODE_TX_RX;
|
|
|
|
DPP::l_uartHandle.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
|
|
|
|
if (HAL_UART_Init(&DPP::l_uartHandle) != HAL_OK) {
|
|
|
|
return false; // return failure
|
|
|
|
}
|
|
|
|
// NOTE: do not enable the UART1 interrupt in the NVIC yet.
|
|
|
|
// Wait till QF::onStartup()
|
|
|
|
|
|
|
|
DPP::QS_tickPeriod_ = SystemCoreClock / DPP::BSP::TICKS_PER_SEC;
|
|
|
|
DPP::QS_tickTime_ = DPP::QS_tickPeriod_; // to start the timestamp at zero
|
|
|
|
|
|
|
|
// setup the QS filters...
|
2018-01-10 18:26:05 -05:00
|
|
|
QS_FILTER_ON(QS_SM_RECORDS);
|
|
|
|
QS_FILTER_ON(QS_UA_RECORDS);
|
2017-02-07 19:55:33 -05:00
|
|
|
|
|
|
|
return true; // return success
|
|
|
|
}
|
|
|
|
//............................................................................
|
|
|
|
void QS::onCleanup(void) {
|
|
|
|
}
|
|
|
|
//............................................................................
|
|
|
|
QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED
|
|
|
|
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // not set?
|
|
|
|
return DPP::QS_tickTime_ - static_cast<QSTimeCtr>(SysTick->VAL);
|
|
|
|
}
|
|
|
|
else { // the rollover occured, but the SysTick_ISR did not run yet
|
|
|
|
return DPP::QS_tickTime_ + DPP::QS_tickPeriod_
|
|
|
|
- static_cast<QSTimeCtr>(SysTick->VAL);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
//............................................................................
|
|
|
|
void QS::onFlush(void) {
|
|
|
|
uint16_t b;
|
|
|
|
|
|
|
|
QF_INT_DISABLE();
|
|
|
|
while ((b = getByte()) != QS_EOD) { // while not End-Of-Data...
|
|
|
|
QF_INT_ENABLE();
|
|
|
|
// while TXE not empty
|
|
|
|
while ((DPP::l_uartHandle.Instance->ISR & UART_FLAG_TXE) == 0U) {
|
|
|
|
}
|
|
|
|
DPP::l_uartHandle.Instance->TDR = (b & 0xFFU); // put into TDR
|
|
|
|
QF_INT_DISABLE();
|
|
|
|
}
|
|
|
|
QF_INT_ENABLE();
|
|
|
|
}
|
|
|
|
//............................................................................
|
|
|
|
//! callback function to reset the target (to be implemented in the BSP)
|
|
|
|
void QS::onReset(void) {
|
|
|
|
NVIC_SystemReset();
|
|
|
|
}
|
|
|
|
//............................................................................
|
|
|
|
//! callback function to execute a user command (to be implemented in BSP)
|
|
|
|
extern "C" void assert_failed(char const *module, int loc);
|
2017-05-17 13:15:09 -04:00
|
|
|
void QS::onCommand(uint8_t cmdId, uint32_t param1,
|
|
|
|
uint32_t param2, uint32_t param3)
|
|
|
|
{
|
2017-02-07 19:55:33 -05:00
|
|
|
(void)cmdId;
|
2017-05-17 13:15:09 -04:00
|
|
|
(void)param1;
|
|
|
|
(void)param2;
|
|
|
|
(void)param3;
|
2017-02-07 19:55:33 -05:00
|
|
|
|
|
|
|
// application-specific record
|
2020-03-17 21:33:58 -04:00
|
|
|
QS_BEGIN(DPP::COMMAND_STAT, nullptr)
|
2017-02-07 19:55:33 -05:00
|
|
|
QS_U8(2, cmdId);
|
2017-05-17 13:15:09 -04:00
|
|
|
QS_U32(8, param1);
|
2017-02-07 19:55:33 -05:00
|
|
|
QS_END()
|
|
|
|
|
|
|
|
if (cmdId == 10U) {
|
|
|
|
assert_failed("QS_onCommand", 11);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // Q_SPY
|
|
|
|
//----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
} // namespace QP
|
|
|
|
|
|
|
|
//****************************************************************************
|
|
|
|
// NOTE00:
|
|
|
|
// The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest
|
|
|
|
// ISR priority that is disabled by the QF framework. The value is suitable
|
|
|
|
// for the NVIC_SetPriority() CMSIS function.
|
|
|
|
//
|
|
|
|
// Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e.,
|
|
|
|
// with the numerical values of priorities equal or higher than
|
|
|
|
// QF_AWARE_ISR_CMSIS_PRI) are allowed to call the QK_ISR_ENTRY/QK_ISR_ENTRY
|
|
|
|
// macros or any other QF/QK services. These ISRs are "QF-aware".
|
|
|
|
//
|
|
|
|
// Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority
|
|
|
|
// level (i.e., with the numerical values of priorities less than
|
|
|
|
// QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel.
|
|
|
|
// Such "QF-unaware" ISRs cannot call any QF/QK services. In particular they
|
|
|
|
// can NOT call the macros QK_ISR_ENTRY/QK_ISR_ENTRY. The only mechanism
|
|
|
|
// by which a "QF-unaware" ISR can communicate with the QF framework is by
|
|
|
|
// triggering a "QF-aware" ISR, which can post/publish events.
|
|
|
|
//
|
|
|
|
// NOTE01:
|
|
|
|
// The User LED is used to visualize the idle loop activity. The brightness
|
|
|
|
// of the LED is proportional to the frequency of invcations of the idle loop.
|
|
|
|
// Please note that the LED is toggled with interrupts locked, so no interrupt
|
|
|
|
// execution time contributes to the brightness of the User LED.
|
|
|
|
//
|