524 lines
19 KiB
C++
Raw Normal View History

2016-06-10 21:51:18 -04:00
///***************************************************************************
// Product: DPP example, EFM32-SLSTK3401A board, preemptive QXK kernel
// Last Updated for Version: 5.6.5
// Date of the Last Update: 2016-06-02
//
// Q u a n t u m L e a P s
// ---------------------------
// innovating embedded systems
//
// Copyright (C) Quantum Leaps, LLC. All rights reserved.
//
// This program is open source software: you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Alternatively, this program may be distributed and modified under the
// terms of Quantum Leaps commercial licenses, which expressly supersede
// the GNU General Public License and are specifically designed for
// licensees interested in retaining the proprietary status of their code.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// Contact information:
// http://www.state-machine.com
// mailto:info@state-machine.com
//****************************************************************************
#include "qpcpp.h"
#include "dpp.h"
#include "bsp.h"
#include "em_device.h" // the device specific header (SiLabs)
#include "em_cmu.h" // Clock Management Unit (SiLabs)
#include "em_gpio.h" // GPIO (SiLabs)
#include "em_usart.h" // USART (SiLabs)
// add other drivers if necessary...
// namespace DPP *************************************************************
namespace DPP {
Q_DEFINE_THIS_FILE
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
// DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
//
enum KernelUnawareISRs { // see NOTE00
USART0_RX_PRIO,
// ...
MAX_KERNEL_UNAWARE_CMSIS_PRI // keep always last
};
// "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts
Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI);
enum KernelAwareISRs {
GPIO_EVEN_PRIO = QF_AWARE_ISR_CMSIS_PRI, // see NOTE00
SYSTICK_PRIO,
// ...
MAX_KERNEL_AWARE_CMSIS_PRI // keep always last
};
// "kernel-aware" interrupts should not overlap the PendSV priority
Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS)));
// Local-scope objects -------------------------------------------------------
#define LED_PORT gpioPortF
#define LED0_PIN 4
#define LED1_PIN 5
#define PB_PORT gpioPortF
#define PB0_PIN 6
#define PB1_PIN 7
static uint32_t l_rnd; // random seed
static QP::QXMutex l_rndMutex; // to protect the random number generator
#ifdef Q_SPY
QP::QSTimeCtr QS_tickTime_;
QP::QSTimeCtr QS_tickPeriod_;
// QS source IDs
static uint8_t const l_SysTick_Handler = (uint8_t)0;
static uint8_t const l_GPIO_EVEN_IRQHandler = (uint8_t)0;
static USART_TypeDef * const l_USART0 = ((USART_TypeDef *)(0x40010000UL));
#define UART_BAUD_RATE 115200U
#define UART_FR_TXFE (1U << 7)
#define UART_FR_RXFE (1U << 4)
#define UART_TXFIFO_DEPTH 16U
enum AppRecords { // application-specific trace records
PHILO_STAT = QP::QS_USER,
COMMAND_STAT
};
#endif
// ISRs used in this project =================================================
extern "C" {
//............................................................................
void SysTick_Handler(void); // prototype
void SysTick_Handler(void) {
// state of the button debouncing, see below
static struct ButtonsDebouncing {
uint32_t depressed;
uint32_t previous;
} buttons = { ~0U, ~0U };
uint32_t current;
uint32_t tmp;
QXK_ISR_ENTRY(); // inform QXK about entering an ISR
#ifdef Q_SPY
{
tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG
QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover
}
#endif
QP::QF::TICK_X(0U, &l_SysTick_Handler); // process time events for rate 0
// Perform the debouncing of buttons. The algorithm for debouncing
// adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
// and Michael Barr, page 71.
//
current = ~GPIO->P[PB_PORT].DIN; // read PB0 and BP1
tmp = buttons.depressed; // save the debounced depressed buttons
buttons.depressed |= (buttons.previous & current); // set depressed
buttons.depressed &= (buttons.previous | current); // clear released
buttons.previous = current; // update the history
tmp ^= buttons.depressed; // changed debounced depressed
if ((tmp & (1U << PB0_PIN)) != 0U) { // debounced PB0 state changed?
if ((buttons.depressed & (1U << PB0_PIN)) != 0U) { // PB0 depressed?
static QP::QEvt const pauseEvt = { DPP::PAUSE_SIG, 0U, 0U};
QP::QF::PUBLISH(&pauseEvt, &l_SysTick_Handler);
}
else { // the button is released
static QP::QEvt const serveEvt = { DPP::SERVE_SIG, 0U, 0U};
QP::QF::PUBLISH(&serveEvt, &l_SysTick_Handler);
}
}
QXK_ISR_EXIT(); // inform QXK about exiting an ISR
}
//............................................................................
void GPIO_EVEN_IRQHandler(void); // prototype
void GPIO_EVEN_IRQHandler(void) {
QXK_ISR_ENTRY(); // inform QXK about entering an ISR
// for testing...
DPP::AO_Table->POST(Q_NEW(QP::QEvt, DPP::MAX_PUB_SIG),
&l_GPIO_EVEN_IRQHandler);
QXK_ISR_EXIT(); // inform QXK about exiting an ISR
}
//............................................................................
void USART0_RX_IRQHandler(void); // prototype
#ifdef Q_SPY
// ISR for receiving bytes from the QSPY Back-End
// NOTE: This ISR is "QF-unaware" meaning that it does not interact with
// the QF/QXK and is not disabled. Such ISRs don't need to call
// QXK_ISR_ENTRY/QXK_ISR_EXIT and they cannot post or publish events.
//
void USART0_RX_IRQHandler(void) {
// while RX FIFO NOT empty
while ((DPP::l_USART0->STATUS & USART_STATUS_RXDATAV) != 0) {
uint32_t b = DPP::l_USART0->RXDATA;
QP::QS::rxPut(b);
}
}
#else
void USART0_RX_IRQHandler(void) {}
#endif // Q_SPY
} // extern "C"
// BSP functions =============================================================
void BSP::init(void) {
// NOTE: SystemInit() already called from the startup code
// but SystemCoreClock needs to be updated
//
SystemCoreClockUpdate();
/* NOTE: The VFP (hardware Floating Point) unit is configured by QXK */
//FPU->FPCCR |= (1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos);
// enable clock for to the peripherals used by this application...
CMU_ClockEnable(cmuClock_HFPER, true);
CMU_ClockEnable(cmuClock_GPIO, true);
CMU_ClockEnable(cmuClock_HFPER, true);
CMU_ClockEnable(cmuClock_GPIO, true);
// configure the LEDs
GPIO_PinModeSet(LED_PORT, LED0_PIN, gpioModePushPull, 0);
GPIO_PinModeSet(LED_PORT, LED1_PIN, gpioModePushPull, 0);
GPIO_PinOutClear(LED_PORT, LED0_PIN);
GPIO_PinOutClear(LED_PORT, LED1_PIN);
// configure the Buttons
GPIO_PinModeSet(PB_PORT, PB0_PIN, gpioModeInputPull, 1);
GPIO_PinModeSet(PB_PORT, PB1_PIN, gpioModeInputPull, 1);
//...
BSP::randomSeed(1234U);
if (!QS_INIT((void *)0)) { // initialize the QS software tracing
Q_ERROR();
}
QS_OBJ_DICTIONARY(&l_SysTick_Handler);
QS_OBJ_DICTIONARY(&l_GPIO_EVEN_IRQHandler);
QS_USR_DICTIONARY(PHILO_STAT);
QS_USR_DICTIONARY(COMMAND_STAT);
}
//............................................................................
void BSP::displayPhilStat(uint8_t n, char const *stat) {
if (stat[0] == 'e') {
GPIO->P[LED_PORT].DOUT |= (1U << LED0_PIN);
}
else {
GPIO->P[LED_PORT].DOUT &= ~(1U << LED0_PIN);
}
QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin
QS_U8(1, n); // Philosopher number
QS_STR(stat); // Philosopher status
QS_END()
}
//............................................................................
void BSP::displayPaused(uint8_t paused) {
if (paused != 0U) {
GPIO->P[LED_PORT].DOUT |= (1U << LED0_PIN);
}
else {
GPIO->P[LED_PORT].DOUT &= ~(1U << LED0_PIN);
}
}
//............................................................................
uint32_t BSP::random(void) { // a very cheap pseudo-random-number generator
// Some flating point code is to exercise the VFP...
float volatile x = 3.1415926F;
x = x + 2.7182818F;
l_rndMutex.lock(); // lock the random-seed mutex
// "Super-Duper" Linear Congruential Generator (LCG)
// LCG(2^32, 3*7*11*13*23, 0, seed)
//
uint32_t rnd = l_rnd * (3U*7U*11U*13U*23U);
l_rnd = rnd; // set for the next time
l_rndMutex.unlock(); // unlock the random-seed mutex
return (rnd >> 8);
}
//............................................................................
void BSP::randomSeed(uint32_t seed) {
l_rnd = seed;
l_rndMutex.init(N_PHILO); // ceiling <== maximum Philo priority
}
//............................................................................
void BSP::ledOn(void) {
GPIO->P[LED_PORT].DOUT |= (1U << LED0_PIN);
}
//............................................................................
void BSP::ledOff(void) {
GPIO->P[LED_PORT].DOUT &= ~(1U << LED0_PIN);
}
//............................................................................
void BSP::terminate(int16_t result) {
(void)result;
}
} // namespace DPP
// namespace QP **************************************************************
namespace QP {
// QF callbacks ==============================================================
void QF::onStartup(void) {
// set up the SysTick timer to fire at BSP::TICKS_PER_SEC rate
SysTick_Config(SystemCoreClock / DPP::BSP::TICKS_PER_SEC);
// assing all priority bits for preemption-prio. and none to sub-prio.
NVIC_SetPriorityGrouping(0U);
// set priorities of ALL ISRs used in the system, see NOTE00
//
// !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
// DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
//
NVIC_SetPriority(USART0_RX_IRQn, DPP::USART0_RX_PRIO);
NVIC_SetPriority(SysTick_IRQn, DPP::SYSTICK_PRIO);
NVIC_SetPriority(GPIO_EVEN_IRQn, DPP::GPIO_EVEN_PRIO);
// ...
// enable IRQs...
NVIC_EnableIRQ(GPIO_EVEN_IRQn);
#ifdef Q_SPY
NVIC_EnableIRQ(USART0_RX_IRQn); // UART0 interrupt used for QS-RX
#endif
}
//............................................................................
void QF::onCleanup(void) {
}
//............................................................................
void QXK::onIdle(void) {
// toggle the User LED on and then off, see NOTE01
QF_INT_DISABLE();
GPIO->P[LED_PORT].DOUT |= (1U << LED1_PIN);
GPIO->P[LED_PORT].DOUT &= ~(1U << LED1_PIN);
QF_INT_ENABLE();
#ifdef Q_SPY
QS::rxParse(); // parse all the received bytes
if ((DPP::l_USART0->STATUS & USART_STATUS_TXBL) != 0) { // is TXE empty?
uint16_t b;
QF_INT_DISABLE();
b = QS::getByte();
QF_INT_ENABLE();
if (b != QS_EOD) { // not End-Of-Data?
DPP::l_USART0->TXDATA = (b & 0xFFU); // put into the DR register
}
}
#elif defined NDEBUG
// Put the CPU and peripherals to the low-power mode.
// you might need to customize the clock management for your application,
// see the datasheet for your particular Cortex-M3 MCU.
//
__WFI(); // Wait-For-Interrupt
#endif
}
//............................................................................
extern "C" void Q_onAssert(char const *module, int loc) {
//
// NOTE: add here your application-specific error handling
//
(void)module;
(void)loc;
QS_ASSERTION(module, loc, static_cast<uint32_t>(10000U));
#ifndef NDEBUG
// light up both LEDs
GPIO->P[LED_PORT].DOUT |= ((1U << LED0_PIN) | (1U << LED1_PIN));
// for debugging, hang on in an endless loop until PB1 is pressed...
while ((GPIO->P[PB_PORT].DIN & (1U << PB1_PIN)) != 0) {
}
#endif
NVIC_SystemReset();
}
// QS callbacks ==============================================================
#ifdef Q_SPY
//............................................................................
bool QS::onStartup(void const *arg) {
static uint8_t qsTxBuf[2*1024]; // buffer for QS transmit channel
static uint8_t qsRxBuf[100]; // buffer for QS receive channel
static USART_InitAsync_TypeDef init = {
usartEnable, // Enable RX/TX when init completed
0, // Use current clock for configuring baudrate
115200, // 115200 bits/s
usartOVS16, // 16x oversampling
usartDatabits8, // 8 databits
usartNoParity, // No parity
usartStopbits1, // 1 stopbit
0, // Do not disable majority vote
0, // Not USART PRS input mode
usartPrsRxCh0, // PRS channel 0
0, // Auto CS functionality enable/disable switch
0, // Auto CS Hold cycles
0 // Auto CS Setup cycles
};
initBuf (qsTxBuf, sizeof(qsTxBuf));
rxInitBuf(qsRxBuf, sizeof(qsRxBuf));
// Enable peripheral clocks
CMU_ClockEnable(cmuClock_HFPER, true);
CMU_ClockEnable(cmuClock_GPIO, true);
// To avoid false start, configure output as high
GPIO_PinModeSet(gpioPortA, 0, gpioModePushPull, 1); // TX pin
GPIO_PinModeSet(gpioPortA, 1, gpioModeInput, 0); // RX pin
// Enable DK RS232/UART switch
GPIO_PinModeSet(gpioPortA, 5, gpioModePushPull, 1);
CMU_ClockEnable(cmuClock_USART0, true);
// configure the UART for the desired baud rate, 8-N-1 operation
init.enable = usartDisable;
USART_InitAsync(DPP::l_USART0, &init);
// enable pins at correct UART/USART location.
DPP::l_USART0->ROUTEPEN = USART_ROUTEPEN_RXPEN | USART_ROUTEPEN_TXPEN;
DPP::l_USART0->ROUTELOC0 = (DPP::l_USART0->ROUTELOC0 &
~(_USART_ROUTELOC0_TXLOC_MASK
| _USART_ROUTELOC0_RXLOC_MASK));
// Clear previous RX interrupts
USART_IntClear(DPP::l_USART0, USART_IF_RXDATAV);
NVIC_ClearPendingIRQ(USART0_RX_IRQn);
// Enable RX interrupts
USART_IntEnable(DPP::l_USART0, USART_IF_RXDATAV);
// NOTE: do not enable the UART0 interrupt in the NVIC yet.
// Wait till QF::onStartup()
// Finally enable the UART
USART_Enable(DPP::l_USART0, usartEnable);
DPP::QS_tickPeriod_ = SystemCoreClock / DPP::BSP::TICKS_PER_SEC;
DPP::QS_tickTime_ = DPP::QS_tickPeriod_; // to start the timestamp at zero
// setup the QS filters...
QS_FILTER_ON(QS_QEP_STATE_ENTRY);
QS_FILTER_ON(QS_QEP_STATE_EXIT);
QS_FILTER_ON(QS_QEP_STATE_INIT);
QS_FILTER_ON(QS_QEP_INIT_TRAN);
QS_FILTER_ON(QS_QEP_INTERN_TRAN);
QS_FILTER_ON(QS_QEP_TRAN);
QS_FILTER_ON(QS_QEP_IGNORED);
QS_FILTER_ON(QS_QEP_DISPATCH);
QS_FILTER_ON(QS_QEP_UNHANDLED);
QS_FILTER_ON(DPP::PHILO_STAT);
QS_FILTER_ON(DPP::COMMAND_STAT);
return true; // return success
}
//............................................................................
void QS::onCleanup(void) {
}
//............................................................................
QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // not set?
return DPP::QS_tickTime_ - static_cast<QSTimeCtr>(SysTick->VAL);
}
else { // the rollover occured, but the SysTick_ISR did not run yet
return DPP::QS_tickTime_ + DPP::QS_tickPeriod_
- static_cast<QSTimeCtr>(SysTick->VAL);
}
}
//............................................................................
void QS::onFlush(void) {
uint16_t b;
QF_INT_DISABLE();
while ((b = getByte()) != QS_EOD) { // while not End-Of-Data...
QF_INT_ENABLE();
// while TXE not empty
while ((DPP::l_USART0->STATUS & USART_STATUS_TXBL) == 0U) {
}
DPP::l_USART0->TXDATA = (b & 0xFFU); // put into the DR register
QF_INT_DISABLE();
}
QF_INT_ENABLE();
}
//............................................................................
//! callback function to reset the target (to be implemented in the BSP)
void QS::onReset(void) {
NVIC_SystemReset();
}
//............................................................................
//! callback function to execute a user command (to be implemented in BSP)
extern "C" void assert_failed(char const *module, int loc);
void QS::onCommand(uint8_t cmdId, uint32_t param) {
(void)cmdId;
(void)param;
// application-specific record
QS_BEGIN(DPP::COMMAND_STAT, static_cast<void *>(0))
QS_U8(2, cmdId);
QS_U32(8, param);
QS_END()
if (cmdId == 10U) {
assert_failed("QS_onCommand", 11);
}
}
#endif // Q_SPY
//----------------------------------------------------------------------------
} // namespace QP
//****************************************************************************
// NOTE00:
// The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest
// ISR priority that is disabled by the QF framework. The value is suitable
// for the NVIC_SetPriority() CMSIS function.
//
// Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e.,
// with the numerical values of priorities equal or higher than
// QF_AWARE_ISR_CMSIS_PRI) are allowed to call the QK_ISR_ENTRY/QK_ISR_ENTRY
// macros or any other QF/QK services. These ISRs are "QF-aware".
//
// Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority
// level (i.e., with the numerical values of priorities less than
// QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel.
// Such "QF-unaware" ISRs cannot call any QF/QK services. In particular they
// can NOT call the macros QK_ISR_ENTRY/QK_ISR_ENTRY. The only mechanism
// by which a "QF-unaware" ISR can communicate with the QF framework is by
// triggering a "QF-aware" ISR, which can post/publish events.
//
// NOTE01:
// The User LED is used to visualize the idle loop activity. The brightness
// of the LED is proportional to the frequency of invcations of the idle loop.
// Please note that the LED is toggled with interrupts locked, so no interrupt
// execution time contributes to the brightness of the User LED.
//