mirror of
https://github.com/QuantumLeaps/qpcpp.git
synced 2025-01-14 05:42:57 +08:00
524 lines
19 KiB
C++
524 lines
19 KiB
C++
|
///***************************************************************************
|
||
|
// Product: DPP example, EFM32-SLSTK3401A board, preemptive QXK kernel
|
||
|
// Last Updated for Version: 5.6.5
|
||
|
// Date of the Last Update: 2016-06-02
|
||
|
//
|
||
|
// Q u a n t u m L e a P s
|
||
|
// ---------------------------
|
||
|
// innovating embedded systems
|
||
|
//
|
||
|
// Copyright (C) Quantum Leaps, LLC. All rights reserved.
|
||
|
//
|
||
|
// This program is open source software: you can redistribute it and/or
|
||
|
// modify it under the terms of the GNU General Public License as published
|
||
|
// by the Free Software Foundation, either version 3 of the License, or
|
||
|
// (at your option) any later version.
|
||
|
//
|
||
|
// Alternatively, this program may be distributed and modified under the
|
||
|
// terms of Quantum Leaps commercial licenses, which expressly supersede
|
||
|
// the GNU General Public License and are specifically designed for
|
||
|
// licensees interested in retaining the proprietary status of their code.
|
||
|
//
|
||
|
// This program is distributed in the hope that it will be useful,
|
||
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
// GNU General Public License for more details.
|
||
|
//
|
||
|
// You should have received a copy of the GNU General Public License
|
||
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
|
//
|
||
|
// Contact information:
|
||
|
// http://www.state-machine.com
|
||
|
// mailto:info@state-machine.com
|
||
|
//****************************************************************************
|
||
|
#include "qpcpp.h"
|
||
|
#include "dpp.h"
|
||
|
#include "bsp.h"
|
||
|
|
||
|
#include "em_device.h" // the device specific header (SiLabs)
|
||
|
#include "em_cmu.h" // Clock Management Unit (SiLabs)
|
||
|
#include "em_gpio.h" // GPIO (SiLabs)
|
||
|
#include "em_usart.h" // USART (SiLabs)
|
||
|
// add other drivers if necessary...
|
||
|
|
||
|
// namespace DPP *************************************************************
|
||
|
namespace DPP {
|
||
|
|
||
|
Q_DEFINE_THIS_FILE
|
||
|
|
||
|
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||
|
// Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
|
||
|
// DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
|
||
|
//
|
||
|
enum KernelUnawareISRs { // see NOTE00
|
||
|
USART0_RX_PRIO,
|
||
|
// ...
|
||
|
MAX_KERNEL_UNAWARE_CMSIS_PRI // keep always last
|
||
|
};
|
||
|
// "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts
|
||
|
Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI);
|
||
|
|
||
|
enum KernelAwareISRs {
|
||
|
GPIO_EVEN_PRIO = QF_AWARE_ISR_CMSIS_PRI, // see NOTE00
|
||
|
SYSTICK_PRIO,
|
||
|
// ...
|
||
|
MAX_KERNEL_AWARE_CMSIS_PRI // keep always last
|
||
|
};
|
||
|
// "kernel-aware" interrupts should not overlap the PendSV priority
|
||
|
Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS)));
|
||
|
|
||
|
// Local-scope objects -------------------------------------------------------
|
||
|
#define LED_PORT gpioPortF
|
||
|
#define LED0_PIN 4
|
||
|
#define LED1_PIN 5
|
||
|
|
||
|
#define PB_PORT gpioPortF
|
||
|
#define PB0_PIN 6
|
||
|
#define PB1_PIN 7
|
||
|
|
||
|
static uint32_t l_rnd; // random seed
|
||
|
static QP::QXMutex l_rndMutex; // to protect the random number generator
|
||
|
|
||
|
#ifdef Q_SPY
|
||
|
|
||
|
QP::QSTimeCtr QS_tickTime_;
|
||
|
QP::QSTimeCtr QS_tickPeriod_;
|
||
|
|
||
|
// QS source IDs
|
||
|
static uint8_t const l_SysTick_Handler = (uint8_t)0;
|
||
|
static uint8_t const l_GPIO_EVEN_IRQHandler = (uint8_t)0;
|
||
|
static USART_TypeDef * const l_USART0 = ((USART_TypeDef *)(0x40010000UL));
|
||
|
|
||
|
#define UART_BAUD_RATE 115200U
|
||
|
#define UART_FR_TXFE (1U << 7)
|
||
|
#define UART_FR_RXFE (1U << 4)
|
||
|
#define UART_TXFIFO_DEPTH 16U
|
||
|
|
||
|
enum AppRecords { // application-specific trace records
|
||
|
PHILO_STAT = QP::QS_USER,
|
||
|
COMMAND_STAT
|
||
|
};
|
||
|
|
||
|
#endif
|
||
|
|
||
|
// ISRs used in this project =================================================
|
||
|
extern "C" {
|
||
|
|
||
|
//............................................................................
|
||
|
void SysTick_Handler(void); // prototype
|
||
|
void SysTick_Handler(void) {
|
||
|
// state of the button debouncing, see below
|
||
|
static struct ButtonsDebouncing {
|
||
|
uint32_t depressed;
|
||
|
uint32_t previous;
|
||
|
} buttons = { ~0U, ~0U };
|
||
|
uint32_t current;
|
||
|
uint32_t tmp;
|
||
|
|
||
|
QXK_ISR_ENTRY(); // inform QXK about entering an ISR
|
||
|
|
||
|
#ifdef Q_SPY
|
||
|
{
|
||
|
tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG
|
||
|
QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
QP::QF::TICK_X(0U, &l_SysTick_Handler); // process time events for rate 0
|
||
|
|
||
|
// Perform the debouncing of buttons. The algorithm for debouncing
|
||
|
// adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
|
||
|
// and Michael Barr, page 71.
|
||
|
//
|
||
|
current = ~GPIO->P[PB_PORT].DIN; // read PB0 and BP1
|
||
|
tmp = buttons.depressed; // save the debounced depressed buttons
|
||
|
buttons.depressed |= (buttons.previous & current); // set depressed
|
||
|
buttons.depressed &= (buttons.previous | current); // clear released
|
||
|
buttons.previous = current; // update the history
|
||
|
tmp ^= buttons.depressed; // changed debounced depressed
|
||
|
if ((tmp & (1U << PB0_PIN)) != 0U) { // debounced PB0 state changed?
|
||
|
if ((buttons.depressed & (1U << PB0_PIN)) != 0U) { // PB0 depressed?
|
||
|
static QP::QEvt const pauseEvt = { DPP::PAUSE_SIG, 0U, 0U};
|
||
|
QP::QF::PUBLISH(&pauseEvt, &l_SysTick_Handler);
|
||
|
}
|
||
|
else { // the button is released
|
||
|
static QP::QEvt const serveEvt = { DPP::SERVE_SIG, 0U, 0U};
|
||
|
QP::QF::PUBLISH(&serveEvt, &l_SysTick_Handler);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
QXK_ISR_EXIT(); // inform QXK about exiting an ISR
|
||
|
}
|
||
|
//............................................................................
|
||
|
void GPIO_EVEN_IRQHandler(void); // prototype
|
||
|
void GPIO_EVEN_IRQHandler(void) {
|
||
|
QXK_ISR_ENTRY(); // inform QXK about entering an ISR
|
||
|
|
||
|
// for testing...
|
||
|
DPP::AO_Table->POST(Q_NEW(QP::QEvt, DPP::MAX_PUB_SIG),
|
||
|
&l_GPIO_EVEN_IRQHandler);
|
||
|
|
||
|
QXK_ISR_EXIT(); // inform QXK about exiting an ISR
|
||
|
}
|
||
|
|
||
|
//............................................................................
|
||
|
void USART0_RX_IRQHandler(void); // prototype
|
||
|
#ifdef Q_SPY
|
||
|
// ISR for receiving bytes from the QSPY Back-End
|
||
|
// NOTE: This ISR is "QF-unaware" meaning that it does not interact with
|
||
|
// the QF/QXK and is not disabled. Such ISRs don't need to call
|
||
|
// QXK_ISR_ENTRY/QXK_ISR_EXIT and they cannot post or publish events.
|
||
|
//
|
||
|
void USART0_RX_IRQHandler(void) {
|
||
|
// while RX FIFO NOT empty
|
||
|
while ((DPP::l_USART0->STATUS & USART_STATUS_RXDATAV) != 0) {
|
||
|
uint32_t b = DPP::l_USART0->RXDATA;
|
||
|
QP::QS::rxPut(b);
|
||
|
}
|
||
|
}
|
||
|
#else
|
||
|
void USART0_RX_IRQHandler(void) {}
|
||
|
#endif // Q_SPY
|
||
|
|
||
|
} // extern "C"
|
||
|
|
||
|
// BSP functions =============================================================
|
||
|
void BSP::init(void) {
|
||
|
// NOTE: SystemInit() already called from the startup code
|
||
|
// but SystemCoreClock needs to be updated
|
||
|
//
|
||
|
SystemCoreClockUpdate();
|
||
|
|
||
|
/* NOTE: The VFP (hardware Floating Point) unit is configured by QXK */
|
||
|
//FPU->FPCCR |= (1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos);
|
||
|
|
||
|
// enable clock for to the peripherals used by this application...
|
||
|
CMU_ClockEnable(cmuClock_HFPER, true);
|
||
|
CMU_ClockEnable(cmuClock_GPIO, true);
|
||
|
CMU_ClockEnable(cmuClock_HFPER, true);
|
||
|
CMU_ClockEnable(cmuClock_GPIO, true);
|
||
|
|
||
|
// configure the LEDs
|
||
|
GPIO_PinModeSet(LED_PORT, LED0_PIN, gpioModePushPull, 0);
|
||
|
GPIO_PinModeSet(LED_PORT, LED1_PIN, gpioModePushPull, 0);
|
||
|
GPIO_PinOutClear(LED_PORT, LED0_PIN);
|
||
|
GPIO_PinOutClear(LED_PORT, LED1_PIN);
|
||
|
|
||
|
// configure the Buttons
|
||
|
GPIO_PinModeSet(PB_PORT, PB0_PIN, gpioModeInputPull, 1);
|
||
|
GPIO_PinModeSet(PB_PORT, PB1_PIN, gpioModeInputPull, 1);
|
||
|
|
||
|
//...
|
||
|
BSP::randomSeed(1234U);
|
||
|
|
||
|
if (!QS_INIT((void *)0)) { // initialize the QS software tracing
|
||
|
Q_ERROR();
|
||
|
}
|
||
|
QS_OBJ_DICTIONARY(&l_SysTick_Handler);
|
||
|
QS_OBJ_DICTIONARY(&l_GPIO_EVEN_IRQHandler);
|
||
|
QS_USR_DICTIONARY(PHILO_STAT);
|
||
|
QS_USR_DICTIONARY(COMMAND_STAT);
|
||
|
}
|
||
|
//............................................................................
|
||
|
void BSP::displayPhilStat(uint8_t n, char const *stat) {
|
||
|
if (stat[0] == 'e') {
|
||
|
GPIO->P[LED_PORT].DOUT |= (1U << LED0_PIN);
|
||
|
}
|
||
|
else {
|
||
|
GPIO->P[LED_PORT].DOUT &= ~(1U << LED0_PIN);
|
||
|
}
|
||
|
|
||
|
QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin
|
||
|
QS_U8(1, n); // Philosopher number
|
||
|
QS_STR(stat); // Philosopher status
|
||
|
QS_END()
|
||
|
}
|
||
|
//............................................................................
|
||
|
void BSP::displayPaused(uint8_t paused) {
|
||
|
if (paused != 0U) {
|
||
|
GPIO->P[LED_PORT].DOUT |= (1U << LED0_PIN);
|
||
|
}
|
||
|
else {
|
||
|
GPIO->P[LED_PORT].DOUT &= ~(1U << LED0_PIN);
|
||
|
}
|
||
|
}
|
||
|
//............................................................................
|
||
|
uint32_t BSP::random(void) { // a very cheap pseudo-random-number generator
|
||
|
// Some flating point code is to exercise the VFP...
|
||
|
float volatile x = 3.1415926F;
|
||
|
x = x + 2.7182818F;
|
||
|
|
||
|
l_rndMutex.lock(); // lock the random-seed mutex
|
||
|
// "Super-Duper" Linear Congruential Generator (LCG)
|
||
|
// LCG(2^32, 3*7*11*13*23, 0, seed)
|
||
|
//
|
||
|
uint32_t rnd = l_rnd * (3U*7U*11U*13U*23U);
|
||
|
l_rnd = rnd; // set for the next time
|
||
|
l_rndMutex.unlock(); // unlock the random-seed mutex
|
||
|
|
||
|
return (rnd >> 8);
|
||
|
}
|
||
|
//............................................................................
|
||
|
void BSP::randomSeed(uint32_t seed) {
|
||
|
l_rnd = seed;
|
||
|
l_rndMutex.init(N_PHILO); // ceiling <== maximum Philo priority
|
||
|
}
|
||
|
//............................................................................
|
||
|
void BSP::ledOn(void) {
|
||
|
GPIO->P[LED_PORT].DOUT |= (1U << LED0_PIN);
|
||
|
}
|
||
|
//............................................................................
|
||
|
void BSP::ledOff(void) {
|
||
|
GPIO->P[LED_PORT].DOUT &= ~(1U << LED0_PIN);
|
||
|
}
|
||
|
//............................................................................
|
||
|
void BSP::terminate(int16_t result) {
|
||
|
(void)result;
|
||
|
}
|
||
|
|
||
|
} // namespace DPP
|
||
|
|
||
|
|
||
|
// namespace QP **************************************************************
|
||
|
namespace QP {
|
||
|
|
||
|
// QF callbacks ==============================================================
|
||
|
void QF::onStartup(void) {
|
||
|
// set up the SysTick timer to fire at BSP::TICKS_PER_SEC rate
|
||
|
SysTick_Config(SystemCoreClock / DPP::BSP::TICKS_PER_SEC);
|
||
|
|
||
|
// assing all priority bits for preemption-prio. and none to sub-prio.
|
||
|
NVIC_SetPriorityGrouping(0U);
|
||
|
|
||
|
// set priorities of ALL ISRs used in the system, see NOTE00
|
||
|
//
|
||
|
// !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||
|
// Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
|
||
|
// DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
|
||
|
//
|
||
|
NVIC_SetPriority(USART0_RX_IRQn, DPP::USART0_RX_PRIO);
|
||
|
NVIC_SetPriority(SysTick_IRQn, DPP::SYSTICK_PRIO);
|
||
|
NVIC_SetPriority(GPIO_EVEN_IRQn, DPP::GPIO_EVEN_PRIO);
|
||
|
// ...
|
||
|
|
||
|
// enable IRQs...
|
||
|
NVIC_EnableIRQ(GPIO_EVEN_IRQn);
|
||
|
#ifdef Q_SPY
|
||
|
NVIC_EnableIRQ(USART0_RX_IRQn); // UART0 interrupt used for QS-RX
|
||
|
#endif
|
||
|
}
|
||
|
//............................................................................
|
||
|
void QF::onCleanup(void) {
|
||
|
}
|
||
|
//............................................................................
|
||
|
void QXK::onIdle(void) {
|
||
|
// toggle the User LED on and then off, see NOTE01
|
||
|
QF_INT_DISABLE();
|
||
|
GPIO->P[LED_PORT].DOUT |= (1U << LED1_PIN);
|
||
|
GPIO->P[LED_PORT].DOUT &= ~(1U << LED1_PIN);
|
||
|
QF_INT_ENABLE();
|
||
|
|
||
|
#ifdef Q_SPY
|
||
|
QS::rxParse(); // parse all the received bytes
|
||
|
|
||
|
if ((DPP::l_USART0->STATUS & USART_STATUS_TXBL) != 0) { // is TXE empty?
|
||
|
uint16_t b;
|
||
|
|
||
|
QF_INT_DISABLE();
|
||
|
b = QS::getByte();
|
||
|
QF_INT_ENABLE();
|
||
|
|
||
|
if (b != QS_EOD) { // not End-Of-Data?
|
||
|
DPP::l_USART0->TXDATA = (b & 0xFFU); // put into the DR register
|
||
|
}
|
||
|
}
|
||
|
#elif defined NDEBUG
|
||
|
// Put the CPU and peripherals to the low-power mode.
|
||
|
// you might need to customize the clock management for your application,
|
||
|
// see the datasheet for your particular Cortex-M3 MCU.
|
||
|
//
|
||
|
__WFI(); // Wait-For-Interrupt
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
//............................................................................
|
||
|
extern "C" void Q_onAssert(char const *module, int loc) {
|
||
|
//
|
||
|
// NOTE: add here your application-specific error handling
|
||
|
//
|
||
|
(void)module;
|
||
|
(void)loc;
|
||
|
QS_ASSERTION(module, loc, static_cast<uint32_t>(10000U));
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
// light up both LEDs
|
||
|
GPIO->P[LED_PORT].DOUT |= ((1U << LED0_PIN) | (1U << LED1_PIN));
|
||
|
// for debugging, hang on in an endless loop until PB1 is pressed...
|
||
|
while ((GPIO->P[PB_PORT].DIN & (1U << PB1_PIN)) != 0) {
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
NVIC_SystemReset();
|
||
|
}
|
||
|
|
||
|
// QS callbacks ==============================================================
|
||
|
#ifdef Q_SPY
|
||
|
//............................................................................
|
||
|
bool QS::onStartup(void const *arg) {
|
||
|
static uint8_t qsTxBuf[2*1024]; // buffer for QS transmit channel
|
||
|
static uint8_t qsRxBuf[100]; // buffer for QS receive channel
|
||
|
static USART_InitAsync_TypeDef init = {
|
||
|
usartEnable, // Enable RX/TX when init completed
|
||
|
0, // Use current clock for configuring baudrate
|
||
|
115200, // 115200 bits/s
|
||
|
usartOVS16, // 16x oversampling
|
||
|
usartDatabits8, // 8 databits
|
||
|
usartNoParity, // No parity
|
||
|
usartStopbits1, // 1 stopbit
|
||
|
0, // Do not disable majority vote
|
||
|
0, // Not USART PRS input mode
|
||
|
usartPrsRxCh0, // PRS channel 0
|
||
|
0, // Auto CS functionality enable/disable switch
|
||
|
0, // Auto CS Hold cycles
|
||
|
0 // Auto CS Setup cycles
|
||
|
};
|
||
|
|
||
|
initBuf (qsTxBuf, sizeof(qsTxBuf));
|
||
|
rxInitBuf(qsRxBuf, sizeof(qsRxBuf));
|
||
|
|
||
|
// Enable peripheral clocks
|
||
|
CMU_ClockEnable(cmuClock_HFPER, true);
|
||
|
CMU_ClockEnable(cmuClock_GPIO, true);
|
||
|
|
||
|
// To avoid false start, configure output as high
|
||
|
GPIO_PinModeSet(gpioPortA, 0, gpioModePushPull, 1); // TX pin
|
||
|
GPIO_PinModeSet(gpioPortA, 1, gpioModeInput, 0); // RX pin
|
||
|
|
||
|
// Enable DK RS232/UART switch
|
||
|
GPIO_PinModeSet(gpioPortA, 5, gpioModePushPull, 1);
|
||
|
CMU_ClockEnable(cmuClock_USART0, true);
|
||
|
|
||
|
// configure the UART for the desired baud rate, 8-N-1 operation
|
||
|
init.enable = usartDisable;
|
||
|
USART_InitAsync(DPP::l_USART0, &init);
|
||
|
|
||
|
// enable pins at correct UART/USART location.
|
||
|
DPP::l_USART0->ROUTEPEN = USART_ROUTEPEN_RXPEN | USART_ROUTEPEN_TXPEN;
|
||
|
DPP::l_USART0->ROUTELOC0 = (DPP::l_USART0->ROUTELOC0 &
|
||
|
~(_USART_ROUTELOC0_TXLOC_MASK
|
||
|
| _USART_ROUTELOC0_RXLOC_MASK));
|
||
|
|
||
|
// Clear previous RX interrupts
|
||
|
USART_IntClear(DPP::l_USART0, USART_IF_RXDATAV);
|
||
|
NVIC_ClearPendingIRQ(USART0_RX_IRQn);
|
||
|
|
||
|
// Enable RX interrupts
|
||
|
USART_IntEnable(DPP::l_USART0, USART_IF_RXDATAV);
|
||
|
// NOTE: do not enable the UART0 interrupt in the NVIC yet.
|
||
|
// Wait till QF::onStartup()
|
||
|
|
||
|
|
||
|
// Finally enable the UART
|
||
|
USART_Enable(DPP::l_USART0, usartEnable);
|
||
|
|
||
|
DPP::QS_tickPeriod_ = SystemCoreClock / DPP::BSP::TICKS_PER_SEC;
|
||
|
DPP::QS_tickTime_ = DPP::QS_tickPeriod_; // to start the timestamp at zero
|
||
|
|
||
|
// setup the QS filters...
|
||
|
QS_FILTER_ON(QS_QEP_STATE_ENTRY);
|
||
|
QS_FILTER_ON(QS_QEP_STATE_EXIT);
|
||
|
QS_FILTER_ON(QS_QEP_STATE_INIT);
|
||
|
QS_FILTER_ON(QS_QEP_INIT_TRAN);
|
||
|
QS_FILTER_ON(QS_QEP_INTERN_TRAN);
|
||
|
QS_FILTER_ON(QS_QEP_TRAN);
|
||
|
QS_FILTER_ON(QS_QEP_IGNORED);
|
||
|
QS_FILTER_ON(QS_QEP_DISPATCH);
|
||
|
QS_FILTER_ON(QS_QEP_UNHANDLED);
|
||
|
|
||
|
QS_FILTER_ON(DPP::PHILO_STAT);
|
||
|
QS_FILTER_ON(DPP::COMMAND_STAT);
|
||
|
|
||
|
return true; // return success
|
||
|
}
|
||
|
//............................................................................
|
||
|
void QS::onCleanup(void) {
|
||
|
}
|
||
|
//............................................................................
|
||
|
QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED
|
||
|
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // not set?
|
||
|
return DPP::QS_tickTime_ - static_cast<QSTimeCtr>(SysTick->VAL);
|
||
|
}
|
||
|
else { // the rollover occured, but the SysTick_ISR did not run yet
|
||
|
return DPP::QS_tickTime_ + DPP::QS_tickPeriod_
|
||
|
- static_cast<QSTimeCtr>(SysTick->VAL);
|
||
|
}
|
||
|
}
|
||
|
//............................................................................
|
||
|
void QS::onFlush(void) {
|
||
|
uint16_t b;
|
||
|
|
||
|
QF_INT_DISABLE();
|
||
|
while ((b = getByte()) != QS_EOD) { // while not End-Of-Data...
|
||
|
QF_INT_ENABLE();
|
||
|
// while TXE not empty
|
||
|
while ((DPP::l_USART0->STATUS & USART_STATUS_TXBL) == 0U) {
|
||
|
}
|
||
|
DPP::l_USART0->TXDATA = (b & 0xFFU); // put into the DR register
|
||
|
QF_INT_DISABLE();
|
||
|
}
|
||
|
QF_INT_ENABLE();
|
||
|
}
|
||
|
//............................................................................
|
||
|
//! callback function to reset the target (to be implemented in the BSP)
|
||
|
void QS::onReset(void) {
|
||
|
NVIC_SystemReset();
|
||
|
}
|
||
|
//............................................................................
|
||
|
//! callback function to execute a user command (to be implemented in BSP)
|
||
|
extern "C" void assert_failed(char const *module, int loc);
|
||
|
void QS::onCommand(uint8_t cmdId, uint32_t param) {
|
||
|
(void)cmdId;
|
||
|
(void)param;
|
||
|
|
||
|
// application-specific record
|
||
|
QS_BEGIN(DPP::COMMAND_STAT, static_cast<void *>(0))
|
||
|
QS_U8(2, cmdId);
|
||
|
QS_U32(8, param);
|
||
|
QS_END()
|
||
|
|
||
|
if (cmdId == 10U) {
|
||
|
assert_failed("QS_onCommand", 11);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif // Q_SPY
|
||
|
//----------------------------------------------------------------------------
|
||
|
|
||
|
} // namespace QP
|
||
|
|
||
|
//****************************************************************************
|
||
|
// NOTE00:
|
||
|
// The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest
|
||
|
// ISR priority that is disabled by the QF framework. The value is suitable
|
||
|
// for the NVIC_SetPriority() CMSIS function.
|
||
|
//
|
||
|
// Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e.,
|
||
|
// with the numerical values of priorities equal or higher than
|
||
|
// QF_AWARE_ISR_CMSIS_PRI) are allowed to call the QK_ISR_ENTRY/QK_ISR_ENTRY
|
||
|
// macros or any other QF/QK services. These ISRs are "QF-aware".
|
||
|
//
|
||
|
// Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority
|
||
|
// level (i.e., with the numerical values of priorities less than
|
||
|
// QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel.
|
||
|
// Such "QF-unaware" ISRs cannot call any QF/QK services. In particular they
|
||
|
// can NOT call the macros QK_ISR_ENTRY/QK_ISR_ENTRY. The only mechanism
|
||
|
// by which a "QF-unaware" ISR can communicate with the QF framework is by
|
||
|
// triggering a "QF-aware" ISR, which can post/publish events.
|
||
|
//
|
||
|
// NOTE01:
|
||
|
// The User LED is used to visualize the idle loop activity. The brightness
|
||
|
// of the LED is proportional to the frequency of invcations of the idle loop.
|
||
|
// Please note that the LED is toggled with interrupts locked, so no interrupt
|
||
|
// execution time contributes to the brightness of the User LED.
|
||
|
//
|