308 lines
12 KiB
C++
Raw Normal View History

2012-08-14 18:00:48 -04:00
//////////////////////////////////////////////////////////////////////////////
// Product: DPP example, STM3210C-EVAL board, Vanilla kernel
// Last Updated for Version: 4.3.00
// Date of the Last Update: Nov 03, 2011
//
// Q u a n t u m L e a P s
// ---------------------------
// innovating embedded systems
//
// Copyright (C) 2002-2011 Quantum Leaps, LLC. All rights reserved.
//
// This software may be distributed and modified under the terms of the GNU
// General Public License version 2 (GPL) as published by the Free Software
// Foundation and appearing in the file GPL.TXT included in the packaging of
// this file. Please note that GPL Section 2[b] requires that all works based
// on this software must also be made publicly available under the terms of
// the GPL ("Copyleft").
//
// Alternatively, this software may be distributed and modified under the
// terms of Quantum Leaps commercial licenses, which expressly supersede
// the GPL and are specifically designed for licensees interested in
// retaining the proprietary status of their code.
//
// Contact information:
// Quantum Leaps Web site: http://www.quantum-leaps.com
// e-mail: info@quantum-leaps.com
//////////////////////////////////////////////////////////////////////////////
#include "qp_port.h"
#include "dpp.h"
#include "bsp.h"
Q_DEFINE_THIS_FILE
extern "C" {
#include "stm32f10x.h"
#include "stm32_eval.h"
// #include "stm3210e_eval_lcd.h"
}
enum ISR_Priorities { // ISR priorities starting from the highest urgency
SYSTICK_PRIO,
// ...
};
static uint32_t l_delay = 0UL; // limit for the loop counter in busyDelay()
#ifdef Q_SPY
QSTimeCtr QS_tickTime_;
QSTimeCtr QS_tickPeriod_;
static uint8_t l_SysTick_Handler;
#define QS_BUF_SIZE (2*1024)
#define QS_BAUD_RATE 115200
enum AppRecords { // application-specific trace records
PHILO_STAT = QS_USER
};
#endif
//............................................................................
extern "C" void SysTick_Handler(void) __attribute__((__interrupt__));
extern "C" void SysTick_Handler(void) {
#ifdef Q_SPY
uint32_t dummy = SysTick->CTRL; // clear NVIC_ST_CTRL_COUNT flag
QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover
#endif
QF::TICK(&l_SysTick_Handler); // process all armed time events
}
//............................................................................
void BSP_init(void) {
SystemInit(); // initialize STM32 system (clock, PLL and Flash)
// initialize LEDs, Key Button, and LCD on STM3210X-EVAL board
STM_EVAL_LEDInit(LED1);
STM_EVAL_LEDInit(LED2);
STM_EVAL_LEDInit(LED3);
STM_EVAL_LEDInit(LED4);
/*
STM3210C_LCD_Init(); // initialize the LCD
LCD_Clear(White); // clear the LCD
LCD_SetBackColor(Grey);
LCD_SetTextColor(Black);
LCD_DisplayString(Line0, 0, " Quantum Leaps ");
LCD_DisplayString(Line1, 0, " DPP example ");
LCD_DisplayString(Line2, 0, "QP/C++Vanilla ");
LCD_DisplayString(Line2, 14*16, QF::getVersion());
LCD_SetBackColor(White);
LCD_DisplayString(Line5, 0, "DPP:");
LCD_SetBackColor(Black);
LCD_SetTextColor(Yellow);
LCD_DisplayString(Line9, 0, " state-machine.com ");
LCD_SetBackColor(Blue);
LCD_SetTextColor(White);
LCD_DisplayString(Line5, 4*16, "0 ,1 ,2 ,3 ,4 ");
*/
if (QS_INIT((void *)0) == 0) { // initialize the QS software tracing
Q_ERROR();
}
QS_OBJ_DICTIONARY(&l_SysTick_Handler);
}
//............................................................................
void QF::onStartup(void) {
// Set up and enable the SysTick timer. It will be used as a reference
// for delay loops in the interrupt handlers. The SysTick timer period
// will be set up for BSP_TICKS_PER_SEC.
//
SysTick_Config(SystemFrequency_SysClk / BSP_TICKS_PER_SEC);
// set priorities of all interrupts in the system...
NVIC_SetPriority(SysTick_IRQn, SYSTICK_PRIO);
// ...
}
//............................................................................
void QF::onCleanup(void) {
}
//............................................................................
void QF::onIdle(void) { // entered with interrupts LOCKED, see NOTE01
// toggle the User LED on and then off, see NOTE02
STM_EVAL_LEDOn (LED4); // blue LED on
STM_EVAL_LEDOff(LED4); // blue LED off
#ifdef Q_SPY
QF_INT_ENABLE();
if ((USART2->SR & USART_FLAG_TXE) != 0) { // is TXE empty?
QF_INT_DISABLE();
uint16_t b = QS::getByte();
QF_INT_ENABLE();
if (b != QS_EOD) { // not End-Of-Data?
USART2->DR = (b & 0xFF); // put into the DR register
}
}
#elif defined NDEBUG
__WFI(); // wait for interrupt
QF_INT_ENABLE();
#else
QF_INT_ENABLE();
#endif
}
//............................................................................
// error routine that is called if the STM32 library encounters an error
extern "C" void assert_failed(char const *file, int line) {
Q_onAssert(file, line);
}
//............................................................................
extern "C" void Q_onAssert(char const * const file, int line) {
(void)file; // avoid compiler warning
(void)line; // avoid compiler warning
QF_INT_DISABLE(); // make sure that all interrupts are disabled
for (;;) { // NOTE: replace the loop with reset for final version
}
}
//............................................................................
void BSP_displyPhilStat(uint8_t n, char const *stat) {
//LCD_DisplayChar(Line5, (3*16*n + 5*16), stat[0]);
QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin
QS_U8(1, n); // Philosopher number
QS_STR(stat); // Philosopher status
QS_END()
}
//............................................................................
void BSP_busyDelay(void) {
uint32_t volatile i = l_delay;
while (i-- > 0UL) { // busy-wait loop
}
}
//----------------------------------------------------------------------------
#ifdef Q_SPY
//............................................................................
uint8_t QS::onStartup(void const *arg) {
static uint8_t qsBuf[QS_BUF_SIZE]; // buffer for Quantum Spy
initBuf(qsBuf, sizeof(qsBuf));
// enable USART2 and GPIOA/AFIO clocks
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO,
ENABLE);
GPIO_PinRemapConfig(GPIO_Remap_USART2, ENABLE);
// configure GPIOD.5 as push-pull...
GPIO_InitTypeDef gpio_init;
gpio_init.GPIO_Pin = GPIO_Pin_5;
gpio_init.GPIO_Speed = GPIO_Speed_50MHz;
gpio_init.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOD, &gpio_init);
// configure GPIOD.6 as input floating...
gpio_init.GPIO_Pin = GPIO_Pin_6;
gpio_init.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOD, &gpio_init);
USART_InitTypeDef usart_init;
usart_init.USART_BaudRate = QS_BAUD_RATE;
usart_init.USART_WordLength = USART_WordLength_8b;
usart_init.USART_StopBits = USART_StopBits_1;
usart_init.USART_Parity = USART_Parity_No ;
usart_init.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
usart_init.USART_Mode = USART_Mode_Tx;
USART_Init(USART2, &usart_init);
USART_ClockInitTypeDef usart_clk_init;
usart_clk_init.USART_Clock = USART_Clock_Disable;
usart_clk_init.USART_CPOL = USART_CPOL_Low;
usart_clk_init.USART_CPHA = USART_CPHA_2Edge;
usart_clk_init.USART_LastBit = USART_LastBit_Disable;
USART_ClockInit(USART2, &usart_clk_init);
USART_Cmd(USART2, ENABLE); // enable USART2
QS_tickPeriod_ = (QSTimeCtr)(SystemFrequency_SysClk / BSP_TICKS_PER_SEC);
QS_tickTime_ = QS_tickPeriod_; // to start the timestamp at zero
/* setup the QS filters... */
QS_FILTER_ON(QS_ALL_RECORDS);
// QS_FILTER_OFF(QS_QEP_STATE_EMPTY);
// QS_FILTER_OFF(QS_QEP_STATE_ENTRY);
// QS_FILTER_OFF(QS_QEP_STATE_EXIT);
// QS_FILTER_OFF(QS_QEP_STATE_INIT);
// QS_FILTER_OFF(QS_QEP_INIT_TRAN);
// QS_FILTER_OFF(QS_QEP_INTERN_TRAN);
// QS_FILTER_OFF(QS_QEP_TRAN);
// QS_FILTER_OFF(QS_QEP_IGNORED);
QS_FILTER_OFF(QS_QF_ACTIVE_ADD);
QS_FILTER_OFF(QS_QF_ACTIVE_REMOVE);
QS_FILTER_OFF(QS_QF_ACTIVE_SUBSCRIBE);
QS_FILTER_OFF(QS_QF_ACTIVE_UNSUBSCRIBE);
QS_FILTER_OFF(QS_QF_ACTIVE_POST_FIFO);
QS_FILTER_OFF(QS_QF_ACTIVE_POST_LIFO);
QS_FILTER_OFF(QS_QF_ACTIVE_GET);
QS_FILTER_OFF(QS_QF_ACTIVE_GET_LAST);
QS_FILTER_OFF(QS_QF_EQUEUE_INIT);
QS_FILTER_OFF(QS_QF_EQUEUE_POST_FIFO);
QS_FILTER_OFF(QS_QF_EQUEUE_POST_LIFO);
QS_FILTER_OFF(QS_QF_EQUEUE_GET);
QS_FILTER_OFF(QS_QF_EQUEUE_GET_LAST);
QS_FILTER_OFF(QS_QF_MPOOL_INIT);
QS_FILTER_OFF(QS_QF_MPOOL_GET);
QS_FILTER_OFF(QS_QF_MPOOL_PUT);
QS_FILTER_OFF(QS_QF_PUBLISH);
QS_FILTER_OFF(QS_QF_NEW);
QS_FILTER_OFF(QS_QF_GC_ATTEMPT);
QS_FILTER_OFF(QS_QF_GC);
// QS_FILTER_OFF(QS_QF_TICK);
QS_FILTER_OFF(QS_QF_TIMEEVT_ARM);
QS_FILTER_OFF(QS_QF_TIMEEVT_AUTO_DISARM);
QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM_ATTEMPT);
QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM);
QS_FILTER_OFF(QS_QF_TIMEEVT_REARM);
QS_FILTER_OFF(QS_QF_TIMEEVT_POST);
QS_FILTER_OFF(QS_QF_CRIT_ENTRY);
QS_FILTER_OFF(QS_QF_CRIT_EXIT);
QS_FILTER_OFF(QS_QF_ISR_ENTRY);
QS_FILTER_OFF(QS_QF_ISR_EXIT);
// QS_FILTER_OFF(QS_QK_MUTEX_LOCK);
// QS_FILTER_OFF(QS_QK_MUTEX_UNLOCK);
QS_FILTER_OFF(QS_QK_SCHEDULE);
return (uint8_t)1; // return success
}
//............................................................................
void QS::onCleanup(void) {
}
//............................................................................
QSTimeCtr QS::onGetTime(void) { // invoked with interrupts locked
if ((SysTick->CTRL & 0x00010000) == 0) { // COUNT no set?
return QS_tickTime_ - (QSTimeCtr)SysTick->VAL;
}
else { // the rollover occured, but the SysTick_ISR did not run yet
return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL;
}
}
//............................................................................
void QS::onFlush(void) {
uint16_t b;
while ((b = getByte()) != QS_EOD) { // while not End-Of-Data...
while ((USART2->SR & USART_FLAG_TXE) == 0) { // while TXE not empty
}
USART2->DR = (b & 0xFF); // put into the DR register
}
}
#endif // Q_SPY
//----------------------------------------------------------------------------
//////////////////////////////////////////////////////////////////////////////
// NOTE01:
// The QF::onIdle() callback is called with interrupts locked, because the
// determination of the idle condition might change by any interrupt posting
// an event. QF::onIdle() must internally unlock interrupts, ideally
// atomically with putting the CPU to the power-saving mode.
//
// NOTE02:
// The blue LED is used to visualize the idle loop activity. The brightness
// of the LED is proportional to the frequency of invcations of the idle loop.
// Please note that the LED is toggled with interrupts locked, so no interrupt
// execution time contributes to the brightness of the User LED.
//