This commit is contained in:
QL 2018-02-12 18:51:55 -05:00
parent 4cb05cad7b
commit e7f3977832
2 changed files with 724 additions and 0 deletions

465
src/qk/qk.cpp Normal file
View File

@ -0,0 +1,465 @@
/// @file
/// @brief QK preemptive kernel core functions
/// @ingroup qk
/// @cond
///***************************************************************************
/// Last updated for version 6.02
/// Last updated on 2017-12-08
///
/// Q u a n t u m L e a P s
/// ---------------------------
/// innovating embedded systems
///
/// Copyright (C) 2005-2017 Quantum Leaps, LLC. All rights reserved.
///
/// This program is open source software: you can redistribute it and/or
/// modify it under the terms of the GNU General Public License as published
/// by the Free Software Foundation, either version 3 of the License, or
/// (at your option) any later version.
///
/// Alternatively, this program may be distributed and modified under the
/// terms of Quantum Leaps commercial licenses, which expressly supersede
/// the GNU General Public License and are specifically designed for
/// licensees interested in retaining the proprietary status of their code.
///
/// This program is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with this program. If not, see <http://www.gnu.org/licenses/>.
///
/// Contact information:
/// https://state-machine.com
/// mailto:info@state-machine.com
///***************************************************************************
/// @endcond
#define QP_IMPL // this is QF/QK implementation
#include "qf_port.h" // QF port
#include "qf_pkg.h" // QF package-scope internal interface
#include "qassert.h" // QP assertions
#ifdef Q_SPY // QS software tracing enabled?
#include "qs_port.h" // include QS port
#else
#include "qs_dummy.h" // disable the QS software tracing
#endif // Q_SPY
// protection against including this source file in a wrong project
#ifndef qk_h
#error "Source file included in a project NOT based on the QK kernel"
#endif // qk_h
// Public-scope objects ******************************************************
extern "C" {
Q_DEFINE_THIS_MODULE("qk")
QK_Attr QK_attr_; // global attributes of the QK kernel
} // extern "C"
namespace QP {
//****************************************************************************
/// @description
/// Initializes QF and must be called exactly once before any other QF
/// function. Typcially, QP::QF::init() is called from main() even before
/// initializing the Board Support Package (BSP).
///
/// @note
/// QP::QF::init() clears the internal QF variables, so that the framework
/// can start correctly even if the startup code fails to clear the
/// uninitialized data (as is required by the C Standard).
///
void QF::init(void) {
QF_maxPool_ = static_cast<uint_fast8_t>(0);
QF_subscrList_ = static_cast<QSubscrList *>(0);
QF_maxPubSignal_ = static_cast<enum_t>(0);
bzero(&QF::timeEvtHead_[0],
static_cast<uint_fast16_t>(sizeof(QF::timeEvtHead_)));
bzero(&active_[0], static_cast<uint_fast16_t>(sizeof(active_)));
bzero(&QK_attr_, static_cast<uint_fast16_t>(sizeof(QK_attr_)));
QK_attr_.actPrio = static_cast<uint8_t>(0); // prio of QK idle loop
QK_attr_.lockPrio = static_cast<uint8_t>(QF_MAX_ACTIVE); // locked
#ifdef QK_INIT
QK_INIT(); // port-specific initialization of the QK kernel
#endif
}
//****************************************************************************
/// @description
/// This function stops the QF application. After calling this function,
/// QF attempts to gracefully stop the application. This graceful shutdown
/// might take some time to complete. The typical use of this function is
/// for terminating the QF application to return back to the operating
/// system or for handling fatal errors that require shutting down
/// (and possibly re-setting) the system.
///
/// @sa QP::QF::onCleanup()
///
void QF::stop(void) {
QF::onCleanup(); // cleanup callback
// nothing else to do for the QK preemptive kernel
}
//****************************************************************************
//! process all events posted during initialization */
static void initial_events(void); // prototype
static void initial_events(void) {
QK_attr_.lockPrio = static_cast<uint8_t>(0); // scheduler unlocked
// any active objects need to be scheduled before starting event loop?
if (QK_sched_() != static_cast<uint_fast8_t>(0)) {
QK_activate_(); // activate AOs to process all events posted so far
}
}
//****************************************************************************
/// @description
///
/// QP::QF::run() is typically called from your startup code after you
/// initialize the QF and start at least one active object with
/// QP::QActive::start().
///
/// @returns In QK, the QP::QF::run() function does not return.
///
int_t QF::run(void) {
QF_INT_DISABLE();
initial_events(); // process all events posted during initialization
onStartup(); // application-specific startup callback
QF_INT_ENABLE();
// the QK idle loop...
for (;;) {
QK::onIdle(); // application-specific QK on-idle callback
}
#ifdef __GNUC__ // GNU compiler?
return static_cast<int_t>(0);
#endif
}
//****************************************************************************
// @description
// Starts execution of the AO and registers the AO with the framework.
//
// @param[in] prio priority at which to start the active object
// @param[in] qSto pointer to the storage for the ring buffer of the
// event queue (used only with the built-in QP::QEQueue)
// @param[in] qLen length of the event queue [events]
// @param[in] stkSto pointer to the stack storage (must be NULL in QK)
// @param[in] stkSize stack size [bytes]
// @param[in] ie pointer to the optional initial event (might be NULL)
//
// @usage
// The following example shows starting an AO when a per-task stack is needed:
// @include
// qf_start.cpp
//
void QActive::start(uint_fast8_t const prio,
QEvt const *qSto[], uint_fast16_t const qLen,
void * const stkSto, uint_fast16_t const,
QEvt const * const ie)
{
/// @pre AO cannot be started from an ISR, the priority must be in range
/// and the stack storage must not be provided, because the QK kernel does
/// not need per-AO stacks.
Q_REQUIRE_ID(300, (!QK_ISR_CONTEXT_())
&& (static_cast<uint_fast8_t>(0) < prio)
&& (prio <= static_cast<uint_fast8_t>(QF_MAX_ACTIVE))
&& (stkSto == static_cast<void *>(0)));
m_eQueue.init(qSto, qLen); // initialize the built-in queue
m_prio = static_cast<uint8_t>(prio); // set the QF priority of this AO
QF::add_(this); // make QF aware of this AO
this->init(ie); // take the top-most initial tran. (virtual)
QS_FLUSH(); // flush the trace buffer to the host
// See if this AO needs to be scheduled in case QK is already running
QF_CRIT_STAT_
QF_CRIT_ENTRY_();
if (QK_sched_() != static_cast<uint_fast8_t>(0)) { // activation needed?
QK_activate_();
}
QF_CRIT_EXIT_();
}
//****************************************************************************
/// @description
/// This function must be called from within the AO that needs to stop.
/// In other words, an AO should stop itself rather than being stopped by
/// someone else. This policy works best, because only the AO itself "knows"
/// when it has reached the appropriate state for the shutdown.
///
/// @note
/// By the time the AO calls QP::QActive::stop(), it should have unsubscribed
/// from all events and no more events should be directly-posted to it.
///
void QActive::stop(void) {
//! @pre QP::QActive::stop() must be called from the AO that wants to stop.
Q_REQUIRE_ID(400, (this == QF::active_[QK_attr_.actPrio]));
QF::remove_(this); // remove this active object from the QF
QF_CRIT_STAT_
QF_CRIT_ENTRY_();
QK_attr_.readySet.remove(static_cast<uint_fast8_t>(m_prio));
if (QK_sched_() != static_cast<uint_fast8_t>(0)) {
QK_activate_();
}
QF_CRIT_EXIT_();
}
//****************************************************************************
///
/// @description
/// This function locks the QK scheduler to the specified ceiling.
///
/// @param[in] ceiling priority ceiling to which the QK scheduler
/// needs to be locked
///
/// @returns
/// The previous QK Scheduler lock status, which is to be used to unlock
/// the scheduler by restoring its previous lock status in
/// QP::QK::schedUnlock().
///
/// @note
/// QP::QK::schedLock() must be always followed by the corresponding
/// QP::QK::schedUnlock().
///
/// @sa QK_schedUnlock()
///
/// @usage
/// The following example shows how to lock and unlock the QK scheduler:
/// @include qk_lock.cpp
///
QSchedStatus QK::schedLock(uint_fast8_t const ceiling) {
QSchedStatus stat;
QF_CRIT_STAT_
QF_CRIT_ENTRY_();
/// @pre The QK scheduler lock:
/// - cannot be called from an ISR;
Q_REQUIRE_ID(600, !QK_ISR_CONTEXT_());
// first store the previous lock prio if it is below the ceiling
if (static_cast<uint_fast8_t>(QK_attr_.lockPrio) < ceiling) {
stat = (static_cast<QSchedStatus>(QK_attr_.lockPrio) << 8);
QK_attr_.lockPrio = static_cast<uint8_t>(ceiling);
QS_BEGIN_NOCRIT_(QS_SCHED_LOCK,
static_cast<void *>(0), static_cast<void *>(0))
QS_TIME_(); // timestamp
QS_2U8_(static_cast<uint8_t>(stat), /* the previous lock prio */
QK_attr_.lockPrio); // new lock prio
QS_END_NOCRIT_()
// add the previous lock holder priority
stat |= static_cast<QSchedStatus>(QK_attr_.lockHolder);
QK_attr_.lockHolder = QK_attr_.actPrio;
}
else {
stat = static_cast<QSchedStatus>(0xFF);
}
QF_CRIT_EXIT_();
return stat; // return the status to be saved in a stack variable
}
//****************************************************************************
///
/// @description
/// This function unlocks the QK scheduler to the previous status.
///
/// @param[in] stat previous QK Scheduler lock status returned from
/// QP::QK::schedLock()
/// @note
/// QP::QK::schedUnlock() must always follow the corresponding
/// QP::QK::schedLock().
///
/// @sa QP::QK::schedLock()
///
/// @usage
/// The following example shows how to lock and unlock the QK scheduler:
/// @include qk_lock.cpp
///
void QK::schedUnlock(QSchedStatus const stat) {
// has the scheduler been actually locked by the last QK_schedLock()?
if (stat != static_cast<QSchedStatus>(0xFF)) {
uint_fast8_t lockPrio = static_cast<uint_fast8_t>(QK_attr_.lockPrio);
uint_fast8_t prevPrio = static_cast<uint_fast8_t>(stat >> 8);
QF_CRIT_STAT_
QF_CRIT_ENTRY_();
/// @pre The scheduler cannot be unlocked:
/// - from the ISR context; and
/// - the current lock priority must be greater than the previous
Q_REQUIRE_ID(700, (!QK_ISR_CONTEXT_())
&& (lockPrio > prevPrio));
QS_BEGIN_NOCRIT_(QS_SCHED_UNLOCK,
static_cast<void *>(0), static_cast<void *>(0))
QS_TIME_(); // timestamp
QS_2U8_(static_cast<uint8_t>(lockPrio),/* prio before unlocking */
static_cast<uint8_t>(prevPrio));// prio after unlocking
QS_END_NOCRIT_()
// restore the previous lock priority and lock holder
QK_attr_.lockPrio = static_cast<uint8_t>(prevPrio);
QK_attr_.lockHolder =
static_cast<uint8_t>(stat & static_cast<QSchedStatus>(0xFF));
// find the highest-prio thread ready to run
if (QK_sched_() != static_cast<uint_fast8_t>(0)) { // priority found?
QK_activate_(); // activate any unlocked basic threads
}
QF_CRIT_EXIT_();
}
}
} // namespace QP
//============================================================================
extern "C" {
//****************************************************************************
/// @description
/// The QK scheduler finds out the priority of the highest-priority AO
/// that (1) has events to process and (2) has priority that is above the
/// current priority.
///
/// @returns the 1-based priority of the the active object, or zero if
/// no eligible active object is ready to run.
///
/// @attention
/// QK_sched_() must be always called with interrupts **disabled** and
/// returns with interrupts **disabled**.
///
uint_fast8_t QK_sched_(void) {
// find the highest-prio AO with non-empty event queue
uint_fast8_t p = QK_attr_.readySet.findMax();
// is the highest-prio below the active prio?
if (p <= static_cast<uint_fast8_t>(QK_attr_.actPrio)) {
p = static_cast<uint_fast8_t>(0); // active object not eligible
}
else if (p <= static_cast<uint_fast8_t>(QK_attr_.lockPrio)) {//below lock?
p = static_cast<uint_fast8_t>(0); // active object not eligible
}
else {
Q_ASSERT_ID(610, p <= static_cast<uint_fast8_t>(QF_MAX_ACTIVE));
QK_attr_.nextPrio = static_cast<uint8_t>(p); // next AO to run
}
return p;
}
//****************************************************************************
/// @description
/// QK_activate_() activates ready-to run AOs that are above the initial
/// active priority (QK_attr_.actPrio).
///
/// @note
/// The activator might enable interrupts internally, but always returns with
/// interrupts **disabled**.
///
void QK_activate_(void) {
uint_fast8_t pin = static_cast<uint_fast8_t>(QK_attr_.actPrio);
uint_fast8_t p = static_cast<uint_fast8_t>(QK_attr_.nextPrio);
QP::QActive *a;
// QS tracing or thread-local storage?
#ifdef Q_SPY
uint_fast8_t pprev = pin;
#endif // Q_SPY
// QK_attr_.nextPrio must be non-zero upon entry to QK_activate_()
Q_REQUIRE_ID(800, p != static_cast<uint_fast8_t>(0));
QK_attr_.nextPrio = static_cast<uint8_t>(0); // clear for next time
// loop until no more ready-to-run AOs of higher prio than the initial
do {
a = QP::QF::active_[p]; // obtain the pointer to the AO
QK_attr_.actPrio = static_cast<uint8_t>(p); // the new active prio
QS_BEGIN_NOCRIT_(QP::QS_SCHED_NEXT,
QP::QS::priv_.locFilter[QP::QS::AO_OBJ], a)
QS_TIME_(); // timestamp
QS_2U8_(static_cast<uint8_t>(p), // prio of the scheduled AO
static_cast<uint8_t>(pprev)); // previous priority
QS_END_NOCRIT_()
#ifdef Q_SPY
if (p != pprev) { // changing priorities?
pprev = p; // update previous priority
}
#endif // Q_SPY
QF_INT_ENABLE(); // unconditionally enable interrupts
// perform the run-to-completion (RTS) step...
// 1. retrieve the event from the AO's event queue, which by this
// time must be non-empty and QActive_get_() asserts it.
// 2. dispatch the event to the AO's state machine.
// 3. determine if event is garbage and collect it if so
//
QP::QEvt const *e = a->get_();
a->dispatch(e);
QP::QF::gc(e);
// determine the next highest-priority AO ready to run...
QF_INT_DISABLE();
if (a->m_eQueue.isEmpty()) { // empty queue?
QK_attr_.readySet.remove(p);
}
// find new highest-prio AO ready to run...
p = QK_attr_.readySet.findMax();
// is the new priority below the initial preemption threshold?
if (p <= pin) {
p = static_cast<uint_fast8_t>(0); // active object not eligible
}
else if (p <= static_cast<uint_fast8_t>(QK_attr_.lockPrio)) {
p = static_cast<uint_fast8_t>(0); // active object not eligible
}
else {
Q_ASSERT_ID(710, p <= static_cast<uint_fast8_t>(QF_MAX_ACTIVE));
}
} while (p != static_cast<uint_fast8_t>(0));
QK_attr_.actPrio = static_cast<uint8_t>(pin); // restore the active prio
#ifdef Q_SPY
if (pin != static_cast<uint_fast8_t>(0)) { // resuming an active object?
a = QP::QF::active_[pin]; // the pointer to the preempted AO
QS_BEGIN_NOCRIT_(QP::QS_SCHED_RESUME,
QP::QS::priv_.locFilter[QP::QS::AO_OBJ], a)
QS_TIME_(); // timestamp
QS_2U8_(static_cast<uint8_t>(pin), /* prio of the resumed AO */
static_cast<uint8_t>(pprev)); // previous priority
QS_END_NOCRIT_()
}
else { // resuming priority==0 --> idle
QS_BEGIN_NOCRIT_(QP::QS_SCHED_IDLE,
static_cast<void *>(0), static_cast<void *>(0))
QS_TIME_(); // timestamp
QS_U8_(static_cast<uint8_t>(pprev)); // previous priority
QS_END_NOCRIT_()
}
#endif // Q_SPY
}
} // extern "C"

259
src/qv/qv.cpp Normal file
View File

@ -0,0 +1,259 @@
/// @file
/// @brief Cooperative QV kernel, definition of QP::QV_readySet_ and
/// implementation of kernel-specific functions.
/// @ingroup qv
/// @cond
///***************************************************************************
/// Last updated for version 6.0.3
/// Last updated on 2017-12-08
///
/// Q u a n t u m L e a P s
/// ---------------------------
/// innovating embedded systems
///
/// Copyright (C) 2005-2017 Quantum Leaps, LLC. All rights reserved.
///
/// This program is open source software: you can redistribute it and/or
/// modify it under the terms of the GNU General Public License as published
/// by the Free Software Foundation, either version 3 of the License, or
/// (at your option) any later version.
///
/// Alternatively, this program may be distributed and modified under the
/// terms of Quantum Leaps commercial licenses, which expressly supersede
/// the GNU General Public License and are specifically designed for
/// licensees interested in retaining the proprietary status of their code.
///
/// This program is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with this program. If not, see <http://www.gnu.org/licenses/>.
///
/// Contact information:
/// https://state-machine.com
/// mailto:info@state-machine.com
///***************************************************************************
/// @endcond
#define QP_IMPL // this is QP implementation
#include "qf_port.h" // QF port
#include "qf_pkg.h" // QF package-scope internal interface
#include "qassert.h" // QP embedded systems-friendly assertions
#ifdef Q_SPY // QS software tracing enabled?
#include "qs_port.h" // include QS port
#else
#include "qs_dummy.h" // disable the QS software tracing
#endif // Q_SPY
// protection against including this source file in a wrong project
#ifndef qv_h
#error "Source file included in a project NOT based on the QV kernel"
#endif // qv_h
namespace QP {
Q_DEFINE_THIS_MODULE("qv")
/// @note The functions implemented in this module can have a different
/// implementation in other QF ports. The implementations included here
/// are appropriate for the cooperative QV kernel only.
// Package-scope objects *****************************************************
extern "C" {
QPSet QV_readySet_; // ready set of AOs
} // extern "C"
//****************************************************************************
/// @description
/// Initializes QF and must be called exactly once before any other QF
/// function. Typcially, QP::QF::init() is called from main() even before
/// initializing the Board Support Package (BSP).
///
/// @note QP::QF::init() clears the internal QF variables, so that the
/// framework can start correctly even if the startup code fails to clear
/// the uninitialized data (as is required by the C Standard).
///
void QF::init(void) {
QF_maxPool_ = static_cast<uint_fast8_t>(0);
QF_subscrList_ = static_cast<QSubscrList *>(0);
QF_maxPubSignal_ = static_cast<enum_t>(0);
bzero(&QF::timeEvtHead_[0],
static_cast<uint_fast16_t>(sizeof(QF::timeEvtHead_)));
bzero(&active_[0], static_cast<uint_fast16_t>(sizeof(active_)));
bzero(&QV_readySet_, static_cast<uint_fast16_t>(sizeof(QV_readySet_)));
#ifdef QV_INIT
QV_INIT(); // port-specific initialization of the QV kernel
#endif
}
//****************************************************************************
/// @description
/// This function stops the QF application. After calling this function,
/// QF attempts to gracefully stop the application. This graceful shutdown
/// might take some time to complete. The typical use of this function is
/// for terminating the QF application to return back to the operating
/// system or for handling fatal errors that require shutting down
/// (and possibly re-setting) the system.
///
/// @sa QP::QF::onCleanup()
///
void QF::stop(void) {
onCleanup(); // cleanup callback
// nothing else to do for the "vanilla" kernel
}
//****************************************************************************
/// @description
/// QP::QF::run() is typically called from your startup code after you
/// initialize the QF and start at least one active object with
/// QP::QActive::start().
///
/// @returns QP::QF::run() typically does not return in embedded applications.
/// However, when QP runs on top of an operating system, QP::QF::run() might
/// return and in this case the return represents the error code (0 for
/// success). Typically the value returned from QP::QF::run() is subsequently
/// passed on as return from main().
///
/// @note This function is strongly platform-dependent and is not implemented
/// in the QF, but either in the QF port or in the Board Support Package (BSP)
/// for the given application. All QF ports must implement QP::QF::run().
///
int_t QF::run(void) {
#ifdef Q_SPY
uint_fast8_t pprev = static_cast<uint_fast8_t>(0); // previous priority
#endif
onStartup(); // startup callback
// the combined event-loop and background-loop of the QV kernel...
QF_INT_DISABLE();
for (;;) {
// find the maximum priority AO ready to run
if (QV_readySet_.notEmpty()) {
uint_fast8_t p = QV_readySet_.findMax();
QActive *a = active_[p];
#ifdef Q_SPY
QS_BEGIN_NOCRIT_(QS_SCHED_NEXT,
QS::priv_.locFilter[QS::AO_OBJ], a)
QS_TIME_(); // timestamp
QS_2U8_(static_cast<uint8_t>(p), // prio of the scheduled AO
static_cast<uint8_t>(pprev)); // previous priority
QS_END_NOCRIT_()
pprev = p; // update previous priority
#endif // Q_SPY
QF_INT_ENABLE();
// perform the run-to-completion (RTC) step...
// 1. retrieve the event from the AO's event queue, which by this
// time must be non-empty and The "Vanialla" kernel asserts it.
// 2. dispatch the event to the AO's state machine.
// 3. determine if event is garbage and collect it if so
//
QEvt const *e = a->get_();
a->dispatch(e);
gc(e);
QF_INT_DISABLE();
if (a->m_eQueue.isEmpty()) { // empty queue?
QV_readySet_.remove(p);
}
}
else { // no AO ready to run --> idle
#ifdef Q_SPY
if (pprev != static_cast<uint_fast8_t>(0)) {
QS_BEGIN_NOCRIT_(QS_SCHED_IDLE,
static_cast<void *>(0), static_cast<void *>(0))
QS_TIME_(); // timestamp
QS_U8_(static_cast<uint8_t>(pprev)); // previous prio
QS_END_NOCRIT_()
pprev = static_cast<uint_fast8_t>(0); // update previous prio
}
#endif // Q_SPY
// QV::onIdle() must be called with interrupts DISABLED because
// the determination of the idle condition (no events in the
// queues) can change at any time by an interrupt posting events
// to a queue. QV::onIdle() MUST enable interrupts internally,
// perhaps at the same time as putting the CPU into a power-saving
// mode.
QP::QV::onIdle();
QF_INT_DISABLE();
}
}
#ifdef __GNUC__ // GNU compiler?
return static_cast<int_t>(0);
#endif
}
//****************************************************************************
/// @description
/// Starts execution of the AO and registers the AO with the framework.
///
/// @param[in] prio priority at which to start the active object
/// @param[in] qSto pointer to the storage for the ring buffer of the
/// event queue (used only with the built-in QP::QEQueue)
/// @param[in] qLen length of the event queue (in events)
/// @param[in] stkSto pointer to the stack storage (must be NULL in QV)
/// @param[in] stkSize stack size [bytes]
/// @param[in] ie pointer to the optional initial event (might be NULL).
///
/// @note This function should be called via the macro START().
///
/// @usage
/// The following example shows starting an AO when a per-task stack is needed
/// @include qf_start.cpp
///
void QActive::start(uint_fast8_t const prio,
QEvt const *qSto[], uint_fast16_t const qLen,
void * const stkSto, uint_fast16_t const,
QEvt const * const ie)
{
/// @pre the priority must be in range and the stack storage must not
/// be provided, because the QV kernel does not need per-AO stacks.
///
Q_REQUIRE_ID(500, (static_cast<uint_fast8_t>(0) < prio)
&& (prio <= static_cast<uint_fast8_t>(QF_MAX_ACTIVE))
&& (stkSto == static_cast<void *>(0)));
m_eQueue.init(qSto, qLen); // initialize QEQueue of this AO
m_prio = static_cast<uint8_t>(prio); // set the QF prio of this AO
QF::add_(this); // make QF aware of this AO
this->init(ie); // take the top-most initial tran. (virtual call)
QS_FLUSH(); // flush the trace buffer to the host
}
//****************************************************************************
/// @description
/// The preferred way of calling this function is from within the active
/// object that needs to stop. In other words, an active object should stop
/// itself rather than being stopped by someone else. This policy works
/// best, because only the active object itself "knows" when it has reached
/// the appropriate state for the shutdown.
///
/// @note By the time the AO calls QP::QActive::stop(), it should have
/// unsubscribed from all events and no more events should be directly-posted
/// to it.
///
void QActive::stop(void) {
QF::remove_(this); // remove this active object from the QF
QF_CRIT_STAT_
QF_CRIT_ENTRY_();
QV_readySet_.remove(static_cast<uint_fast8_t>(m_prio)); // AO is not ready
QF_CRIT_EXIT_();
}
} // namespace QP