//============================================================================ // QP/C++ Real-Time Embedded Framework (RTEF) // // Copyright (C) 2005 Quantum Leaps, LLC. All rights reserved. // // Q u a n t u m L e a P s // ------------------------ // Modern Embedded Software // // SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-QL-commercial // // This software is dual-licensed under the terms of the open-source GNU // General Public License (GPL) or under the terms of one of the closed- // source Quantum Leaps commercial licenses. // // Redistributions in source code must retain this top-level comment block. // Plagiarizing this software to sidestep the license obligations is illegal. // // NOTE: // The GPL (see ) does NOT permit the // incorporation of the QP/C software into proprietary programs. Please // contact Quantum Leaps for commercial licensing options, which expressly // supersede the GPL and are designed explicitly for licensees interested // in using QP/C in closed-source proprietary applications. // // Quantum Leaps contact information: // // //============================================================================ #ifndef QP_PORT_HPP_ #define QP_PORT_HPP_ #include // Exact-width types. C++11 Standard #include // POSIX-thread API #include "qp_config.hpp" // QP configuration from the application // no-return function specifier (C++11 Standard) #define Q_NORETURN [[ noreturn ]] void // QActive event queue and thread types for POSIX #define QACTIVE_EQUEUE_TYPE QEQueue #define QACTIVE_OS_OBJ_TYPE pthread_cond_t #define QACTIVE_THREAD_TYPE bool // QF critical section for POSIX, see NOTE1 #define QF_CRIT_STAT #define QF_CRIT_ENTRY() QP::QF::enterCriticalSection_() #define QF_CRIT_EXIT() QP::QF::leaveCriticalSection_() // QF_LOG2 not defined -- use the internal LOG2() implementation namespace QP { namespace QF { // internal functions for critical section management void enterCriticalSection_(); void leaveCriticalSection_(); // set clock tick rate and priority void setTickRate(uint32_t ticksPerSec, int tickPrio); // clock tick callback void onClockTick(); #ifdef QF_CONSOLE // abstractions for console access... void consoleSetup(); void consoleCleanup(); int consoleGetKey(); int consoleWaitForKey(); #endif } // namespace QF } // namespace QP // include files ------------------------------------------------------------- #include "qequeue.hpp" // POSIX port needs the native event-queue #include "qmpool.hpp" // POSIX port needs the native memory-pool #include "qp.hpp" // QP platform-independent public interface //============================================================================ // interface used only inside QF implementation, but not in applications #ifdef QP_IMPL // QF scheduler locking for POSIX (not used at this point, see NOTE2) #define QF_SCHED_STAT_ #define QF_SCHED_LOCK_(dummy) (static_cast(0)) #define QF_SCHED_UNLOCK_() (static_cast(0)) // QF event queue customization for POSIX... #define QACTIVE_EQUEUE_WAIT_(me_) do { \ while ((me_)->m_eQueue.m_frontEvt == nullptr) { \ Q_ASSERT_INCRIT(400, QF::critSectNest_ == 1); \ --QF::critSectNest_; \ pthread_cond_wait(&(me_)->m_osObject, &QF::critSectMutex_); \ Q_ASSERT_INCRIT(302, QF::critSectNest_ == 0); \ ++QF::critSectNest_; \ } \ } while (false) #define QACTIVE_EQUEUE_SIGNAL_(me_) \ pthread_cond_signal(&(me_)->m_osObject) // native QF event pool operations #define QF_EPOOL_TYPE_ QMPool #define QF_EPOOL_INIT_(p_, poolSto_, poolSize_, evtSize_) \ (p_).init((poolSto_), (poolSize_), (evtSize_)) #define QF_EPOOL_EVENT_SIZE_(p_) ((p_).getBlockSize()) #define QF_EPOOL_GET_(p_, e_, m_, qsId_) \ ((e_) = static_cast((p_).get((m_), (qsId_)))) #define QF_EPOOL_PUT_(p_, e_, qsId_) ((p_).put((e_), (qsId_))) namespace QP { namespace QF { extern pthread_mutex_t critSectMutex_; extern int_t critSectNest_; } // namespace QF } // namespace QP #endif // QP_IMPL //============================================================================ // NOTE1: // QP, like all real-time frameworks, needs to execute certain sections of // code exclusively, meaning that only one thread can execute the code at // the time. Such sections of code are called "critical sections". // // This port uses a pair of functions QF::enterCriticalSection_() / // QF::leaveCriticalSection_() to enter/leave the critical section, // respectively. // // These functions are implemented in the qf_port.cpp module, where they // manipulate the file-scope POSIX mutex object QF::critSectMutex_ // to protect all critical sections. Using the single mutex for all critical // section guarantees that only one thread at a time can execute inside a // critical section. This prevents race conditions and data corruption. // // Please note, however, that the POSIX mutex implementation behaves // differently than interrupt disabling. A common POSIX mutex ensures // that only one thread at a time can execute a critical section, but it // does not guarantee that a context switch cannot occur within the // critical section. In fact, such context switches probably will happen, // but they should not cause concurrency hazards because the critical // section eliminates all race conditionis. // // Unlinke simply disabling and enabling interrupts, the mutex approach is // also subject to priority inversions. However, the p-thread mutex // implementation, such as POSIX threads, should support the priority- // inheritance protocol. // // NOTE2: // Scheduler locking (used inside QActive_publish_()) is NOT implemented // in this port. This means that event multicasting is NOT atomic, so thread // preemption CAN happen during that time, especially when a low-priority // thread publishes events to higher-priority threads. This can lead to // (occasionally) unexpected event sequences. // #endif // QP_PORT_HPP_