//**************************************************************************** // Product: DPP example, STM32F4-Discovery board, embOS kernel // Last updated for version 5.9.0 // Last updated on 2017-05-09 // // Q u a n t u m L e a P s // --------------------------- // innovating embedded systems // // Copyright (C) Quantum Leaps, LLC. All rights reserved. // // This program is open source software: you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Alternatively, this program may be distributed and modified under the // terms of Quantum Leaps commercial licenses, which expressly supersede // the GNU General Public License and are specifically designed for // licensees interested in retaining the proprietary status of their code. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Contact information: // https://state-machine.com // mailto:info@state-machine.com //**************************************************************************** #include "qpcpp.h" #include "dpp.h" #include "bsp.h" #include "stm32f4xx.h" // CMSIS-compliant header file for the MCU used #include "stm32f4xx_exti.h" #include "stm32f4xx_gpio.h" #include "stm32f4xx_rcc.h" #include "stm32f4xx_usart.h" // add other drivers if necessary... // namespace DPP ************************************************************* namespace DPP { Q_DEFINE_THIS_FILE // Local-scope objects ------------------------------------------------------- #define LED_GPIO_PORT GPIOD #define LED_GPIO_CLK RCC_AHB1Periph_GPIOD #define LED4_PIN GPIO_Pin_12 #define LED3_PIN GPIO_Pin_13 #define LED5_PIN GPIO_Pin_14 #define LED6_PIN GPIO_Pin_15 #define BTN_GPIO_PORT GPIOA #define BTN_GPIO_CLK RCC_AHB1Periph_GPIOA #define BTN_B1 GPIO_Pin_0 static uint32_t l_rnd; // random seed #ifdef Q_SPY QP::QSTimeCtr QS_tickTime_; QP::QSTimeCtr QS_tickPeriod_; // event-source identifiers used for tracing static uint8_t const l_embos_ticker = 0U; enum AppRecords { // application-specific trace records PHILO_STAT = QP::QS_USER, COMMAND_STAT }; #endif extern "C" { // ISRs used in this project ================================================= #ifdef Q_SPY /* * ISR for receiving bytes from the QSPY Back-End * NOTE: This ISR is "kernel-unaware" meaning that it does not interact with * the QF/embOS and is not disabled. */ void USART2_IRQHandler(void); void USART2_IRQHandler(void) { if ((USART2->SR & USART_SR_RXNE) != 0) { uint32_t b = USART2->DR; QP::QS::rxPut(b); } } #else void USART2_IRQHandler(void); void USART2_IRQHandler(void) {} #endif // embOS application hooks =================================================== static void tick_handler(void) { // signature of embOS tick hook routine uint32_t tmp; #ifdef Q_SPY tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover #endif // scale down the 1000Hz embOS tick to the desired BSP::TICKS_PER_SEC static uint_fast8_t ctr = 1U; if (--ctr == 0U) { ctr = 1000U / BSP::TICKS_PER_SEC; QP::QF::TICK_X(0U, &l_embos_ticker); // Perform the debouncing of buttons. The algorithm for debouncing // adapted from the book "Embedded Systems Dictionary" by Jack Ganssle // and Michael Barr, page 71. // static struct ButtonsDebouncing { uint32_t depressed; uint32_t previous; } buttons = { 0U, 0U }; // state of the button debouncing uint32_t current; current = BTN_GPIO_PORT->IDR; // read BTN GPIO tmp = buttons.depressed; // save the debounced depressed buttons buttons.depressed |= (buttons.previous & current); // set depressed buttons.depressed &= (buttons.previous | current); // clear released buttons.previous = current; // update the history tmp ^= buttons.depressed; // changed debounced depressed if ((tmp & BTN_B1) != 0U) { // debounced B1 state changed? if ((buttons.depressed & BTN_B1) != 0U) { // is B1 depressed? static QP::QEvt const pauseEvt = { PAUSE_SIG, 0U, 0U}; QP::QF::PUBLISH(&pauseEvt, &l_embos_ticker); } else { // the button is released static QP::QEvt const serveEvt = { SERVE_SIG, 0U, 0U}; QP::QF::PUBLISH(&serveEvt, &l_embos_ticker); } } } } /*..........................................................................*/ /* * OS_Idle() function overridden from RTOSInit_STM32F4x_CMSIS.c * * Function description * This is basically the "core" of the embOS idle loop. * This core loop can be changed, but: * The idle loop does not have a stack of its own, therefore no * functionality should be implemented that relies on the stack * to be preserved. However, a simple program loop can be programmed * (like toggling an output or incrementing a counter) */ void OS_Idle(void) { while (1) { /* toggle LED6 on and then off, see NOTE01 */ QF_INT_DISABLE(); LED_GPIO_PORT->BSRRL = LED6_PIN; /* turn LED on */ __NOP(); /* wait a little to actually see the LED glow */ __NOP(); __NOP(); __NOP(); LED_GPIO_PORT->BSRRH = LED6_PIN; /* turn LED off */ QF_INT_ENABLE(); #ifdef Q_SPY QP::QS::rxParse(); /* parse all the received bytes */ if ((USART2->SR & USART_FLAG_TXE) != 0) { /* is TXE empty? */ uint16_t b; QF_INT_DISABLE(); b = QP::QS::getByte(); QF_INT_ENABLE(); if (b != QP::QS_EOD) { /* not End-Of-Data? */ USART2->DR = (b & 0xFFU); /* put into the DR register */ } } #elif defined NDEBUG /* Put the CPU and peripherals to the low-power mode. * NOTE: You might need to customize the clock management for your * application, see the datasheet for your particular Cortex-M3 MCU. */ /* !!!CAUTION!!! * The WFI instruction stops the CPU clock, which unfortunately * disables the STM32 JTAG port, so the ST-Link debugger can no longer * connect to the board. For that reason, the call to __WFI() has to * be used with CAUTION. See also NOTE02 */ #if ((OS_VIEW_IFSELECT != OS_VIEW_IF_JLINK) && (OS_DEBUG == 0)) //__WFI(); /* Wait-For-Interrupt */ #endif #endif } } } // extern "C" // BSP functions ============================================================= void BSP::init(void) { // NOTE: SystemInit() already called from the startup code // but SystemCoreClock needs to be updated // SystemCoreClockUpdate(); // Explictily Disable the automatic FPU state preservation as well as // the FPU lazy stacking // FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos)); // Initialize thr port for the LEDs RCC_AHB1PeriphClockCmd(LED_GPIO_CLK , ENABLE); // GPIO Configuration for the LEDs... GPIO_InitTypeDef GPIO_struct; GPIO_struct.GPIO_Mode = GPIO_Mode_OUT; GPIO_struct.GPIO_OType = GPIO_OType_PP; GPIO_struct.GPIO_PuPd = GPIO_PuPd_UP; GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_struct.GPIO_Pin = LED3_PIN; GPIO_Init(LED_GPIO_PORT, &GPIO_struct); LED_GPIO_PORT->BSRRH = LED3_PIN; // turn LED off GPIO_struct.GPIO_Pin = LED4_PIN; GPIO_Init(LED_GPIO_PORT, &GPIO_struct); LED_GPIO_PORT->BSRRH = LED4_PIN; // turn LED off GPIO_struct.GPIO_Pin = LED5_PIN; GPIO_Init(LED_GPIO_PORT, &GPIO_struct); LED_GPIO_PORT->BSRRH = LED5_PIN; // turn LED off GPIO_struct.GPIO_Pin = LED6_PIN; GPIO_Init(LED_GPIO_PORT, &GPIO_struct); LED_GPIO_PORT->BSRRH = LED6_PIN; // turn LED off // Initialize thr port for Button RCC_AHB1PeriphClockCmd(BTN_GPIO_CLK , ENABLE); // GPIO Configuration for the Button... GPIO_struct.GPIO_Pin = BTN_B1; GPIO_struct.GPIO_Mode = GPIO_Mode_IN; GPIO_struct.GPIO_OType = GPIO_OType_PP; GPIO_struct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(BTN_GPIO_PORT, &GPIO_struct); BSP::randomSeed(1234U); if (!QS_INIT((void *)0)) { // initialize the QS software tracing Q_ERROR(); } QS_OBJ_DICTIONARY(&l_embos_ticker); QS_USR_DICTIONARY(PHILO_STAT); QS_USR_DICTIONARY(COMMAND_STAT); } //............................................................................ void BSP::displayPhilStat(uint8_t n, char const *stat) { // exercise the FPU with some floating point computations float volatile x; x = 3.1415926F; x = x + 2.7182818F; if (stat[0] == 'h') { LED_GPIO_PORT->BSRRL = LED3_PIN; // turn LED on } else { LED_GPIO_PORT->BSRRH = LED3_PIN; // turn LED off } if (stat[0] == 'e') { LED_GPIO_PORT->BSRRL = LED5_PIN; // turn LED on } else { LED_GPIO_PORT->BSRRH = LED5_PIN; // turn LED on } (void)n; // unused parameter (in all but Spy build configuration) QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin QS_U8(1, n); // Philosopher number QS_STR(stat); // Philosopher status QS_END() } //............................................................................ void BSP::displayPaused(uint8_t paused) { if (paused) { LED_GPIO_PORT->BSRRL = LED4_PIN; // turn LED on } else { LED_GPIO_PORT->BSRRH = LED4_PIN; // turn LED on } } //............................................................................ uint32_t BSP::random(void) { // a very cheap pseudo-random-number generator // "Super-Duper" Linear Congruential Generator (LCG) // LCG(2^32, 3*7*11*13*23, 0, seed) // l_rnd = l_rnd * (3U*7U*11U*13U*23U); return l_rnd >> 8; } //............................................................................ void BSP::randomSeed(uint32_t seed) { l_rnd = seed; } //............................................................................ void BSP::terminate(int16_t result) { (void)result; } } // namespace DPP // namespace QP ************************************************************** namespace QP { // QF callbacks ============================================================== void QF::onStartup(void) { static OS_TICK_HOOK tick_hook; OS_TICK_AddHook(&tick_hook, &DPP::tick_handler); #ifdef Q_SPY NVIC_SetPriority(USART2_IRQn, 0); NVIC_EnableIRQ(USART2_IRQn); // USART2 interrupt used for QS-RX #endif } //............................................................................ void QF::onCleanup(void) { } //............................................................................ extern "C" void Q_onAssert(char const *module, int loc) { // // NOTE: add here your application-specific error handling // (void)module; (void)loc; QS_ASSERTION(module, loc, static_cast(10000U)); NVIC_SystemReset(); } // QS callbacks ============================================================== #ifdef Q_SPY //............................................................................ bool QS::onStartup(void const *arg) { static uint8_t qsBuf[2*1024]; // buffer for QS-TX channel static uint8_t qsRxBuf[100]; // buffer for QS-RX channel initBuf(qsBuf, sizeof(qsBuf)); rxInitBuf(qsRxBuf, sizeof(qsRxBuf)); GPIO_InitTypeDef GPIO_struct; USART_InitTypeDef USART_struct; // enable peripheral clock for USART2 RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE); // GPIOA clock enable RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); // GPIOA Configuration: USART2 TX on PA2 GPIO_struct.GPIO_Pin = GPIO_Pin_2 | GPIO_Pin_3; GPIO_struct.GPIO_Mode = GPIO_Mode_AF; GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_struct.GPIO_OType = GPIO_OType_PP; GPIO_struct.GPIO_PuPd = GPIO_PuPd_UP ; GPIO_Init(GPIOA, &GPIO_struct); // Connect USART2 pins to AF2 GPIO_PinAFConfig(GPIOA, GPIO_PinSource2, GPIO_AF_USART2); // TX = PA2 GPIO_PinAFConfig(GPIOA, GPIO_PinSource3, GPIO_AF_USART2); // RX = PA3 USART_struct.USART_BaudRate = 115200; USART_struct.USART_WordLength = USART_WordLength_8b; USART_struct.USART_StopBits = USART_StopBits_1; USART_struct.USART_Parity = USART_Parity_No; USART_struct.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_struct.USART_Mode = USART_Mode_Tx | USART_Mode_Rx; USART_Init(USART2, &USART_struct); USART_ITConfig(USART2, USART_IT_RXNE, ENABLE); // enable RX interrupt USART_Cmd(USART2, ENABLE); // enable USART2 DPP::QS_tickPeriod_ = SystemCoreClock / DPP::BSP::TICKS_PER_SEC; DPP::QS_tickTime_ = DPP::QS_tickPeriod_; // to start the timestamp at zero // setup the QS filters... QS_FILTER_ON(QS_SM_RECORDS); // state machine records */ QS_FILTER_ON(QS_AO_RECORDS); // active object records */ QS_FILTER_ON(QS_UA_RECORDS); // all user records */ return true; // return success } //............................................................................ void QS::onCleanup(void) { } //............................................................................ QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0U) { // not set? return DPP::QS_tickTime_ - static_cast(SysTick->VAL); } else { // the rollover occured, but the SysTick_ISR did not run yet return DPP::QS_tickTime_ + DPP::QS_tickPeriod_ - static_cast(SysTick->VAL); } } //............................................................................ void QS::onFlush(void) { uint16_t b; QF_INT_DISABLE(); while ((b = getByte()) != QS_EOD) { // while not End-Of-Data... QF_INT_ENABLE(); while ((USART2->SR & USART_FLAG_TXE) == 0U) { // while TXE not empty } USART2->DR = (b & 0xFFU); // put into the DR register QF_INT_DISABLE(); } QF_INT_ENABLE(); } //............................................................................ void QS::onReset(void) { NVIC_SystemReset(); } //............................................................................ void QS::onCommand(uint8_t cmdId, uint32_t param1, uint32_t param2, uint32_t param3) { (void)cmdId; (void)param1; (void)param2; (void)param3; QS_BEGIN(DPP::COMMAND_STAT, (void *)1) //application-specific record begin QS_U8(2, cmdId); QS_U32(8, param1); QS_U32(8, param2); QS_U32(8, param3); QS_END() if (cmdId == 10U) { //Q_ERROR(); } else if (cmdId == 11U) { //Q_ERROR(); } } #endif // Q_SPY //---------------------------------------------------------------------------- } // namespace QP //**************************************************************************** // NOTE01: // The User LED is used to visualize the idle loop activity. The brightness // of the LED is proportional to the frequency of invcations of the idle loop. // Please note that the LED is toggled with interrupts locked, so no interrupt // execution time contributes to the brightness of the User LED. //