//**************************************************************************** // Product: DPP on AT91SAM7S-EK, cooperative QV kernel, IAR-ARM toolset // Last Updated for Version: 5.4.0 // Date of the Last Update: 2015-05-04 // // Q u a n t u m L e a P s // --------------------------- // innovating embedded systems // // Copyright (C) 2002-2013 Quantum Leaps, LLC. All rights reserved. // // This program is open source software: you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Alternatively, this program may be distributed and modified under the // terms of Quantum Leaps commercial licenses, which expressly supersede // the GNU General Public License and are specifically designed for // licensees interested in retaining the proprietary status of their code. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Contact information: // Web : http://www.state-machine.com // Email: info@state-machine.com //**************************************************************************** #include "qpcpp.h" #include "dpp.h" #include "bsp.h" #include "AT91SAM7S64.h" // Atmel AT91SAM7S64 MCU #pragma diag_suppress=Ta021 // call __iar_disable_interrupt from __ramfunc #pragma diag_suppress=Ta022 // possible ROM access from __ramfunc #pragma diag_suppress=Ta023 // call to non __ramfunc from __ramfunc // extern "C" functions in C ================================================= extern "C" { //............................................................................ __ramfunc void BSP_irq(void) { IntVector vect = (IntVector)AT91C_BASE_AIC->AIC_IVR; // read the IVR AT91C_BASE_AIC->AIC_IVR = (AT91_REG)vect; // write AIC_IVR if protected QF_INT_ENABLE(); // allow nesting interrupts (*vect)(); // call the IRQ ISR via the pointer to function QF_INT_DISABLE(); // disable interrups for the exit sequence AT91C_BASE_AIC->AIC_EOICR = 0; // write AIC_EOICR to clear interrupt } } // extern "C" namespace DPP { Q_DEFINE_THIS_FILE // Local objects ------------------------------------------------------------- typedef void (*IntVector)(void); // IntVector pointer-to-function uint32_t const l_led[] = { (1U << 0), // LED D1 on AT91SAM7S-EK (1U << 1), // LED D2 on AT91SAM7S-EK (1U << 2), // LED D3 on AT91SAM7S-EK (1U << 3), // LED D4 on AT91SAM7S-EK 0U // no LED 5 on AT91SAM7S-EK }; #define LED_ON(num_) (AT91C_BASE_PIOA->PIO_CODR = l_led[num_]) #define LED_OFF(num_) (AT91C_BASE_PIOA->PIO_SODR = l_led[num_]) static unsigned l_rnd; // random seed #ifdef Q_SPY static uint8_t const l_ISR_tick = 0; enum AppRecords { // application-specific trace records PHILO_STAT = QP::QS_USER }; #endif // ISRs ====================================================================== __ramfunc static void ISR_tick(void) { uint32_t volatile tmp = AT91C_BASE_PITC->PITC_PIVR; // clear interrupt (void)tmp; // avoid the compiler warning about unused variable QP::QF::TICK_X(0U, &l_ISR_tick); // process all time events at tick rate 0 } //............................................................................ __ramfunc static void ISR_spur(void) { } // BSP functions ============================================================= void BSP_init(void) { uint32_t i; for (i = 0; i < Q_DIM(l_led); ++i) { // initialize the LEDs... AT91C_BASE_PIOA->PIO_PER = l_led[i]; // enable pin AT91C_BASE_PIOA->PIO_OER = l_led[i]; // configure as output pin LED_OFF(i); // extinguish the LED } // configure Advanced Interrupt Controller (AIC) of AT91... AT91C_BASE_AIC->AIC_IDCR = ~0; // disable all interrupts AT91C_BASE_AIC->AIC_ICCR = ~0; // clear all interrupts for (i = 0; i < 8; ++i) { AT91C_BASE_AIC->AIC_EOICR = 0; // write AIC_EOICR 8 times } // set the desired ticking rate for the PIT... i = (get_MCK_FREQ() / 16U / BSP_TICKS_PER_SEC) - 1U; AT91C_BASE_PITC->PITC_PIMR = (AT91C_PITC_PITEN | AT91C_PITC_PITIEN | i); BSP_randomSeed(1234U); // seed the random number generator if (QS_INIT((void *)0) == 0) { // initialize the QS software tracing Q_ERROR(); } QS_OBJ_DICTIONARY(&l_ISR_tick); } //............................................................................ void BSP_terminate(int16_t result) { (void)result; } //............................................................................ void BSP_displayPhilStat(uint8_t n, char const *stat) { if (stat[0] == (uint8_t)'e') { // is this Philosopher eating? LED_ON(n); } else { // this Philosopher is not eating LED_OFF(n); } QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin QS_U8(1, n); // Philosopher number QS_STR(stat); // Philosopher status QS_END() } //............................................................................ void BSP_displayPaused(uint8_t paused) { (void)paused; } //............................................................................ uint32_t BSP_random(void) { // a very cheap pseudo-random-number generator // "Super-Duper" Linear Congruential Generator (LCG) // LCG(2^32, 3*7*11*13*23, 0, seed) // l_rnd = l_rnd * (3U*7U*11U*13U*23U); return l_rnd >> 8; } //............................................................................ void BSP_randomSeed(uint32_t seed) { l_rnd = seed; } } // namespace DPP namespace QP { // QF callbacks ============================================================== void QF::onStartup(void) { // hook the exception handlers from the QF port... *(uint32_t volatile *)0x24 = (uint32_t)&QF_undef; *(uint32_t volatile *)0x28 = (uint32_t)&QF_swi; *(uint32_t volatile *)0x2C = (uint32_t)&QF_pAbort; *(uint32_t volatile *)0x30 = (uint32_t)&QF_dAbort; *(uint32_t volatile *)0x34 = (uint32_t)&QF_reserved; *(uint32_t volatile *)0x38 = (uint32_t)&QV_irq; *(uint32_t volatile *)0x3C = (uint32_t)0; // unimplemented! AT91C_BASE_AIC->AIC_SVR[AT91C_ID_SYS] = (uint32_t)&DPP::ISR_tick; AT91C_BASE_AIC->AIC_SPU = (uint32_t)&DPP::ISR_spur; // spurious IRQ AT91C_BASE_AIC->AIC_SMR[AT91C_ID_SYS] = (AT91C_AIC_SRCTYPE_INT_HIGH_LEVEL | AT91C_AIC_PRIOR_LOWEST); AT91C_BASE_AIC->AIC_ICCR = (1 << AT91C_ID_SYS); AT91C_BASE_AIC->AIC_IECR = (1 << AT91C_ID_SYS); } //............................................................................ void QF_onCleanup(void) { } //............................................................................ __ramfunc void QV::onIdle(void) { // NOTE: called with interrupts DISABLED #ifdef Q_SPY // use the idle cycles for QS transmission... QF_INT_ENABLE(); if ((AT91C_BASE_DBGU->DBGU_CSR & AT91C_US_TXBUFE) != 0) { // not busy? uint16_t nBytes = 0xFFFFU; // get all available bytes uint8_t const *block; QF_INT_DISABLE(); if ((block = QS::getBlock(&nBytes)) != (uint8_t *)0) { // new block? AT91C_BASE_DBGU->DBGU_TPR = (uint32_t)block; AT91C_BASE_DBGU->DBGU_TCR = (uint32_t)nBytes; nBytes = 0xFFFFU; // get all available bytes if ((block = QS::getBlock(&nBytes)) != (uint8_t *)0) {//another? AT91C_BASE_DBGU->DBGU_TNPR = (uint32_t)block; AT91C_BASE_DBGU->DBGU_TNCR = (uint32_t)nBytes; } } QF_INT_ENABLE(); } #elif defined NDEBUG // only if not debugging (idle mode hinders debugging) AT91C_BASE_PMC->PMC_SCDR = 1;// Power-Management: disable the CPU clock // NOTE: an interrupt starts the CPU clock again QF_INT_ENABLE(); // enable interrupts as soon as CPU clock starts #else QF_INT_ENABLE(); #endif } //............................................................................ extern "C" void Q_onAssert(char const * const file, int line) { QF_INT_DISABLE(); // disable all interrupts for (;;) { // hang here in the for-ever loop } } // QS callbacks ============================================================== #ifdef Q_SPY uint32_t l_timeOverflow; #define QS_BUF_SIZE (2*1024) #define BAUD_RATE 115200U bool QS::onStartup(void const *arg) { static uint8_t qsBuf[QS_BUF_SIZE]; // buffer for Quantum Spy AT91PS_DBGU pDBGU = AT91C_BASE_DBGU; AT91PS_TC pTC0 = AT91C_BASE_TC0;// TC0 used for timestamp generation uint32_t volatile tmp; initBuf(qsBuf, sizeof(qsBuf)); // configure the Debug UART for QSPY output ... AT91C_BASE_PIOA->PIO_PDR = AT91C_PA10_DTXD; // configure pin as DTXD pDBGU->DBGU_CR = AT91C_US_TXEN; // enable only transmitter pDBGU->DBGU_IDR = ~0U; // disable all DBGU interrupts pDBGU->DBGU_MR = AT91C_US_PAR_NONE; // no parity bit pDBGU->DBGU_BRGR = ((get_MCK_FREQ()/BAUD_RATE + 8) >> 4); // baud rate pDBGU->DBGU_PTCR = AT91C_PDC_TXTEN; // enable PDC transfer from DBGU // configure Timer/Counter 0 for time measurements ... AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0); // enable clock to TC0 pTC0->TC_CCR = AT91C_TC_CLKDIS; // TC_CCR: disable Clock Counter pTC0->TC_IDR = ~0; // TC_IDR: disable all timer interrupts tmp = pTC0->TC_SR; // TC_SR: read (void)tmp; // avoid the compiler warning about the unused variable // CPCTRG, MCK/32 clock... pTC0->TC_CMR = (AT91C_TC_CPCTRG | AT91C_TC_CLKS_TIMER_DIV3_CLOCK); pTC0->TC_CCR = AT91C_TC_CLKEN; // TC_CCR: enable Clock Counter pTC0->TC_CCR = AT91C_TC_SWTRG; // TC_CCR: start counting // setup the QS filters... QS_FILTER_ON(QS_QEP_STATE_ENTRY); QS_FILTER_ON(QS_QEP_STATE_EXIT); QS_FILTER_ON(QS_QEP_STATE_INIT); QS_FILTER_ON(QS_QEP_INIT_TRAN); QS_FILTER_ON(QS_QEP_INTERN_TRAN); QS_FILTER_ON(QS_QEP_TRAN); QS_FILTER_ON(QS_QEP_IGNORED); QS_FILTER_ON(QS_QEP_DISPATCH); QS_FILTER_ON(QS_QEP_UNHANDLED); // QS_FILTER_ON(QS_QF_ACTIVE_ADD); // QS_FILTER_ON(QS_QF_ACTIVE_REMOVE); // QS_FILTER_ON(QS_QF_ACTIVE_SUBSCRIBE); // QS_FILTER_ON(QS_QF_ACTIVE_UNSUBSCRIBE); // QS_FILTER_ON(QS_QF_ACTIVE_POST_FIFO); // QS_FILTER_ON(QS_QF_ACTIVE_POST_LIFO); // QS_FILTER_ON(QS_QF_ACTIVE_GET); // QS_FILTER_ON(QS_QF_ACTIVE_GET_LAST); // QS_FILTER_ON(QS_QF_EQUEUE_INIT); // QS_FILTER_ON(QS_QF_EQUEUE_POST_FIFO); // QS_FILTER_ON(QS_QF_EQUEUE_POST_LIFO); // QS_FILTER_ON(QS_QF_EQUEUE_GET); // QS_FILTER_ON(QS_QF_EQUEUE_GET_LAST); // QS_FILTER_ON(QS_QF_MPOOL_INIT); // QS_FILTER_ON(QS_QF_MPOOL_GET); // QS_FILTER_ON(QS_QF_MPOOL_PUT); // QS_FILTER_ON(QS_QF_PUBLISH); // QS_FILTER_ON(QS_QF_RESERVED8); // QS_FILTER_ON(QS_QF_NEW); // QS_FILTER_ON(QS_QF_GC_ATTEMPT); // QS_FILTER_ON(QS_QF_GC); QS_FILTER_ON(QS_QF_TICK); // QS_FILTER_ON(QS_QF_TIMEEVT_ARM); // QS_FILTER_ON(QS_QF_TIMEEVT_AUTO_DISARM); // QS_FILTER_ON(QS_QF_TIMEEVT_DISARM_ATTEMPT); // QS_FILTER_ON(QS_QF_TIMEEVT_DISARM); // QS_FILTER_ON(QS_QF_TIMEEVT_REARM); // QS_FILTER_ON(QS_QF_TIMEEVT_POST); // QS_FILTER_ON(QS_QF_TIMEEVT_CTR); // QS_FILTER_ON(QS_QF_CRIT_ENTRY); // QS_FILTER_ON(QS_QF_CRIT_EXIT); // QS_FILTER_ON(QS_QF_ISR_ENTRY); // QS_FILTER_ON(QS_QF_ISR_EXIT); // QS_FILTER_ON(QS_QF_INT_DISABLE); // QS_FILTER_ON(QS_QF_INT_ENABLE); // QS_FILTER_ON(QS_QF_ACTIVE_POST_ATTEMPT); // QS_FILTER_ON(QS_QF_EQUEUE_POST_ATTEMPT); // QS_FILTER_ON(QS_QF_MPOOL_GET_ATTEMPT); // QS_FILTER_ON(QS_QF_RESERVED1); // QS_FILTER_ON(QS_QF_RESERVED0); // QS_FILTER_ON(QS_QK_MUTEX_LOCK); // QS_FILTER_ON(QS_QK_MUTEX_UNLOCK); // QS_FILTER_ON(QS_QK_SCHEDULE); // QS_FILTER_ON(QS_QK_RESERVED1); // QS_FILTER_ON(QS_QK_RESERVED0); // QS_FILTER_ON(QS_QEP_TRAN_HIST); // QS_FILTER_ON(QS_QEP_TRAN_EP); // QS_FILTER_ON(QS_QEP_TRAN_XP); // QS_FILTER_ON(QS_QEP_RESERVED1); // QS_FILTER_ON(QS_QEP_RESERVED0); QS_FILTER_ON(QS_SIG_DICT); QS_FILTER_ON(QS_OBJ_DICT); QS_FILTER_ON(QS_FUN_DICT); QS_FILTER_ON(QS_USR_DICT); QS_FILTER_ON(QS_EMPTY); QS_FILTER_ON(QS_RESERVED3); QS_FILTER_ON(QS_RESERVED2); QS_FILTER_ON(QS_TEST_RUN); QS_FILTER_ON(QS_TEST_FAIL); QS_FILTER_ON(QS_ASSERT_FAIL); return true; // indicate successfull QS initialization } //............................................................................ void QS::onCleanup(void) { } //............................................................................ void QS::onFlush(void) { uint16_t nBytes = 0xFFFFU; // get all available bytes uint8_t const *block; while ((AT91C_BASE_DBGU->DBGU_CSR & AT91C_US_TXBUFE) == 0) { // busy? } if ((block = getBlock(&nBytes)) != (uint8_t *)0) { AT91C_BASE_DBGU->DBGU_TPR = (uint32_t)block; AT91C_BASE_DBGU->DBGU_TCR = (uint32_t)nBytes; nBytes = 0xFFFFU; // get all available bytes if ((block = getBlock(&nBytes)) != (uint8_t *)0) { AT91C_BASE_DBGU->DBGU_TNPR = (uint32_t)block; AT91C_BASE_DBGU->DBGU_TNCR = (uint32_t)nBytes; } } } //............................................................................ // NOTE: getTime is invoked within a critical section (inetrrupts disabled) __ramfunc uint32_t QS::onGetTime(void) { AT91PS_TC pTC0 = AT91C_BASE_TC0; // TC0 used for timestamp generation uint32_t now = pTC0->TC_CV; // get the counter value // did the timer overflow 0xFFFF? if ((pTC0->TC_SR & AT91C_TC_COVFS) != 0) { l_timeOverflow += (uint32_t)0x10000; // account for the overflow } return l_timeOverflow + now; } #endif // Q_SPY //---------------------------------------------------------------------------- } // namespace QP