///*************************************************************************** // Product: DPP example, EK-TM4C123GXL board, CMSIS-RTOS RTX kernel // Last updated for version 5.4.0 // Last updated on 2015-05-09 // // Q u a n t u m L e a P s // --------------------------- // innovating embedded systems // // Copyright (C) Quantum Leaps, LLC. All rights reserved. // // This program is open source software: you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Alternatively, this program may be distributed and modified under the // terms of Quantum Leaps commercial licenses, which expressly supersede // the GNU General Public License and are specifically designed for // licensees interested in retaining the proprietary status of their code. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Contact information: // Web: www.state-machine.com // Email: info@state-machine.com //**************************************************************************** #include "qpcpp.h" #include "dpp.h" #include "bsp.h" #include "TM4C123GH6PM.h" // the device specific header (TI) #include "rom.h" // the built-in ROM functions (TI) #include "sysctl.h" // system control driver (TI) #include "gpio.h" // GPIO driver (TI) // add other drivers if necessary... // namespace DPP ************************************************************* namespace DPP { Q_DEFINE_THIS_FILE // Local-scope objects ------------------------------------------------------- #define LED_RED (1U << 1) #define LED_GREEN (1U << 3) #define LED_BLUE (1U << 2) #define BTN_SW1 (1U << 4) #define BTN_SW2 (1U << 0) static uint32_t l_rnd; // random seed #ifdef Q_SPY // event-source identifiers used for tracing static uint8_t const l_rtx_ticker = 0U; static uint8_t const l_GPIOPortA_IRQHandler = 0U; #define UART_BAUD_RATE 115200U #define UART_FR_TXFE 0x80U #define UART_TXFIFO_DEPTH 16U enum AppRecords { // application-specific trace records PHILO_STAT = QP::QS_USER }; #endif extern "C" { // ISRs used in this project ================================================= void GPIOPortA_IRQHandler(void); // prototype void GPIOPortA_IRQHandler(void) { DPP::AO_Table->POST(Q_NEW(QP::QEvt, DPP::MAX_SIG), // for testing... &l_GPIOPortA_IRQHandler); // NOTE: // There is no need to explicitly pend the PendSV exception, because // RTX handles this when signaling the task. (See OS_PEND_IRQ() macro // in RTX source code). // } // RTX callbacks ============================================================= void os_idle_demon(void); // prototype void os_idle_demon(void) { // The RTX idle demon is a system thread, running when no other thread // is ready to run. for (;;) { // idle-loop QF_INT_DISABLE(); GPIOF->DATA_Bits[LED_BLUE] = 0xFFU; // turn LED on GPIOF->DATA_Bits[LED_BLUE] = 0x00U; // turn LED off QF_INT_ENABLE(); #ifdef Q_SPY if ((UART0->FR & UART_FR_TXFE) != 0U) { // TX done? uint16_t fifo = UART_TXFIFO_DEPTH; // max bytes we can accept QF_INT_DISABLE(); // get next block to transmit uint8_t const *block = QP::QS::getBlock(&fifo); QF_INT_ENABLE(); while (fifo-- != 0U) { // any bytes in the block? UART0->DR = *block++; // put into the FIFO } } #elif defined NDEBUG // Put the CPU and peripherals to the low-power mode. // You might need to customize the clock management for your project, // see the datasheet for your particular Cortex-M3 MCU. // __WFI(); // Wait-For-Interrupt #endif } // idle-loop } //............................................................................ // This function is called when RTX detects a runtime error. // Parameter 'error_code' holds the runtime error code. // void os_error(uint32_t err_code); // prototype void os_error(uint32_t error_code) { // perform customized error handling... GPIOF->DATA_Bits[LED_RED] = 0xFFU; // turn LED on Q_ERROR_ID(error_code); // NOTE: does not return } } // extern "C" // BSP functions ============================================================= void BSP_init(void) { // NOTE: SystemInit() already called from the startup code // but SystemCoreClock needs to be updated // SystemCoreClockUpdate(); // enable clock to the peripherals used by the application SYSCTL->RCGC2 |= (1U << 5); // enable clock to GPIOF __NOP(); // wait after enabling clocks __NOP(); __NOP(); // configure the LEDs and push buttons GPIOF->DIR |= (LED_RED | LED_GREEN | LED_BLUE); // set direction: output GPIOF->DEN |= (LED_RED | LED_GREEN | LED_BLUE); // digital enable GPIOF->DATA_Bits[LED_RED] = 0U; // turn the LED off GPIOF->DATA_Bits[LED_GREEN] = 0U; // turn the LED off GPIOF->DATA_Bits[LED_BLUE] = 0U; // turn the LED off // configure the Buttons GPIOF->DIR &= ~(BTN_SW1 | BTN_SW2); // set direction: input ROM_GPIOPadConfigSet(GPIOF_BASE, (BTN_SW1 | BTN_SW2), GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU); BSP_randomSeed(1234U); if (!QS_INIT((void *)0)) { // initialize the QS software tracing Q_ERROR(); } QS_OBJ_DICTIONARY(&l_rtx_ticker); QS_OBJ_DICTIONARY(&l_GPIOPortA_IRQHandler); } //............................................................................ void BSP_displayPhilStat(uint8_t n, char const *stat) { // exercise the FPU with some floating point computations float volatile x; x = 3.1415926F; x = x + 2.7182818F; GPIOF->DATA_Bits[LED_RED] = ((stat[0] == 'h') ? 0xFFU : 0U); GPIOF->DATA_Bits[LED_GREEN] = ((stat[0] == 'e') ? 0xFFU : 0U); QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin QS_U8(1, n); // Philosopher number QS_STR(stat); // Philosopher status QS_END() } //............................................................................ void BSP_displayPaused(uint8_t paused) { GPIOF->DATA_Bits[LED_RED] = ((paused != 0U) ? 0xFFU : 0U); } //............................................................................ uint32_t BSP_random(void) { // a very cheap pseudo-random-number generator // "Super-Duper" Linear Congruential Generator (LCG) // LCG(2^32, 3*7*11*13*23, 0, seed) // l_rnd = l_rnd * (3U*7U*11U*13U*23U); return l_rnd >> 8; } //............................................................................ void BSP_randomSeed(uint32_t seed) { l_rnd = seed; } //............................................................................ void BSP_terminate(int16_t result) { (void)result; } } // namespace DPP // namespace QP ************************************************************** namespace QP { // QF callbacks ============================================================== void QF::onStartup(void) { // configure the QF ticker thread QF_setRtxTicker(1000U/DPP::BSP_TICKS_PER_SEC, osPriorityAboveNormal ); // set priorities of ISRs used in the system... NVIC_SetPriority(GPIOA_IRQn, 1U); // ... // enable IRQs in the NVIC... NVIC_EnableIRQ(GPIOA_IRQn); // ... } //............................................................................ void QF::onCleanup(void) { } //............................................................................ void QF_onRtxTicker() { // process all QF time events at tick rate 0 QF::TICK_X(0U, &DPP::l_rtx_ticker); // state of the button debouncing, see below static struct ButtonsDebouncing { uint32_t depressed; uint32_t previous; } buttons = { ~0U, ~0U }; uint32_t current; uint32_t tmp; // Perform the debouncing of buttons. The algorithm for debouncing // adapted from the book "Embedded Systems Dictionary" by Jack Ganssle // and Michael Barr, page 71. // current = ~GPIOF->DATA_Bits[BTN_SW1 | BTN_SW2]; // read SW1 and SW2 tmp = buttons.depressed; // save the debounced depressed buttons buttons.depressed |= (buttons.previous & current); // set depressed buttons.depressed &= (buttons.previous | current); // clear released buttons.previous = current; // update the history tmp ^= buttons.depressed; // changed debounced depressed if ((tmp & BTN_SW1) != 0U) { // debounced SW1 state changed? if ((buttons.depressed & BTN_SW1) != 0U) { // is SW1 depressed? static QEvt const pauseEvt = { DPP::PAUSE_SIG, 0U, 0U}; QF::PUBLISH(&pauseEvt, &DPP::l_rtx_ticker); } else { // the button is released static QEvt const serveEvt = { DPP::SERVE_SIG, 0U, 0U}; QF::PUBLISH(&serveEvt, &DPP::l_rtx_ticker); } } } //............................................................................ // NOTE Q_onAssert() defined in assembly in startup_TM4C123GH6PM.s // QS callbacks ============================================================== #ifdef Q_SPY //............................................................................ bool QS::onStartup(void const *arg) { static uint8_t qsBuf[1024]; // buffer for Quantum Spy uint32_t tmp; initBuf(qsBuf, sizeof(qsBuf)); // enable the peripherals used by the UART0 SYSCTL->RCGC1 |= (1U << 0); // enable clock to UART0 SYSCTL->RCGC2 |= (1U << 0); // enable clock to GPIOA __NOP(); // wait after enabling clocks __NOP(); __NOP(); // configure UART0 pins for UART operation tmp = (1U << 0) | (1U << 1); GPIOA->DIR &= ~tmp; GPIOA->AFSEL |= tmp; GPIOA->DR2R |= tmp; // set 2mA drive, DR4R and DR8R are cleared GPIOA->SLR &= ~tmp; GPIOA->ODR &= ~tmp; GPIOA->PUR &= ~tmp; GPIOA->PDR &= ~tmp; GPIOA->DEN |= tmp; // configure the UART for the desired baud rate, 8-N-1 operation tmp = (((SystemCoreClock * 8U) / UART_BAUD_RATE) + 1U) / 2U; UART0->IBRD = tmp / 64U; UART0->FBRD = tmp % 64U; UART0->LCRH = 0x60U; // configure 8-N-1 operation UART0->LCRH |= 0x10U; UART0->CTL |= (1U << 0) | (1U << 8) | (1U << 9); // setup the QS filters... QS_FILTER_ON(QS_QEP_STATE_ENTRY); QS_FILTER_ON(QS_QEP_STATE_EXIT); QS_FILTER_ON(QS_QEP_STATE_INIT); QS_FILTER_ON(QS_QEP_INIT_TRAN); QS_FILTER_ON(QS_QEP_INTERN_TRAN); QS_FILTER_ON(QS_QEP_TRAN); QS_FILTER_ON(QS_QEP_IGNORED); QS_FILTER_ON(QS_QEP_DISPATCH); QS_FILTER_ON(QS_QEP_UNHANDLED); // QS_FILTER_ON(QS_QF_ACTIVE_ADD); // QS_FILTER_ON(QS_QF_ACTIVE_REMOVE); // QS_FILTER_ON(QS_QF_ACTIVE_SUBSCRIBE); // QS_FILTER_ON(QS_QF_ACTIVE_UNSUBSCRIBE); // QS_FILTER_ON(QS_QF_ACTIVE_POST_FIFO); // QS_FILTER_ON(QS_QF_ACTIVE_POST_LIFO); // QS_FILTER_ON(QS_QF_ACTIVE_GET); // QS_FILTER_ON(QS_QF_ACTIVE_GET_LAST); // QS_FILTER_ON(QS_QF_EQUEUE_INIT); // QS_FILTER_ON(QS_QF_EQUEUE_POST_FIFO); // QS_FILTER_ON(QS_QF_EQUEUE_POST_LIFO); // QS_FILTER_ON(QS_QF_EQUEUE_GET); // QS_FILTER_ON(QS_QF_EQUEUE_GET_LAST); // QS_FILTER_ON(QS_QF_MPOOL_INIT); // QS_FILTER_ON(QS_QF_MPOOL_GET); // QS_FILTER_ON(QS_QF_MPOOL_PUT); // QS_FILTER_ON(QS_QF_PUBLISH); // QS_FILTER_ON(QS_QF_RESERVED8); // QS_FILTER_ON(QS_QF_NEW); // QS_FILTER_ON(QS_QF_GC_ATTEMPT); // QS_FILTER_ON(QS_QF_GC); QS_FILTER_ON(QS_QF_TICK); // QS_FILTER_ON(QS_QF_TIMEEVT_ARM); // QS_FILTER_ON(QS_QF_TIMEEVT_AUTO_DISARM); // QS_FILTER_ON(QS_QF_TIMEEVT_DISARM_ATTEMPT); // QS_FILTER_ON(QS_QF_TIMEEVT_DISARM); // QS_FILTER_ON(QS_QF_TIMEEVT_REARM); // QS_FILTER_ON(QS_QF_TIMEEVT_POST); // QS_FILTER_ON(QS_QF_TIMEEVT_CTR); // QS_FILTER_ON(QS_QF_CRIT_ENTRY); // QS_FILTER_ON(QS_QF_CRIT_EXIT); // QS_FILTER_ON(QS_QF_ISR_ENTRY); // QS_FILTER_ON(QS_QF_ISR_EXIT); // QS_FILTER_ON(QS_QF_INT_DISABLE); // QS_FILTER_ON(QS_QF_INT_ENABLE); // QS_FILTER_ON(QS_QF_ACTIVE_POST_ATTEMPT); // QS_FILTER_ON(QS_QF_EQUEUE_POST_ATTEMPT); // QS_FILTER_ON(QS_QF_MPOOL_GET_ATTEMPT); // QS_FILTER_ON(QS_QF_RESERVED1); // QS_FILTER_ON(QS_QF_RESERVED0); // QS_FILTER_ON(QS_QK_MUTEX_LOCK); // QS_FILTER_ON(QS_QK_MUTEX_UNLOCK); // QS_FILTER_ON(QS_QK_SCHEDULE); // QS_FILTER_ON(QS_QK_RESERVED1); // QS_FILTER_ON(QS_QK_RESERVED0); // QS_FILTER_ON(QS_QEP_TRAN_HIST); // QS_FILTER_ON(QS_QEP_TRAN_EP); // QS_FILTER_ON(QS_QEP_TRAN_XP); // QS_FILTER_ON(QS_QEP_RESERVED1); // QS_FILTER_ON(QS_QEP_RESERVED0); QS_FILTER_ON(QS_SIG_DICT); QS_FILTER_ON(QS_OBJ_DICT); QS_FILTER_ON(QS_FUN_DICT); QS_FILTER_ON(QS_USR_DICT); QS_FILTER_ON(QS_EMPTY); QS_FILTER_ON(QS_RESERVED3); QS_FILTER_ON(QS_RESERVED2); QS_FILTER_ON(QS_TEST_RUN); QS_FILTER_ON(QS_TEST_FAIL); QS_FILTER_ON(QS_ASSERT_FAIL); return true; // return success } //............................................................................ void QS::onCleanup(void) { } //............................................................................ extern "C" uint32_t svcKernelSysTick(void); // prototype declaration QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED // NOTE: // QS::onGetTime() cannot call the offical RTX osKernelSysTick() service, // because osKernelSysTick() is a SVC function, which can't execute // with interrupts disabled. Therefore, QS::onGetTime() calls directly // the function svcKernelSysTick(). // return (QSTimeCtr)svcKernelSysTick(); } //............................................................................ void QS::onFlush(void) { uint16_t fifo = UART_TXFIFO_DEPTH; // Tx FIFO depth uint8_t const *block; QF_INT_DISABLE(); while ((block = getBlock(&fifo)) != static_cast(0)) { QF_INT_ENABLE(); // busy-wait until TX FIFO empty while ((UART0->FR & UART_FR_TXFE) == 0U) { } while (fifo-- != 0U) { // any bytes in the block? UART0->DR = *block++; // put into the TX FIFO } fifo = UART_TXFIFO_DEPTH; // re-load the Tx FIFO depth QF_INT_DISABLE(); } QF_INT_ENABLE(); } #endif // Q_SPY //--------------------------------------------------------------------------*/ } // namespace QP //**************************************************************************** // NOTE01: // The User LED is used to visualize the idle loop activity. The brightness // of the LED is proportional to the frequency of invcations of the idle loop. // Please note that the LED is toggled with interrupts locked, so no interrupt // execution time contributes to the brightness of the User LED. //