//**************************************************************************** // Product: "Blinky" example, EK-TM4C123GXL board, FreeRTOS.org kernel // Last updated for version 5.4.0 // Last updated on 2015-05-11 // // Q u a n t u m L e a P s // --------------------------- // innovating embedded systems // // Copyright (C) Quantum Leaps, LLC. All rights reserved. // // This program is open source software: you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Alternatively, this program may be distributed and modified under the // terms of Quantum Leaps commercial licenses, which expressly supersede // the GNU General Public License and are specifically designed for // licensees interested in retaining the proprietary status of their code. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Contact information: // Web: www.state-machine.com // Email: info@state-machine.com //**************************************************************************** #include "qpcpp.h" #include "blinky.h" #include "bsp.h" #include "TM4C123GH6PM.h" // the device specific header (TI) #include "rom.h" // the built-in ROM functions (TI) #include "sysctl.h" // system control driver (TI) #include "gpio.h" // GPIO driver (TI) // add other drivers if necessary... Q_DEFINE_THIS_FILE #ifdef Q_SPY #error Simple Blinky Application does not provide Spy build configuration #endif // !!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority(). // DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE! // enum KernelUnawareISRs { // see NOTE00 // ... MAX_KERNEL_UNAWARE_CMSIS_PRI // keep always last }; // "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY); enum KernelAwareISRs { GPIOA_PRIO = configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY, // see NOTE1 // ... MAX_KERNEL_AWARE_CMSIS_PRI // keep always last }; // "kernel-aware" interrupts should not overlap the PendSV priority Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS))); // Local-scope objects ------------------------------------------------------- #define LED_RED (1U << 1) #define LED_GREEN (1U << 3) #define LED_BLUE (1U << 2) #define BTN_SW1 (1U << 4) #define BTN_SW2 (1U << 0) // ISRs used in this project ================================================= extern "C" { void GPIOPortA_IRQHandler(void); // prototype void GPIOPortA_IRQHandler(void) { QF_CRIT_STAT_TYPE intStat; BaseType_t lHigherPriorityTaskWoken = pdFALSE; QF_ISR_ENTRY(intStat); // <=== inform QF about ISR entry AO_Blinky->POST(Q_NEW(QP::QEvt, MAX_SIG), 0); // for testing... QF_ISR_EXIT(intStat, lHigherPriorityTaskWoken); // <=== ISR exit // the usual end of FreeRTOS ISR... portEND_SWITCHING_ISR(lHigherPriorityTaskWoken); } // Application hooks used in this project ==================================== void vApplicationTickHook(void) { QF_CRIT_STAT_TYPE intStat; BaseType_t lHigherPriorityTaskWoken = pdFALSE; QF_ISR_ENTRY(intStat); // <=== inform QF about ISR entry QP::QF::TICK_X(0U, 0); // process time events for rate 0 QF_ISR_EXIT(intStat, lHigherPriorityTaskWoken); // <=== ISR exit // yield only when needed... if (lHigherPriorityTaskWoken != pdFALSE) { vTaskMissedYield(); } } //............................................................................ void vApplicationIdleHook(void) { // visualize the idle loop activity, see NOTE2 QF_INT_DISABLE(); GPIOF->DATA_Bits[LED_BLUE] = 0xFFU; GPIOF->DATA_Bits[LED_BLUE] = 0U; QF_INT_ENABLE(); #ifdef NDEBUG // Put the CPU and peripherals to the low-power mode. // You might need to customize the clock management for your project, // see the datasheet for your particular Cortex-M3 MCU. // __WFI(); // Wait-For-Interrupt #endif } //............................................................................ void vApplicationStackOverflowHook(TaskHandle_t xTask, char *pcTaskName) { (void)xTask; (void)pcTaskName; Q_ERROR(); } } // extern "C" // BSP functions ============================================================= void BSP_init(void) { // NOTE: SystemInit() already called from the startup code // but SystemCoreClock needs to be updated // SystemCoreClockUpdate(); // configure the FPU // Do NOT to use the automatic FPU state preservation and // do NOT to use the FPU lazy stacking. // FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos)); // enable clock to the peripherals used by the application SYSCTL->RCGC2 |= (1U << 5); // enable clock to GPIOF __NOP(); // wait after enabling clocks __NOP(); __NOP(); // configure the LEDs and push buttons GPIOF->DIR |= (LED_RED | LED_GREEN | LED_BLUE); // set direction: output GPIOF->DEN |= (LED_RED | LED_GREEN | LED_BLUE); // digital enable GPIOF->DATA_Bits[LED_RED] = 0U; // turn the LED off GPIOF->DATA_Bits[LED_GREEN] = 0U; // turn the LED off GPIOF->DATA_Bits[LED_BLUE] = 0U; // turn the LED off // configure the Buttons GPIOF->DIR &= ~(BTN_SW1 | BTN_SW2); // set direction: input ROM_GPIOPadConfigSet(GPIOF_BASE, (BTN_SW1 | BTN_SW2), GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU); } //............................................................................ void BSP_ledOff(void) { GPIOF->DATA_Bits[LED_GREEN] = 0U; } /*..........................................................................*/ void BSP_ledOn(void) { GPIOF->DATA_Bits[LED_GREEN] = 0xFFU; } //............................................................................ void BSP_terminate(int16_t result) { (void)result; } // QF callbacks ============================================================== void QF::onStartup(void) { // set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate //SysTick_Config(SystemCoreClock / BSP_TICKS_PER_SEC); // set priorities of ALL ISRs used in the system, see NOTE00 // // !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority(). // DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE! // //NVIC_SetPriority(SysTick_IRQn, SYSTICK_PRIO); NVIC_SetPriority(GPIOA_IRQn, GPIOA_PRIO); // ... // enable IRQs... NVIC_EnableIRQ(GPIOA_IRQn); // ... } //............................................................................ void QF::onCleanup(void) { } //............................................................................ // NOTE Q_onAssert() defined in assembly in startup_TM4C123GH6PM.s ///*************************************************************************** // NOTE1: // The configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY constant from the // FreeRTOS configuration file specifies the highest ISR priority that // is disabled by the QF framework. The value is suitable for the // NVIC_SetPriority() CMSIS function. // // Only ISRs prioritized at or below the // configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY level (i.e., // with the numerical values of priorities equal or higher than // configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY) are allowed to call any // QP/FreeRTOS services. These ISRs are "kernel-aware". // // Conversely, any ISRs prioritized above the // configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY priority level (i.e., with // the numerical values of priorities less than // configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY) are never disabled and are // not aware of the kernel. Such "kernel-unaware" ISRs cannot call any // QP/FreeRTOS services. The only mechanism by which a "kernel-unaware" ISR // can communicate with the QF framework is by triggering a "kernel-aware" // ISR, which can post/publish events. // // For more information, see article "Running the RTOS on a ARM Cortex-M Core" // http://www.freertos.org/RTOS-Cortex-M3-M4.html // // NOTE2: // The blue LED is used to visualize the idle loop activity. The brightness // of the LED is proportional to the frequency of invcations of the idle loop. // Please note that the LED is toggled with interrupts locked, so no interrupt // execution time contributes to the brightness of the blue LED. //