///*************************************************************************** // Product: DPP example, STM32F4-Discovery board, preemptive QK kernel // Last Updated for Version: 5.9.5 // Date of the Last Update: 2017-07-20 // // Q u a n t u m L e a P s // --------------------------- // innovating embedded systems // // Copyright (C) Quantum Leaps, LLC. All rights reserved. // // This program is open source software: you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Alternatively, this program may be distributed and modified under the // terms of Quantum Leaps commercial licenses, which expressly supersede // the GNU General Public License and are specifically designed for // licensees interested in retaining the proprietary status of their code. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Contact information: // https://state-machine.com // mailto:info@state-machine.com //**************************************************************************** #include "qpcpp.h" #include "dpp.h" #include "bsp.h" #include "stm32f4xx.h" // CMSIS-compliant header file for the MCU used #include "stm32f4xx_exti.h" #include "stm32f4xx_gpio.h" #include "stm32f4xx_rcc.h" #include "stm32f4xx_usart.h" // add other drivers if necessary... Q_DEFINE_THIS_FILE // namespace DPP ************************************************************* namespace DPP { // !!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority(). // DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE! // enum KernelUnawareISRs { // see NOTE00 USART2_PRIO, // ... MAX_KERNEL_UNAWARE_CMSIS_PRI // keep always last }; // "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI); enum KernelAwareISRs { SYSTICK_PRIO = QF_AWARE_ISR_CMSIS_PRI, // see NOTE00 // ... MAX_KERNEL_AWARE_CMSIS_PRI // keep always last }; // "kernel-aware" interrupts should not overlap the PendSV priority Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS))); // Local-scope objects ------------------------------------------------------- #define LED_GPIO_PORT GPIOD #define LED_GPIO_CLK RCC_AHB1Periph_GPIOD #define LED4_PIN GPIO_Pin_12 #define LED3_PIN GPIO_Pin_13 #define LED5_PIN GPIO_Pin_14 #define LED6_PIN GPIO_Pin_15 #define BTN_GPIO_PORT GPIOA #define BTN_GPIO_CLK RCC_AHB1Periph_GPIOA #define BTN_B1 GPIO_Pin_0 static uint32_t l_rnd; // random seed static QP::QMutex l_rndMutex; // to protect the random number generator #ifdef Q_SPY QP::QSTimeCtr QS_tickTime_; QP::QSTimeCtr QS_tickPeriod_; // QS source IDs static uint8_t const l_SysTick = (uint8_t)0; enum AppRecords { // application-specific trace records PHILO_STAT = QP::QS_USER, COMMAND_STAT }; #endif // ISRs used in this project ================================================= extern "C" { //............................................................................ void SysTick_Handler(void); // prototype void SysTick_Handler(void) { // state of the button debouncing, see below static struct ButtonsDebouncing { uint32_t depressed; uint32_t previous; } buttons = { 0U, 0U }; uint32_t current; uint32_t tmp; QK_ISR_ENTRY(); // inform QK about entering an ISR #ifdef Q_SPY { tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover } #endif QP::QF::TICK_X(0U, &l_SysTick); // process time events for rate 0 // Perform the debouncing of buttons. The algorithm for debouncing // adapted from the book "Embedded Systems Dictionary" by Jack Ganssle // and Michael Barr, page 71. // current = BTN_GPIO_PORT->IDR; // read BTN GPIO tmp = buttons.depressed; // save the debounced depressed buttons buttons.depressed |= (buttons.previous & current); // set depressed buttons.depressed &= (buttons.previous | current); // clear released buttons.previous = current; // update the history tmp ^= buttons.depressed; // changed debounced depressed if ((tmp & BTN_B1) != 0U) { // debounced B1 state changed? if ((buttons.depressed & BTN_B1) != 0U) { // is B1 depressed? static QP::QEvt const pauseEvt = { DPP::PAUSE_SIG, 0U, 0U}; QP::QF::PUBLISH(&pauseEvt, &l_SysTick); } else { // the button is released static QP::QEvt const serveEvt = { DPP::SERVE_SIG, 0U, 0U}; QP::QF::PUBLISH(&serveEvt, &l_SysTick); } } QK_ISR_EXIT(); // inform QK about exiting an ISR } //............................................................................ void USART2_IRQHandler(void); // prototype #ifdef Q_SPY // ISR for receiving bytes from the QSPY Back-End // NOTE: This ISR is "QF-unaware" meaning that it does not interact with // the QF/QK and is not disabled. Such ISRs don't need to call QK_ISR_ENTRY/ // QK_ISR_EXIT and they cannot post or publish events. // void USART2_IRQHandler(void) { if ((USART2->SR & USART_SR_RXNE) != 0) { uint32_t b = USART2->DR; QP::QS::rxPut(b); } } #else void USART2_IRQHandler(void) {} #endif // Q_SPY } // extern "C" // BSP functions ============================================================= void BSP::init(void) { // NOTE: SystemInit() already called from the startup code // but SystemCoreClock needs to be updated // SystemCoreClockUpdate(); // configure the FPU usage by choosing one of the options... #if 1 // OPTION 1: // Use the automatic FPU state preservation and the FPU lazy stacking. // // NOTE: // Use the following setting when FPU is used in more than one task or // in any ISRs. This setting is the safest and recommended, but requires // extra stack space and CPU cycles. // FPU->FPCCR |= (1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos); #else // OPTION 2: // Do NOT to use the automatic FPU state preservation and // do NOT to use the FPU lazy stacking. // // NOTE: // Use the following setting when FPU is used in ONE task only and not // in any ISR. This setting is very efficient, but if more than one task // (or ISR) start using the FPU, this can lead to corruption of the // FPU registers. This option should be used with CAUTION. // FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos)); #endif GPIO_InitTypeDef GPIO_struct; // NOTE: SystemInit() already called from the startup code // but SystemCoreClock needs to be updated SystemCoreClockUpdate(); // Explictily Disable the automatic FPU state preservation as well as // the FPU lazy stacking FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos)); // Initialize thr port for the LEDs RCC_AHB1PeriphClockCmd(LED_GPIO_CLK , ENABLE); // GPIO Configuration for the LEDs... GPIO_struct.GPIO_Mode = GPIO_Mode_OUT; GPIO_struct.GPIO_OType = GPIO_OType_PP; GPIO_struct.GPIO_PuPd = GPIO_PuPd_UP; GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_struct.GPIO_Pin = LED3_PIN; GPIO_Init(LED_GPIO_PORT, &GPIO_struct); LED_GPIO_PORT->BSRRH = LED3_PIN; // turn LED off GPIO_struct.GPIO_Pin = LED4_PIN; GPIO_Init(LED_GPIO_PORT, &GPIO_struct); LED_GPIO_PORT->BSRRH = LED4_PIN; // turn LED off GPIO_struct.GPIO_Pin = LED5_PIN; GPIO_Init(LED_GPIO_PORT, &GPIO_struct); LED_GPIO_PORT->BSRRH = LED5_PIN; // turn LED off GPIO_struct.GPIO_Pin = LED6_PIN; GPIO_Init(LED_GPIO_PORT, &GPIO_struct); LED_GPIO_PORT->BSRRH = LED6_PIN; // turn LED off // Initialize thr port for Button RCC_AHB1PeriphClockCmd(BTN_GPIO_CLK , ENABLE); // GPIO Configuration for the Button... GPIO_struct.GPIO_Pin = BTN_B1; GPIO_struct.GPIO_Mode = GPIO_Mode_IN; GPIO_struct.GPIO_OType = GPIO_OType_PP; GPIO_struct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(BTN_GPIO_PORT, &GPIO_struct); // seed the random number generator randomSeed(1234U); if (QS_INIT((void *)0) == 0U) { // initialize the QS software tracing Q_ERROR(); } QS_OBJ_DICTIONARY(&l_SysTick); QS_USR_DICTIONARY(PHILO_STAT); QS_USR_DICTIONARY(COMMAND_STAT); } //............................................................................ void BSP::displayPhilStat(uint8_t n, char const *stat) { (void)n; if (stat[0] == 'h') { LED_GPIO_PORT->BSRRL = LED3_PIN; // turn LED on } else { LED_GPIO_PORT->BSRRH = LED3_PIN; // turn LED off } if (stat[0] == 'e') { LED_GPIO_PORT->BSRRL = LED5_PIN; // turn LED on } else { LED_GPIO_PORT->BSRRH = LED5_PIN; // turn LED on } QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin QS_U8(1, n); // Philosopher number QS_STR(stat); // Philosopher status QS_END() } //............................................................................ void BSP::displayPaused(uint8_t paused) { if (paused != 0U) { LED_GPIO_PORT->BSRRL = LED4_PIN; // turn LED on } else { LED_GPIO_PORT->BSRRH = LED4_PIN; // turn LED on } } //............................................................................ uint32_t BSP::random(void) { // a very cheap pseudo-random-number generator // Some flating point code is to exercise the VFP... float volatile x = 3.1415926F; x = x + 2.7182818F; l_rndMutex.lock(); // lock the random-seed mutex // "Super-Duper" Linear Congruential Generator (LCG) // LCG(2^32, 3*7*11*13*23, 0, seed) // uint32_t rnd = l_rnd * (3U*7U*11U*13U*23U); l_rnd = rnd; // set for the next time l_rndMutex.unlock(); // unlock the random-seed mutex return (rnd >> 8); } //............................................................................ void BSP::randomSeed(uint32_t seed) { l_rnd = seed; l_rndMutex.init(N_PHILO); // ceiling <== maximum Philo priority } //............................................................................ void BSP::terminate(int16_t result) { (void)result; } } // namespace DPP // namespace QP ************************************************************** namespace QP { // QF callbacks ============================================================== void QF::onStartup(void) { // set up the SysTick timer to fire at BSP::TICKS_PER_SEC rate SysTick_Config(SystemCoreClock / DPP::BSP::TICKS_PER_SEC); // assing all priority bits for preemption-prio. and none to sub-prio. NVIC_SetPriorityGrouping(0U); // set priorities of ALL ISRs used in the system, see NOTE00 // // !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority(). // DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE! // NVIC_SetPriority(USART2_IRQn, DPP::USART2_PRIO); NVIC_SetPriority(SysTick_IRQn, DPP::SYSTICK_PRIO); // ... // enable IRQs... #ifdef Q_SPY NVIC_EnableIRQ(USART2_IRQn); // USART2 interrupt used for QS-RX #endif } //............................................................................ void QF::onCleanup(void) { } //............................................................................ void QK::onIdle(void) { // toggle the User LED on and then off, see NOTE01 QF_INT_DISABLE(); LED_GPIO_PORT->BSRRL = LED6_PIN; // turn LED on __NOP(); // wait a little to actually see the LED glow __NOP(); __NOP(); __NOP(); LED_GPIO_PORT->BSRRH = LED6_PIN; // turn LED off QF_INT_ENABLE(); #ifdef Q_SPY QS::rxParse(); // parse all the received bytes if ((USART2->SR & USART_FLAG_TXE) != 0) { // is TXE empty? uint16_t b; QF_INT_DISABLE(); b = QS::getByte(); QF_INT_ENABLE(); if (b != QS_EOD) { // not End-Of-Data? USART2->DR = (b & 0xFFU); // put into the DR register } } #elif defined NDEBUG // Put the CPU and peripherals to the low-power mode. // you might need to customize the clock management for your application, // see the datasheet for your particular Cortex-M3 MCU. // // !!!CAUTION!!! // The WFI instruction stops the CPU clock, which unfortunately disables // the JTAG port, so the ST-Link debugger can no longer connect to the // board. For that reason, the call to __WFI() has to be used with CAUTION. // // NOTE: If you find your board "frozen" like this, strap BOOT0 to VDD and // reset the board, then connect with ST-Link Utilities and erase the part. // The trick with BOOT(0) is it gets the part to run the System Loader // instead of your broken code. When done disconnect BOOT0, and start over. // //__WFI(); // Wait-For-Interrupt #endif } //............................................................................ extern "C" void Q_onAssert(char const *module, int loc) { // // NOTE: add here your application-specific error handling // (void)module; (void)loc; QS_ASSERTION(module, loc, static_cast(10000U)); NVIC_SystemReset(); } // QS callbacks ============================================================== #ifdef Q_SPY //............................................................................ bool QS::onStartup(void const *arg) { static uint8_t qsBuf[2*1024]; // buffer for QS-TX channel static uint8_t qsRxBuf[100]; // buffer for QS-RX channel GPIO_InitTypeDef GPIO_struct; USART_InitTypeDef USART_struct; (void)arg; // avoid the "unused parameter" compiler warning initBuf(qsBuf, sizeof(qsBuf)); rxInitBuf(qsRxBuf, sizeof(qsRxBuf)); // enable peripheral clock for USART2 RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE); // GPIOA clock enable RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); // GPIOA Configuration: USART2 TX on PA2 and RX on PA3 GPIO_struct.GPIO_Pin = GPIO_Pin_2 | GPIO_Pin_3; GPIO_struct.GPIO_Mode = GPIO_Mode_AF; GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_struct.GPIO_OType = GPIO_OType_PP; GPIO_struct.GPIO_PuPd = GPIO_PuPd_UP ; GPIO_Init(GPIOA, &GPIO_struct); // Connect USART2 pins to AF2 GPIO_PinAFConfig(GPIOA, GPIO_PinSource2, GPIO_AF_USART2); // TX = PA2 GPIO_PinAFConfig(GPIOA, GPIO_PinSource3, GPIO_AF_USART2); // RX = PA3 USART_struct.USART_BaudRate = 115200; USART_struct.USART_WordLength = USART_WordLength_8b; USART_struct.USART_StopBits = USART_StopBits_1; USART_struct.USART_Parity = USART_Parity_No; USART_struct.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_struct.USART_Mode = USART_Mode_Tx | USART_Mode_Rx; USART_Init(USART2, &USART_struct); USART_ITConfig(USART2, USART_IT_RXNE, ENABLE); // enable RX interrupt USART_Cmd(USART2, ENABLE); // enable USART2 DPP::QS_tickPeriod_ = SystemCoreClock / DPP::BSP::TICKS_PER_SEC; DPP::QS_tickTime_ = DPP::QS_tickPeriod_; // to start the timestamp at zero // setup the QS filters... QS_FILTER_ON(QS_SM_RECORDS); // state machine records QS_FILTER_ON(QS_AO_RECORDS); // active object records QS_FILTER_ON(QS_UA_RECORDS); // all user records return true; // return success } //............................................................................ void QS::onCleanup(void) { } //............................................................................ QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // not set? return DPP::QS_tickTime_ - static_cast(SysTick->VAL); } else { // the rollover occured, but the SysTick_ISR did not run yet return DPP::QS_tickTime_ + DPP::QS_tickPeriod_ - static_cast(SysTick->VAL); } } //............................................................................ void QS::onFlush(void) { uint16_t b; QF_INT_DISABLE(); while ((b = getByte()) != QS_EOD) { // while not End-Of-Data... QF_INT_ENABLE(); // while TXE not empty while ((USART2->SR & USART_FLAG_TXE) == 0) { // while TXE not empty } USART2->DR = (b & 0xFFU); // put into the DR register QF_INT_DISABLE(); } QF_INT_ENABLE(); } //............................................................................ //! callback function to reset the target (to be implemented in the BSP) void QS::onReset(void) { NVIC_SystemReset(); } //............................................................................ //! callback function to execute a user command (to be implemented in BSP) extern "C" void assert_failed(char const *module, int loc); void QS::onCommand(uint8_t cmdId, uint32_t param1, uint32_t param2, uint32_t param3) { (void)cmdId; (void)param1; (void)param2; (void)param3; // application-specific record QS_BEGIN(DPP::COMMAND_STAT, static_cast(0)) QS_U8(2, cmdId); QS_U32(8, param1); QS_U32(8, param2); QS_U32(8, param3); QS_END() if (cmdId == 10U) { assert_failed("QS_onCommand", 11); } } #endif // Q_SPY //---------------------------------------------------------------------------- } // namespace QP //**************************************************************************** // NOTE00: // The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest // ISR priority that is disabled by the QF framework. The value is suitable // for the NVIC_SetPriority() CMSIS function. // // Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e., // with the numerical values of priorities equal or higher than // QF_AWARE_ISR_CMSIS_PRI) are allowed to call the QK_ISR_ENTRY/QK_ISR_ENTRY // macros or any other QF/QK services. These ISRs are "QF-aware". // // Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority // level (i.e., with the numerical values of priorities less than // QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel. // Such "QF-unaware" ISRs cannot call any QF/QK services. In particular they // can NOT call the macros QK_ISR_ENTRY/QK_ISR_ENTRY. The only mechanism // by which a "QF-unaware" ISR can communicate with the QF framework is by // triggering a "QF-aware" ISR, which can post/publish events. // // NOTE01: // The User LED is used to visualize the idle loop activity. The brightness // of the LED is proportional to the frequency of invcations of the idle loop. // Please note that the LED is toggled with interrupts locked, so no interrupt // execution time contributes to the brightness of the User LED. //