///***************************************************************************
// Product: DPP example, EK-TM4C123GXL board, uC/OS-II kernel
// Last updated for version 5.9.5
// Last updated on 2017-07-20
//
// Q u a n t u m L e a P s
// ---------------------------
// innovating embedded systems
//
// Copyright (C) Quantum Leaps, LLC. All rights reserved.
//
// This program is open source software: you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Alternatively, this program may be distributed and modified under the
// terms of Quantum Leaps commercial licenses, which expressly supersede
// the GNU General Public License and are specifically designed for
// licensees interested in retaining the proprietary status of their code.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
// Contact information:
// https://state-machine.com
// mailto:info@state-machine.com
//****************************************************************************
#include "qpcpp.h"
#include "dpp.h"
#include "bsp.h"
#include "TM4C123GH6PM.h" // the device specific header (TI)
#include "rom.h" // the built-in ROM functions (TI)
#include "sysctl.h" // system control driver (TI)
#include "gpio.h" // GPIO driver (TI)
// add other drivers if necessary...
Q_DEFINE_THIS_FILE
// namespace DPP *************************************************************
namespace DPP {
// Local-scope objects -------------------------------------------------------
#define LED_RED (1U << 1)
#define LED_GREEN (1U << 3)
#define LED_BLUE (1U << 2)
#define BTN_SW1 (1U << 4)
#define BTN_SW2 (1U << 0)
static uint32_t l_rnd; // random seed
OS_EVENT *l_rndMutex; // to protect the random number generator
#ifdef Q_SPY
QP::QSTimeCtr QS_tickTime_;
QP::QSTimeCtr QS_tickPeriod_;
// source IDs for QS for non-QP event producers
static uint8_t const l_tickHook = 0U;
static uint8_t const l_GPIOPortA_IRQHandler = 0U;
#define UART_BAUD_RATE 115200U
#define UART_FR_TXFE 0x80U
#define UART_TXFIFO_DEPTH 16U
enum AppRecords { // application-specific trace records
PHILO_STAT = QP::QS_USER
};
#endif
// ISRs used in this project =================================================
extern "C" {
// example ISR handler for uCOS-II
void GPIOPortA_IRQHandler(void);
void GPIOPortA_IRQHandler(void) {
#if OS_CRITICAL_METHOD == 3u // Allocate storage for CPU status register
OS_CPU_SR cpu_sr;
#endif
OS_ENTER_CRITICAL();
OSIntEnter(); // Tell uC/OS-II that we are starting an ISR
OS_EXIT_CRITICAL();
// perform the application work...
AO_Table->POST(Q_NEW(QP::QEvt, MAX_SIG), // for testing...
&l_GPIOPortA_IRQHandler);
OSIntExit(); // Tell uC/OS-II that we are leaving the ISR
}
// uCOS-II application hooks --===============================================
void App_TaskCreateHook (OS_TCB *ptcb) { (void)ptcb; }
void App_TaskDelHook (OS_TCB *ptcb) { (void)ptcb; }
//............................................................................
void App_TaskIdleHook(void) {
#if OS_CRITICAL_METHOD == 3u // Allocate storage for CPU status register
OS_CPU_SR cpu_sr;
#endif
// toggle LED2 on and then off, see NOTE01
OS_ENTER_CRITICAL();
GPIOF->DATA_Bits[LED_BLUE] = 0xFFU; // turn the LED on
GPIOF->DATA_Bits[LED_BLUE] = 0x00U; // turn the LED off
OS_EXIT_CRITICAL();
#ifdef Q_SPY
if ((UART0->FR & UART_FR_TXFE) != 0) { // TX done?
uint16_t fifo = UART_TXFIFO_DEPTH; // max bytes we can accept
uint8_t const *block;
OS_EXIT_CRITICAL();
block = QP::QS::getBlock(&fifo); // try to get next block to transmit
OS_EXIT_CRITICAL();
while (fifo-- != 0) { // any bytes in the block?
UART0->DR = *block++; // put into the FIFO
}
}
#elif defined NDEBUG
// Put the CPU and peripherals to the low-power mode.
// you might need to customize the clock management for your application,
// see the datasheet for your particular Cortex-M3 MCU.
//
__WFI(); // Wait-For-Interrupt
#endif
}
//............................................................................
void App_TaskReturnHook (OS_TCB *ptcb) { (void)ptcb; }
void App_TaskStatHook (void) {}
void App_TaskSwHook (void) {}
void App_TCBInitHook (OS_TCB *ptcb) { (void)ptcb; }
//............................................................................
void App_TimeTickHook(void) {
uint32_t tmp;
#ifdef Q_SPY
tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG
QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover
#endif
QP::QF::TICK_X(0U, &l_tickHook); // process time events for rate 0
// Perform the debouncing of buttons. The algorithm for debouncing
// adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
// and Michael Barr, page 71.
//
static struct ButtonsDebouncing {
uint32_t depressed;
uint32_t previous;
} buttons = { ~0U, ~0U }; // state of the button debouncing
uint32_t current = ~GPIOF->DATA_Bits[BTN_SW1 | BTN_SW2]; // read SW1 & SW2
tmp = buttons.depressed; // save the debounced depressed buttons
buttons.depressed |= (buttons.previous & current); // set depressed
buttons.depressed &= (buttons.previous | current); // clear released
buttons.previous = current; // update the history
tmp ^= buttons.depressed; // changed debounced depressed
if ((tmp & BTN_SW1) != 0U) { // debounced SW1 state changed?
if ((buttons.depressed & BTN_SW1) != 0U) { // is SW1 depressed?
static QP::QEvt const pauseEvt = { PAUSE_SIG, 0U, 0U};
QP::QF::PUBLISH(&pauseEvt, &l_tickHook);
}
else { // the button is released
static QP::QEvt const serveEvt = { SERVE_SIG, 0U, 0U};
QP::QF::PUBLISH(&serveEvt, &l_tickHook);
}
}
}
} // extern "C"
// BSP functions =============================================================
void BSP::init(void) {
// NOTE: SystemInit() already called from the startup code
// but SystemCoreClock needs to be updated
//
SystemCoreClockUpdate();
// enable clock for to the peripherals used by this application...
SYSCTL->RCGCGPIO |= (1U << 5); // enable Run mode for GPIOF
// configure the LEDs and push buttons
GPIOF->DIR |= (LED_RED | LED_GREEN | LED_BLUE); // set direction: output
GPIOF->DEN |= (LED_RED | LED_GREEN | LED_BLUE); // digital enable
GPIOF->DATA_Bits[LED_RED | LED_GREEN | LED_BLUE] = 0U; // turn the LEDs off
// configure the Buttons
GPIOF->DIR &= ~(BTN_SW1 | BTN_SW2); // set direction: input
ROM_GPIOPadConfigSet(GPIOF_BASE, (BTN_SW1 | BTN_SW2),
GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU);
BSP::randomSeed(1234U);
if (!QS_INIT((void *)0)) { // initialize the QS software tracing
Q_ERROR();
}
QS_OBJ_DICTIONARY(&l_tickHook);
QS_OBJ_DICTIONARY(&l_GPIOPortA_IRQHandler);
}
//............................................................................
void BSP::displayPhilStat(uint8_t n, char const *stat) {
// exercise the FPU with some floating point computations
// NOTE: this code can be only called from a task that created with
// the option OS_TASK_OPT_SAVE_FP.
//
float volatile x;
x = 3.1415926F;
x = x + 2.7182818F;
GPIOF->DATA_Bits[LED_GREEN] =
((stat[0] == 'e') // Is Philo[n] eating?
? 0xFFU // turn the LED1 on
: 0U); // turn the LED1 off
QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin
QS_U8(1, n); // Philosopher number
QS_STR(stat); // Philosopher status
QS_END()
}
//............................................................................
void BSP::displayPaused(uint8_t paused) {
GPIOF->DATA_Bits[LED_RED] = ((paused != 0U) ? 0xFFU : 0U);
}
//............................................................................
uint32_t BSP::random(void) { // a very cheap pseudo-random-number generator
INT8U err;
OSMutexPend(l_rndMutex, 0, &err); // lock the random-seed mutex
// "Super-Duper" Linear Congruential Generator (LCG)
// LCG(2^32, 3*7*11*13*23, 0, seed)
//
uint32_t rnd = l_rnd * (3U*7U*11U*13U*23U);
l_rnd = rnd; // set for the next time
OSMutexPost(l_rndMutex); // unlock the random-seed mutex
return (rnd >> 8);
}
//............................................................................
void BSP::randomSeed(uint32_t seed) {
INT8U err;
l_rnd = seed;
l_rndMutex = OSMutexCreate(N_PHILO, &err);
}
//............................................................................
void BSP::terminate(int16_t result) {
(void)result;
}
} // namespace DPP
// namespace QP **************************************************************
namespace QP {
// QF callbacks ==============================================================
void QF::onStartup(void) {
// initialize the system clock tick...
OS_CPU_SysTickInit(SystemCoreClock / OS_TICKS_PER_SEC);
// set priorities of the ISRs used in the system
NVIC_SetPriority(GPIOA_IRQn, 0xFFU);
// ...
// enable IRQs in the NVIC...
NVIC_EnableIRQ(GPIOA_IRQn);
}
//............................................................................
void QF::onCleanup(void) {
}
//............................................................................
extern "C" void Q_onAssert(char const *module, int loc) {
//
// NOTE: add here your application-specific error handling
//
(void)module;
(void)loc;
QS_ASSERTION(module, loc, static_cast(10000U));
#ifndef NDEBUG
// light all both LEDs
GPIOF->DATA_Bits[LED_RED | LED_GREEN | LED_BLUE] = 0xFFU;
// for debugging, hang on in an endless loop until SW1 is pressed...
while (GPIOF->DATA_Bits[BTN_SW1] != 0) {
}
#endif
NVIC_SystemReset();
}
// QS callbacks ==============================================================
#ifdef Q_SPY
//............................................................................
bool QS::onStartup(void const *arg) {
static uint8_t qsBuf[2*1024]; // buffer for Quantum Spy
uint32_t tmp;
initBuf(qsBuf, sizeof(qsBuf));
// enable clock for UART0 and GPIOA (used by UART0 pins)
SYSCTL->RCGCUART |= (1U << 0); // enable Run mode for UART0
SYSCTL->RCGCGPIO |= (1U << 0); // enable Run mode for GPIOA
// configure UART0 pins for UART operation
tmp = (1U << 0) | (1U << 1);
GPIOA->DIR &= ~tmp;
GPIOA->AFSEL |= tmp;
GPIOA->DR2R |= tmp; // set 2mA drive, DR4R and DR8R are cleared
GPIOA->SLR &= ~tmp;
GPIOA->ODR &= ~tmp;
GPIOA->PUR &= ~tmp;
GPIOA->PDR &= ~tmp;
GPIOA->DEN |= tmp;
// configure the UART for the desired baud rate, 8-N-1 operation
tmp = (((SystemCoreClock * 8U) / UART_BAUD_RATE) + 1U) / 2U;
UART0->IBRD = tmp / 64U;
UART0->FBRD = tmp % 64U;
UART0->LCRH = 0x60U; // configure 8-N-1 operation
UART0->LCRH |= 0x10U;
UART0->CTL |= (1U << 0) | (1U << 8) | (1U << 9);
DPP::QS_tickPeriod_ = SystemCoreClock / DPP::BSP::TICKS_PER_SEC;
DPP::QS_tickTime_ = DPP::QS_tickPeriod_; // to start the timestamp at zero
// setup the QS filters...
QS_FILTER_ON(QS_QEP_STATE_ENTRY);
QS_FILTER_ON(QS_QEP_STATE_EXIT);
QS_FILTER_ON(QS_QEP_STATE_INIT);
QS_FILTER_ON(QS_QEP_INIT_TRAN);
QS_FILTER_ON(QS_QEP_INTERN_TRAN);
QS_FILTER_ON(QS_QEP_TRAN);
QS_FILTER_ON(QS_QEP_IGNORED);
QS_FILTER_ON(QS_QEP_DISPATCH);
QS_FILTER_ON(QS_QEP_UNHANDLED);
QS_FILTER_ON(DPP::PHILO_STAT);
return true; // return success
}
//............................................................................
void QS::onCleanup(void) {
}
//............................................................................
QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // not set?
return DPP::QS_tickTime_ - static_cast(SysTick->VAL);
}
else { // the rollover occured, but the SysTick_ISR did not run yet
return DPP::QS_tickTime_ + DPP::QS_tickPeriod_
- static_cast(SysTick->VAL);
}
}
//............................................................................
void QS::onFlush(void) {
uint16_t fifo = UART_TXFIFO_DEPTH; // Tx FIFO depth
uint8_t const *block;
#if OS_CRITICAL_METHOD == 3u // Allocate storage for CPU status register
OS_CPU_SR cpu_sr = 0u;
#endif
OS_ENTER_CRITICAL();
while ((block = getBlock(&fifo)) != static_cast(0)) {
OS_EXIT_CRITICAL();
// busy-wait until TX FIFO empty
while ((UART0->FR & UART_FR_TXFE) == 0U) {
}
while (fifo-- != 0U) { // any bytes in the block?
UART0->DR = *block++; // put into the TX FIFO
}
fifo = UART_TXFIFO_DEPTH; // re-load the Tx FIFO depth
OS_ENTER_CRITICAL();
}
OS_EXIT_CRITICAL();
}
//............................................................................
//! callback function to reset the target (to be implemented in the BSP)
void QS::onReset(void) {
//TBD
}
//............................................................................
//! callback function to execute a user command (to be implemented in BSP)
void QS::onCommand(uint8_t cmdId, uint32_t param1,
uint32_t param2, uint32_t param3)
{
(void)cmdId;
(void)param1;
(void)param2;
(void)param3;
//TBD
}
#endif // Q_SPY
//----------------------------------------------------------------------------
} // namespace QP
//****************************************************************************
// NOTE01:
// The User LED is used to visualize the idle loop activity. The brightness
// of the LED is proportional to the frequency of invcations of the idle loop.
// Please note that the LED is toggled with interrupts locked, so no interrupt
// execution time contributes to the brightness of the User LED.
//