///*************************************************************************** // Product: DPP example, EK-TM4C123GXL board, uC/OS-II kernel // Last updated for version 5.9.5 // Last updated on 2017-07-20 // // Q u a n t u m L e a P s // --------------------------- // innovating embedded systems // // Copyright (C) Quantum Leaps, LLC. All rights reserved. // // This program is open source software: you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Alternatively, this program may be distributed and modified under the // terms of Quantum Leaps commercial licenses, which expressly supersede // the GNU General Public License and are specifically designed for // licensees interested in retaining the proprietary status of their code. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Contact information: // https://state-machine.com // mailto:info@state-machine.com //**************************************************************************** #include "qpcpp.h" #include "dpp.h" #include "bsp.h" #include "TM4C123GH6PM.h" // the device specific header (TI) #include "rom.h" // the built-in ROM functions (TI) #include "sysctl.h" // system control driver (TI) #include "gpio.h" // GPIO driver (TI) // add other drivers if necessary... Q_DEFINE_THIS_FILE // namespace DPP ************************************************************* namespace DPP { // Local-scope objects ------------------------------------------------------- #define LED_RED (1U << 1) #define LED_GREEN (1U << 3) #define LED_BLUE (1U << 2) #define BTN_SW1 (1U << 4) #define BTN_SW2 (1U << 0) static uint32_t l_rnd; // random seed OS_EVENT *l_rndMutex; // to protect the random number generator #ifdef Q_SPY QP::QSTimeCtr QS_tickTime_; QP::QSTimeCtr QS_tickPeriod_; // source IDs for QS for non-QP event producers static uint8_t const l_tickHook = 0U; static uint8_t const l_GPIOPortA_IRQHandler = 0U; #define UART_BAUD_RATE 115200U #define UART_FR_TXFE 0x80U #define UART_TXFIFO_DEPTH 16U enum AppRecords { // application-specific trace records PHILO_STAT = QP::QS_USER }; #endif // ISRs used in this project ================================================= extern "C" { // example ISR handler for uCOS-II void GPIOPortA_IRQHandler(void); void GPIOPortA_IRQHandler(void) { #if OS_CRITICAL_METHOD == 3u // Allocate storage for CPU status register OS_CPU_SR cpu_sr; #endif OS_ENTER_CRITICAL(); OSIntEnter(); // Tell uC/OS-II that we are starting an ISR OS_EXIT_CRITICAL(); // perform the application work... AO_Table->POST(Q_NEW(QP::QEvt, MAX_SIG), // for testing... &l_GPIOPortA_IRQHandler); OSIntExit(); // Tell uC/OS-II that we are leaving the ISR } // uCOS-II application hooks --=============================================== void App_TaskCreateHook (OS_TCB *ptcb) { (void)ptcb; } void App_TaskDelHook (OS_TCB *ptcb) { (void)ptcb; } //............................................................................ void App_TaskIdleHook(void) { #if OS_CRITICAL_METHOD == 3u // Allocate storage for CPU status register OS_CPU_SR cpu_sr; #endif // toggle LED2 on and then off, see NOTE01 OS_ENTER_CRITICAL(); GPIOF->DATA_Bits[LED_BLUE] = 0xFFU; // turn the LED on GPIOF->DATA_Bits[LED_BLUE] = 0x00U; // turn the LED off OS_EXIT_CRITICAL(); #ifdef Q_SPY if ((UART0->FR & UART_FR_TXFE) != 0) { // TX done? uint16_t fifo = UART_TXFIFO_DEPTH; // max bytes we can accept uint8_t const *block; OS_EXIT_CRITICAL(); block = QP::QS::getBlock(&fifo); // try to get next block to transmit OS_EXIT_CRITICAL(); while (fifo-- != 0) { // any bytes in the block? UART0->DR = *block++; // put into the FIFO } } #elif defined NDEBUG // Put the CPU and peripherals to the low-power mode. // you might need to customize the clock management for your application, // see the datasheet for your particular Cortex-M3 MCU. // __WFI(); // Wait-For-Interrupt #endif } //............................................................................ void App_TaskReturnHook (OS_TCB *ptcb) { (void)ptcb; } void App_TaskStatHook (void) {} void App_TaskSwHook (void) {} void App_TCBInitHook (OS_TCB *ptcb) { (void)ptcb; } //............................................................................ void App_TimeTickHook(void) { uint32_t tmp; #ifdef Q_SPY tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover #endif QP::QF::TICK_X(0U, &l_tickHook); // process time events for rate 0 // Perform the debouncing of buttons. The algorithm for debouncing // adapted from the book "Embedded Systems Dictionary" by Jack Ganssle // and Michael Barr, page 71. // static struct ButtonsDebouncing { uint32_t depressed; uint32_t previous; } buttons = { ~0U, ~0U }; // state of the button debouncing uint32_t current = ~GPIOF->DATA_Bits[BTN_SW1 | BTN_SW2]; // read SW1 & SW2 tmp = buttons.depressed; // save the debounced depressed buttons buttons.depressed |= (buttons.previous & current); // set depressed buttons.depressed &= (buttons.previous | current); // clear released buttons.previous = current; // update the history tmp ^= buttons.depressed; // changed debounced depressed if ((tmp & BTN_SW1) != 0U) { // debounced SW1 state changed? if ((buttons.depressed & BTN_SW1) != 0U) { // is SW1 depressed? static QP::QEvt const pauseEvt = { PAUSE_SIG, 0U, 0U}; QP::QF::PUBLISH(&pauseEvt, &l_tickHook); } else { // the button is released static QP::QEvt const serveEvt = { SERVE_SIG, 0U, 0U}; QP::QF::PUBLISH(&serveEvt, &l_tickHook); } } } } // extern "C" // BSP functions ============================================================= void BSP::init(void) { // NOTE: SystemInit() already called from the startup code // but SystemCoreClock needs to be updated // SystemCoreClockUpdate(); // enable clock for to the peripherals used by this application... SYSCTL->RCGCGPIO |= (1U << 5); // enable Run mode for GPIOF // configure the LEDs and push buttons GPIOF->DIR |= (LED_RED | LED_GREEN | LED_BLUE); // set direction: output GPIOF->DEN |= (LED_RED | LED_GREEN | LED_BLUE); // digital enable GPIOF->DATA_Bits[LED_RED | LED_GREEN | LED_BLUE] = 0U; // turn the LEDs off // configure the Buttons GPIOF->DIR &= ~(BTN_SW1 | BTN_SW2); // set direction: input ROM_GPIOPadConfigSet(GPIOF_BASE, (BTN_SW1 | BTN_SW2), GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU); BSP::randomSeed(1234U); if (!QS_INIT((void *)0)) { // initialize the QS software tracing Q_ERROR(); } QS_OBJ_DICTIONARY(&l_tickHook); QS_OBJ_DICTIONARY(&l_GPIOPortA_IRQHandler); } //............................................................................ void BSP::displayPhilStat(uint8_t n, char const *stat) { // exercise the FPU with some floating point computations // NOTE: this code can be only called from a task that created with // the option OS_TASK_OPT_SAVE_FP. // float volatile x; x = 3.1415926F; x = x + 2.7182818F; GPIOF->DATA_Bits[LED_GREEN] = ((stat[0] == 'e') // Is Philo[n] eating? ? 0xFFU // turn the LED1 on : 0U); // turn the LED1 off QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin QS_U8(1, n); // Philosopher number QS_STR(stat); // Philosopher status QS_END() } //............................................................................ void BSP::displayPaused(uint8_t paused) { GPIOF->DATA_Bits[LED_RED] = ((paused != 0U) ? 0xFFU : 0U); } //............................................................................ uint32_t BSP::random(void) { // a very cheap pseudo-random-number generator INT8U err; OSMutexPend(l_rndMutex, 0, &err); // lock the random-seed mutex // "Super-Duper" Linear Congruential Generator (LCG) // LCG(2^32, 3*7*11*13*23, 0, seed) // uint32_t rnd = l_rnd * (3U*7U*11U*13U*23U); l_rnd = rnd; // set for the next time OSMutexPost(l_rndMutex); // unlock the random-seed mutex return (rnd >> 8); } //............................................................................ void BSP::randomSeed(uint32_t seed) { INT8U err; l_rnd = seed; l_rndMutex = OSMutexCreate(N_PHILO, &err); } //............................................................................ void BSP::terminate(int16_t result) { (void)result; } } // namespace DPP // namespace QP ************************************************************** namespace QP { // QF callbacks ============================================================== void QF::onStartup(void) { // initialize the system clock tick... OS_CPU_SysTickInit(SystemCoreClock / OS_TICKS_PER_SEC); // set priorities of the ISRs used in the system NVIC_SetPriority(GPIOA_IRQn, 0xFFU); // ... // enable IRQs in the NVIC... NVIC_EnableIRQ(GPIOA_IRQn); } //............................................................................ void QF::onCleanup(void) { } //............................................................................ extern "C" void Q_onAssert(char const *module, int loc) { // // NOTE: add here your application-specific error handling // (void)module; (void)loc; QS_ASSERTION(module, loc, static_cast(10000U)); #ifndef NDEBUG // light all both LEDs GPIOF->DATA_Bits[LED_RED | LED_GREEN | LED_BLUE] = 0xFFU; // for debugging, hang on in an endless loop until SW1 is pressed... while (GPIOF->DATA_Bits[BTN_SW1] != 0) { } #endif NVIC_SystemReset(); } // QS callbacks ============================================================== #ifdef Q_SPY //............................................................................ bool QS::onStartup(void const *arg) { static uint8_t qsBuf[2*1024]; // buffer for Quantum Spy uint32_t tmp; initBuf(qsBuf, sizeof(qsBuf)); // enable clock for UART0 and GPIOA (used by UART0 pins) SYSCTL->RCGCUART |= (1U << 0); // enable Run mode for UART0 SYSCTL->RCGCGPIO |= (1U << 0); // enable Run mode for GPIOA // configure UART0 pins for UART operation tmp = (1U << 0) | (1U << 1); GPIOA->DIR &= ~tmp; GPIOA->AFSEL |= tmp; GPIOA->DR2R |= tmp; // set 2mA drive, DR4R and DR8R are cleared GPIOA->SLR &= ~tmp; GPIOA->ODR &= ~tmp; GPIOA->PUR &= ~tmp; GPIOA->PDR &= ~tmp; GPIOA->DEN |= tmp; // configure the UART for the desired baud rate, 8-N-1 operation tmp = (((SystemCoreClock * 8U) / UART_BAUD_RATE) + 1U) / 2U; UART0->IBRD = tmp / 64U; UART0->FBRD = tmp % 64U; UART0->LCRH = 0x60U; // configure 8-N-1 operation UART0->LCRH |= 0x10U; UART0->CTL |= (1U << 0) | (1U << 8) | (1U << 9); DPP::QS_tickPeriod_ = SystemCoreClock / DPP::BSP::TICKS_PER_SEC; DPP::QS_tickTime_ = DPP::QS_tickPeriod_; // to start the timestamp at zero // setup the QS filters... QS_FILTER_ON(QS_QEP_STATE_ENTRY); QS_FILTER_ON(QS_QEP_STATE_EXIT); QS_FILTER_ON(QS_QEP_STATE_INIT); QS_FILTER_ON(QS_QEP_INIT_TRAN); QS_FILTER_ON(QS_QEP_INTERN_TRAN); QS_FILTER_ON(QS_QEP_TRAN); QS_FILTER_ON(QS_QEP_IGNORED); QS_FILTER_ON(QS_QEP_DISPATCH); QS_FILTER_ON(QS_QEP_UNHANDLED); QS_FILTER_ON(DPP::PHILO_STAT); return true; // return success } //............................................................................ void QS::onCleanup(void) { } //............................................................................ QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // not set? return DPP::QS_tickTime_ - static_cast(SysTick->VAL); } else { // the rollover occured, but the SysTick_ISR did not run yet return DPP::QS_tickTime_ + DPP::QS_tickPeriod_ - static_cast(SysTick->VAL); } } //............................................................................ void QS::onFlush(void) { uint16_t fifo = UART_TXFIFO_DEPTH; // Tx FIFO depth uint8_t const *block; #if OS_CRITICAL_METHOD == 3u // Allocate storage for CPU status register OS_CPU_SR cpu_sr = 0u; #endif OS_ENTER_CRITICAL(); while ((block = getBlock(&fifo)) != static_cast(0)) { OS_EXIT_CRITICAL(); // busy-wait until TX FIFO empty while ((UART0->FR & UART_FR_TXFE) == 0U) { } while (fifo-- != 0U) { // any bytes in the block? UART0->DR = *block++; // put into the TX FIFO } fifo = UART_TXFIFO_DEPTH; // re-load the Tx FIFO depth OS_ENTER_CRITICAL(); } OS_EXIT_CRITICAL(); } //............................................................................ //! callback function to reset the target (to be implemented in the BSP) void QS::onReset(void) { //TBD } //............................................................................ //! callback function to execute a user command (to be implemented in BSP) void QS::onCommand(uint8_t cmdId, uint32_t param1, uint32_t param2, uint32_t param3) { (void)cmdId; (void)param1; (void)param2; (void)param3; //TBD } #endif // Q_SPY //---------------------------------------------------------------------------- } // namespace QP //**************************************************************************** // NOTE01: // The User LED is used to visualize the idle loop activity. The brightness // of the LED is proportional to the frequency of invcations of the idle loop. // Please note that the LED is toggled with interrupts locked, so no interrupt // execution time contributes to the brightness of the User LED. //