///*************************************************************************** // Product: DPP example, EK-TM4C123GXL board, cooperative QV kernel // Last updated for version 5.9.5 // Last updated on 2017-07-20 // // Q u a n t u m L e a P s // --------------------------- // innovating embedded systems // // Copyright (C) Quantum Leaps, LLC. All rights reserved. // // This program is open source software: you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Alternatively, this program may be distributed and modified under the // terms of Quantum Leaps commercial licenses, which expressly supersede // the GNU General Public License and are specifically designed for // licensees interested in retaining the proprietary status of their code. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Contact information: // https://state-machine.com // //**************************************************************************** #include "qpcpp.hpp" #include "dpp.hpp" #include "bsp.hpp" #include "TM4C123GH6PM.h" // the device specific header (TI) #include "rom.h" // the built-in ROM functions (TI) #include "sysctl.h" // system control driver (TI) #include "gpio.h" // GPIO driver (TI) // add other drivers if necessary... Q_DEFINE_THIS_FILE // namespace DPP ************************************************************* namespace DPP { // !!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority(). // DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE! // enum KernelUnawareISRs { // see NOTE00 UART0_PRIO, // ... MAX_KERNEL_UNAWARE_CMSIS_PRI // keep always last }; // "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI); enum KernelAwareISRs { GPIOA_PRIO = QF_AWARE_ISR_CMSIS_PRI, // see NOTE00 SYSTICK_PRIO, // ... MAX_KERNEL_AWARE_CMSIS_PRI // keep always last }; // "kernel-aware" interrupts should not overlap the PendSV priority Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS))); // Local-scope objects ------------------------------------------------------- #define LED_RED (1U << 1) #define LED_GREEN (1U << 3) #define LED_BLUE (1U << 2) #define BTN_SW1 (1U << 4) #define BTN_SW2 (1U << 0) static uint32_t l_rnd; // random seed #ifdef Q_SPY QP::QSTimeCtr QS_tickTime_; QP::QSTimeCtr QS_tickPeriod_; static uint8_t l_SysTick_Handler; static uint8_t l_GPIOPortA_IRQHandler; #define UART_BAUD_RATE 115200U #define UART_FR_TXFE (1U << 7) #define UART_FR_RXFE (1U << 4) #define UART_TXFIFO_DEPTH 16U enum AppRecords { // application-specific trace records PHILO_STAT = QP::QS_USER, COMMAND_STAT }; #endif // ISRs used in this project ================================================= extern "C" { //............................................................................ void SysTick_Handler(void); // prototype void SysTick_Handler(void) { // state of the button debouncing, see below static struct ButtonsDebouncing { uint32_t depressed; uint32_t previous; } buttons = { ~0U, ~0U }; uint32_t current; uint32_t tmp; #ifdef Q_SPY { tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover } #endif QP::QF::TICK_X(0U, &l_SysTick_Handler); // process time events for rate 0 // Perform the debouncing of buttons. The algorithm for debouncing // adapted from the book "Embedded Systems Dictionary" by Jack Ganssle // and Michael Barr, page 71. // current = ~GPIOF->DATA_Bits[BTN_SW1 | BTN_SW2]; // read SW1 and SW2 tmp = buttons.depressed; // save the debounced depressed buttons buttons.depressed |= (buttons.previous & current); // set depressed buttons.depressed &= (buttons.previous | current); // clear released buttons.previous = current; // update the history tmp ^= buttons.depressed; // changed debounced depressed if ((tmp & BTN_SW1) != 0U) { // debounced SW1 state changed? if ((buttons.depressed & BTN_SW1) != 0U) { // is SW1 depressed? static QP::QEvt const pauseEvt = { DPP::PAUSE_SIG, 0U, 0U}; QP::QF::PUBLISH(&pauseEvt, &l_SysTick_Handler); } else { // the button is released static QP::QEvt const serveEvt = { DPP::SERVE_SIG, 0U, 0U}; QP::QF::PUBLISH(&serveEvt, &l_SysTick_Handler); } } } //............................................................................ void GPIOPortA_IRQHandler(void); // prototype void GPIOPortA_IRQHandler(void) { // for testing.. DPP::AO_Table->POST(Q_NEW(QP::QEvt, DPP::MAX_PUB_SIG), &l_GPIOPortA_IRQHandler); } //............................................................................ void UART0_IRQHandler(void); // prototype #ifdef Q_SPY // ISR for receiving bytes from the QSPY Back-End // NOTE: This ISR is "QF-unaware" meaning that it does not interact with // the QF/QK and is not disabled. Such ISRs don't need to call QK_ISR_ENTRY/ // QK_ISR_EXIT and they cannot post or publish events. // void UART0_IRQHandler(void) { uint32_t status = UART0->RIS; // get the raw interrupt status UART0->ICR = status; // clear the asserted interrupts while ((UART0->FR & UART_FR_RXFE) == 0) { // while RX FIFO NOT empty uint8_t b = static_cast(UART0->DR); QP::QS::rxPut(b); } } #else void UART0_IRQHandler(void) {} #endif // Q_SPY } // extern "C" // BSP functions ============================================================= void BSP::init(void) { // NOTE: SystemInit() already called from the startup code // but SystemCoreClock needs to be updated // SystemCoreClockUpdate(); // configure the FPU usage by choosing one of the options... // Do NOT to use the automatic FPU state preservation and // do NOT to use the FPU lazy stacking. // // NOTE: // Use the following setting when FPU is used in ONE task only and not // in any ISR. This option should be used with CAUTION. // FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos)); // enable clock for to the peripherals used by this application... SYSCTL->RCGCGPIO |= (1U << 5); // enable Run mode for GPIOF // configure the LEDs and push buttons GPIOF->DIR |= (LED_RED | LED_GREEN | LED_BLUE); // set direction: output GPIOF->DEN |= (LED_RED | LED_GREEN | LED_BLUE); // digital enable GPIOF->DATA_Bits[LED_RED] = 0U; // turn the LED off GPIOF->DATA_Bits[LED_GREEN] = 0U; // turn the LED off GPIOF->DATA_Bits[LED_BLUE] = 0U; // turn the LED off // configure the Buttons GPIOF->DIR &= ~(BTN_SW1 | BTN_SW2); // set direction: input ROM_GPIOPadConfigSet(GPIOF_BASE, (BTN_SW1 | BTN_SW2), GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU); BSP::randomSeed(1234U); if (!QS_INIT((void *)0)) { // initialize the QS software tracing Q_ERROR(); } QS_OBJ_DICTIONARY(&l_SysTick_Handler); QS_OBJ_DICTIONARY(&l_GPIOPortA_IRQHandler); QS_USR_DICTIONARY(PHILO_STAT); QS_USR_DICTIONARY(COMMAND_STAT); } //............................................................................ void BSP::displayPhilStat(uint8_t n, char const *stat) { GPIOF->DATA_Bits[LED_RED] = ((stat[0] == 'h') ? 0xFFU : 0U); GPIOF->DATA_Bits[LED_GREEN] = ((stat[0] == 'e') ? 0xFFU : 0U); QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin QS_U8(1, n); // Philosopher number QS_STR(stat); // Philosopher status QS_END() } //............................................................................ void BSP::displayPaused(uint8_t paused) { GPIOF->DATA_Bits[LED_RED] = ((paused != 0U) ? 0xFFU : 0U); } //............................................................................ uint32_t BSP::random(void) { // a very cheap pseudo-random-number generator // The flating point code is to exercise the FPU float volatile x = 3.1415926F; x = x + 2.7182818F; // "Super-Duper" Linear Congruential Generator (LCG) // LCG(2^32, 3*7*11*13*23, 0, seed) // uint32_t rnd = l_rnd * (3U*7U*11U*13U*23U); l_rnd = rnd; // set for the next time return (rnd >> 8); } //............................................................................ void BSP::randomSeed(uint32_t seed) { l_rnd = seed; } //............................................................................ void BSP::ledOn(void) { GPIOF->DATA_Bits[LED_RED] = 0xFFU; } //............................................................................ void BSP::ledOff(void) { GPIOF->DATA_Bits[LED_RED] = 0x00U; } //............................................................................ void BSP::terminate(int16_t result) { (void)result; } } // namespace DPP // namespace QP ************************************************************** namespace QP { // QF callbacks ============================================================== void QF::onStartup(void) { // set up the SysTick timer to fire at BSP::TICKS_PER_SEC rate SysTick_Config(SystemCoreClock / DPP::BSP::TICKS_PER_SEC); // assing all priority bits for preemption-prio. and none to sub-prio. NVIC_SetPriorityGrouping(0U); // set priorities of ALL ISRs used in the system, see NOTE00 // // !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority(). // DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE! // NVIC_SetPriority(UART0_IRQn, DPP::UART0_PRIO); NVIC_SetPriority(SysTick_IRQn, DPP::SYSTICK_PRIO); NVIC_SetPriority(GPIOA_IRQn, DPP::GPIOA_PRIO); // ... // enable IRQs... NVIC_EnableIRQ(GPIOA_IRQn); #ifdef Q_SPY NVIC_EnableIRQ(UART0_IRQn); // UART0 interrupt used for QS-RX #endif } //............................................................................ void QF::onCleanup(void) { } //............................................................................ void QV::onIdle(void) { // called with interrupts disabled, see NOTE01 // toggle the User LED on and then off, see NOTE02 GPIOF->DATA_Bits[LED_BLUE] = 0xFFU; // turn the Blue LED on GPIOF->DATA_Bits[LED_BLUE] = 0U; // turn the Blue LED off #ifdef Q_SPY QF_INT_ENABLE(); QS::rxParse(); // parse all the received bytes if ((UART0->FR & UART_FR_TXFE) != 0U) { // TX done? uint16_t fifo = UART_TXFIFO_DEPTH; // max bytes we can accept uint8_t const *block; QF_INT_DISABLE(); block = QS::getBlock(&fifo); // try to get next block to transmit QF_INT_ENABLE(); while (fifo-- != 0U) { // any bytes in the block? UART0->DR = *block++; // put into the FIFO } } #elif defined NDEBUG // Put the CPU and peripherals to the low-power mode. // you might need to customize the clock management for your application, // see the datasheet for your particular Cortex-M MCU. // QV_CPU_SLEEP(); // atomically go to sleep and enable interrupts #else QF_INT_ENABLE(); // just enable interrupts #endif } //............................................................................ extern "C" void Q_onAssert(char const *module, int loc) { // // NOTE: add here your application-specific error handling // (void)module; (void)loc; QS_ASSERTION(module, loc, static_cast(10000U)); NVIC_SystemReset(); } // QS callbacks ============================================================== #ifdef Q_SPY //............................................................................ bool QS::onStartup(void const *arg) { static uint8_t qsBuf[2*1024]; // buffer for Quantum Spy static uint8_t qsRxBuf[100]; // buffer for QS receive channel uint32_t tmp; initBuf(qsBuf, sizeof(qsBuf)); rxInitBuf(qsRxBuf, sizeof(qsRxBuf)); // enable clock for UART0 and GPIOA (used by UART0 pins) SYSCTL->RCGCUART |= (1U << 0); // enable Run mode for UART0 SYSCTL->RCGCGPIO |= (1U << 0); // enable Run mode for GPIOA // configure UART0 pins for UART operation tmp = (1U << 0) | (1U << 1); GPIOA->DIR &= ~tmp; GPIOA->SLR &= ~tmp; GPIOA->ODR &= ~tmp; GPIOA->PUR &= ~tmp; GPIOA->PDR &= ~tmp; GPIOA->AMSEL &= ~tmp; // disable analog function on the pins GPIOA->AFSEL |= tmp; // enable ALT function on the pins GPIOA->DEN |= tmp; // enable digital I/O on the pins GPIOA->PCTL &= ~0x00U; GPIOA->PCTL |= 0x11U; // configure the UART for the desired baud rate, 8-N-1 operation tmp = (((SystemCoreClock * 8U) / UART_BAUD_RATE) + 1U) / 2U; UART0->IBRD = tmp / 64U; UART0->FBRD = tmp % 64U; UART0->LCRH = (0x3U << 5); // configure 8-N-1 operation UART0->LCRH |= (0x1U << 4); // enable FIFOs UART0->CTL = (1U << 0) // UART enable | (1U << 8) // UART TX enable | (1U << 9); // UART RX enable // configure UART interrupts (for the RX channel) UART0->IM |= (1U << 4) | (1U << 6); // enable RX and RX-TO interrupt UART0->IFLS |= (0x2U << 2); // interrupt on RX FIFO half-full // NOTE: do not enable the UART0 interrupt yet. Wait till QF_onStartup() DPP::QS_tickPeriod_ = SystemCoreClock / DPP::BSP::TICKS_PER_SEC; DPP::QS_tickTime_ = DPP::QS_tickPeriod_; // to start the timestamp at zero // setup the QS filters... QS_FILTER_ON(QS_QEP_STATE_ENTRY); QS_FILTER_ON(QS_QEP_STATE_EXIT); QS_FILTER_ON(QS_QEP_STATE_INIT); QS_FILTER_ON(QS_QEP_INIT_TRAN); QS_FILTER_ON(QS_QEP_INTERN_TRAN); QS_FILTER_ON(QS_QEP_TRAN); QS_FILTER_ON(QS_QEP_IGNORED); QS_FILTER_ON(QS_QEP_DISPATCH); QS_FILTER_ON(QS_QEP_UNHANDLED); QS_FILTER_ON(DPP::PHILO_STAT); QS_FILTER_ON(DPP::COMMAND_STAT); return true; // return success } //............................................................................ void QS::onCleanup(void) { } //............................................................................ QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // not set? return DPP::QS_tickTime_ - static_cast(SysTick->VAL); } else { // the rollover occured, but the SysTick_ISR did not run yet return DPP::QS_tickTime_ + DPP::QS_tickPeriod_ - static_cast(SysTick->VAL); } } //............................................................................ void QS::onFlush(void) { uint16_t fifo = UART_TXFIFO_DEPTH; // Tx FIFO depth uint8_t const *block; QF_INT_DISABLE(); while ((block = getBlock(&fifo)) != static_cast(0)) { QF_INT_ENABLE(); // busy-wait until TX FIFO empty while ((UART0->FR & UART_FR_TXFE) == 0U) { } while (fifo-- != 0U) { // any bytes in the block? UART0->DR = *block++; // put into the TX FIFO } fifo = UART_TXFIFO_DEPTH; // re-load the Tx FIFO depth QF_INT_DISABLE(); } QF_INT_ENABLE(); } //............................................................................ //! callback function to reset the target (to be implemented in the BSP) void QS::onReset(void) { NVIC_SystemReset(); } //............................................................................ //! callback function to execute a user command (to be implemented in BSP) extern "C" void assert_failed(char const *module, int loc); void QS::onCommand(uint8_t cmdId, uint32_t param1, uint32_t param2, uint32_t param3) { (void)cmdId; (void)param1; (void)param2; (void)param3; // application-specific record QS_BEGIN(DPP::COMMAND_STAT, static_cast(0)) QS_U8(2, cmdId); QS_U32(8, param1); QS_END() if (cmdId == 10U) { assert_failed("QS_onCommand", 11); } } #endif // Q_SPY //---------------------------------------------------------------------------- } // namespace QP //**************************************************************************** // NOTE00: // The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest // ISR priority that is disabled by the QF framework. The value is suitable // for the NVIC_SetPriority() CMSIS function. // // Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e., // with the numerical values of priorities equal or higher than // QF_AWARE_ISR_CMSIS_PRI) are allowed to call the QK_ISR_ENTRY/QK_ISR_ENTRY // macros or any other QF/QK services. These ISRs are "QF-aware". // // Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority // level (i.e., with the numerical values of priorities less than // QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel. // Such "QF-unaware" ISRs cannot call any QF/QK services. In particular they // can NOT call the macros QK_ISR_ENTRY/QK_ISR_ENTRY. The only mechanism // by which a "QF-unaware" ISR can communicate with the QF framework is by // triggering a "QF-aware" ISR, which can post/publish events. // // NOTE01: // The QV:onIdle() callback is called with interrupts disabled, because the // determination of the idle condition might change by any interrupt posting // an event. QV::onIdle() must internally enable interrupts, ideally // atomically with putting the CPU to the power-saving mode. // // NOTE02: // The User LED is used to visualize the idle loop activity. The brightness // of the LED is proportional to the frequency of invcations of the idle loop. // Please note that the LED is toggled with interrupts locked, so no interrupt // execution time contributes to the brightness of the User LED. //