///*************************************************************************** // Product: DPP example, EK-TM4C123GXL board, FreeRTOS kernel // Last Updated for Version: 6.0.4 // Date of the Last Update: 2018-01-10 // // Q u a n t u m L e a P s // --------------------------- // innovating embedded systems // // Copyright (C) Quantum Leaps, LLC. All rights reserved. // // This program is open source software: you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Alternatively, this program may be distributed and modified under the // terms of Quantum Leaps commercial licenses, which expressly supersede // the GNU General Public License and are specifically designed for // licensees interested in retaining the proprietary status of their code. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Contact information: // https://state-machine.com // mailto:info@state-machine.com //**************************************************************************** #include "qpcpp.h" #include "dpp.h" #include "bsp.h" #include "TM4C123GH6PM.h" // the device specific header (TI) #include "rom.h" // the built-in ROM functions (TI) #include "sysctl.h" // system control driver (TI) #include "gpio.h" // GPIO driver (TI) // add other drivers if necessary... Q_DEFINE_THIS_FILE // define the name of this file for assertions // namespace DPP ************************************************************* namespace DPP { // !!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority(). // DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE! // enum KernelUnawareISRs { // see NOTE1 UART0_PRIO, // ... MAX_KERNEL_UNAWARE_CMSIS_PRI // keep always last }; // "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts Q_ASSERT_COMPILE( MAX_KERNEL_UNAWARE_CMSIS_PRI <= (configMAX_SYSCALL_INTERRUPT_PRIORITY >> (8-__NVIC_PRIO_BITS))); enum KernelAwareISRs { SYSTICK_PRIO = (configMAX_SYSCALL_INTERRUPT_PRIORITY >> (8-__NVIC_PRIO_BITS)), GPIOA_PRIO, // ... MAX_KERNEL_AWARE_CMSIS_PRI // keep always last }; // "kernel-aware" interrupts should not overlap the PendSV priority Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS))); // LEDs and Switches of the EK-TM4C123GXL board .............................. #define LED_RED (1U << 1) #define LED_GREEN (1U << 3) #define LED_BLUE (1U << 2) #define BTN_SW1 (1U << 4) #define BTN_SW2 (1U << 0) // Local-scope objects ------------------------------------------------------- static uint32_t l_rnd; // random seed #ifdef Q_SPY QP::QSTimeCtr QS_tickTime_; QP::QSTimeCtr QS_tickPeriod_; // QS source IDs static uint8_t const l_TickHook = static_cast(0); static uint8_t const l_GPIOPortA_IRQHandler = static_cast(0); #define UART_BAUD_RATE 115200U #define UART_FR_TXFE (1U << 7) #define UART_FR_RXFE (1U << 4) #define UART_TXFIFO_DEPTH 16U enum AppRecords { // application-specific trace records PHILO_STAT = QP::QS_USER, PAUSED_STAT, COMMAND_STAT }; #endif extern "C" { // ISRs used in this project ================================================= // NOTE: only the "FromISR" API variants are allowed in the ISRs! void GPIOPortA_IRQHandler(void); // prototype void GPIOPortA_IRQHandler(void) { BaseType_t xHigherPriorityTaskWoken = pdFALSE; // for testing... AO_Table->POST_FROM_ISR( Q_NEW_FROM_ISR(QP::QEvt, DPP::MAX_PUB_SIG), &xHigherPriorityTaskWoken, &l_GPIOPortA_IRQHandler); // the usual end of FreeRTOS ISR... portEND_SWITCHING_ISR(xHigherPriorityTaskWoken); } //............................................................................ #ifdef Q_SPY // ISR for receiving bytes from the QSPY Back-End // NOTE: This ISR is "kernel-unaware" meaning that it does not interact with // the FreeRTOS or QP and is not disabled. Such ISRs don't need to call // portEND_SWITCHING_ISR(() at the end, but they also cannot call any // FreeRTOS or QP APIs. // void UART0_IRQHandler(void); // prototype void UART0_IRQHandler(void) { uint32_t status = UART0->RIS; // get the raw interrupt status UART0->ICR = status; // clear the asserted interrupts while ((UART0->FR & UART_FR_RXFE) == 0) { // while RX FIFO NOT empty uint32_t b = UART0->DR; QP::QS::rxPut(b); } } #endif // Application hooks used in this project ==================================== // NOTE: only the "FromISR" API variants are allowed in vApplicationTickHook void vApplicationTickHook(void) { // state of the button debouncing, see below static struct ButtonsDebouncing { uint32_t depressed; uint32_t previous; } buttons = { ~0U, ~0U }; uint32_t current; uint32_t tmp; BaseType_t xHigherPriorityTaskWoken = pdFALSE; // process time events for rate 0 QP::QF::TICK_X_FROM_ISR(0U, &xHigherPriorityTaskWoken, &l_TickHook); #ifdef Q_SPY { tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover } #endif // Perform the debouncing of buttons. The algorithm for debouncing // adapted from the book "Embedded Systems Dictionary" by Jack Ganssle // and Michael Barr, page 71. // current = ~GPIOF->DATA_Bits[BTN_SW1 | BTN_SW2]; // read SW1 and SW2 tmp = buttons.depressed; // save the debounced depressed buttons buttons.depressed |= (buttons.previous & current); // set depressed buttons.depressed &= (buttons.previous | current); // clear released buttons.previous = current; // update the history tmp ^= buttons.depressed; // changed debounced depressed if ((tmp & BTN_SW1) != 0U) { // debounced SW1 state changed? if ((buttons.depressed & BTN_SW1) != 0U) { // is SW1 depressed? // demonstrate the ISR APIs: PUBLISH_FROM_ISR and Q_NEW_FROM_ISR QP::QF::PUBLISH_FROM_ISR(Q_NEW_FROM_ISR(QP::QEvt, DPP::PAUSE_SIG), &xHigherPriorityTaskWoken, &l_TickHook); } else { // the button is released // demonstrate the ISR APIs: POST_FROM_ISR and Q_NEW_FROM_ISR AO_Table->POST_FROM_ISR(Q_NEW_FROM_ISR(QP::QEvt, DPP::SERVE_SIG), &xHigherPriorityTaskWoken, &l_TickHook); } } // notify FreeRTOS to perform context switch from ISR, if needed portEND_SWITCHING_ISR(xHigherPriorityTaskWoken); } //............................................................................ void vApplicationIdleHook(void) { // toggle the User LED on and then off, see NOTE01 QF_INT_DISABLE(); GPIOF->DATA_Bits[LED_BLUE] = 0xFFU; // turn the Blue LED on GPIOF->DATA_Bits[LED_BLUE] = 0U; // turn the Blue LED off QF_INT_ENABLE(); // Some flating point code is to exercise the VFP... float x = 1.73205F; x = x * 1.73205F; #ifdef Q_SPY QP::QS::rxParse(); // parse all the received bytes if ((UART0->FR & UART_FR_TXFE) != 0U) { // TX done? uint16_t fifo = UART_TXFIFO_DEPTH; // max bytes we can accept uint8_t const *block; QF_INT_DISABLE(); block = QP::QS::getBlock(&fifo); // try to get next block to transmit QF_INT_ENABLE(); while (fifo-- != 0U) { // any bytes in the block? UART0->DR = *block++; // put into the FIFO } } #elif defined NDEBUG // Put the CPU and peripherals to the low-power mode. // you might need to customize the clock management for your application, // see the datasheet for your particular Cortex-M3 MCU. // __WFI(); // Wait-For-Interrupt #endif } //............................................................................ void vApplicationStackOverflowHook(TaskHandle_t xTask, char *pcTaskName) { (void)xTask; (void)pcTaskName; Q_ERROR(); } //............................................................................ // configSUPPORT_STATIC_ALLOCATION is set to 1, so the application must // provide an implementation of vApplicationGetIdleTaskMemory() to provide // the memory that is used by the Idle task. // void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize ) { // If the buffers to be provided to the Idle task are declared inside // this function then they must be declared static - otherwise they will // be allocated on the stack and so not exists after this function exits. // static StaticTask_t xIdleTaskTCB; static StackType_t uxIdleTaskStack[ configMINIMAL_STACK_SIZE ]; // Pass out a pointer to the StaticTask_t structure in which the // Idle task's state will be stored. // *ppxIdleTaskTCBBuffer = &xIdleTaskTCB; // Pass out the array that will be used as the Idle task's stack. */ *ppxIdleTaskStackBuffer = uxIdleTaskStack; // Pass out the size of the array pointed to by *ppxIdleTaskStackBuffer. // Note that, as the array is necessarily of type StackType_t, // configMINIMAL_STACK_SIZE is specified in words, not bytes. // *pulIdleTaskStackSize = Q_DIM(uxIdleTaskStack); } } // extern "C" // BSP functions ============================================================= void BSP::init(void) { // NOTE: SystemInit() has been already called from the startup code // but SystemCoreClock needs to be updated SystemCoreClockUpdate(); // NOTE: The VFP (hardware Floating Point) unit is configured by FreeRTOS */ // enable clock for to the peripherals used by this application... SYSCTL->RCGCGPIO |= (1U << 5); // enable Run mode for GPIOF // configure the LEDs and push buttons GPIOF->DIR |= (LED_RED | LED_GREEN | LED_BLUE); // set as output GPIOF->DEN |= (LED_RED | LED_GREEN | LED_BLUE); // digital enable GPIOF->DATA_Bits[LED_RED] = 0U; // turn the LED off GPIOF->DATA_Bits[LED_GREEN] = 0U; // turn the LED off GPIOF->DATA_Bits[LED_BLUE] = 0U; // turn the LED off // configure the User Switches GPIOF->DIR &= ~(BTN_SW1 | BTN_SW2); // set direction: input ROM_GPIOPadConfigSet(GPIOF_BASE, (BTN_SW1 | BTN_SW2), GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU); BSP::randomSeed(1234U); // initialize the QS software tracing... if (!QS_INIT((void *)0)) { Q_ERROR(); } QS_OBJ_DICTIONARY(&l_TickHook); QS_OBJ_DICTIONARY(&l_GPIOPortA_IRQHandler); QS_USR_DICTIONARY(PHILO_STAT); QS_USR_DICTIONARY(PAUSED_STAT); QS_USR_DICTIONARY(COMMAND_STAT); } //............................................................................ void BSP::displayPhilStat(uint8_t n, char const *stat) { GPIOF->DATA_Bits[LED_GREEN] = ((stat[0] == 'e') // Is Philo[n] eating? ? 0xFFU // turn the LED1 on : 0U); // turn the LED1 off QS_BEGIN(DPP::PHILO_STAT, AO_Philo[n]) // application-specific record begin QS_U8(1, n); // Philosopher number QS_STR(stat); // Philosopher status QS_END() } //............................................................................ void BSP::displayPaused(uint8_t const paused) { GPIOF->DATA_Bits[LED_GREEN] = ((paused != 0U) ? 0xFFU : 0U); // application-specific trace record QS_BEGIN(PAUSED_STAT, AO_Table) QS_U8(1, paused); // Paused status QS_END() } //............................................................................ void BSP::ledOn(void) { GPIOF->DATA_Bits[LED_GREEN] = 0xFFU; } //............................................................................ void BSP::ledOff(void) { GPIOF->DATA_Bits[LED_GREEN] = 0U; } //............................................................................ uint32_t BSP::random(void) { // a very cheap pseudo-random-number generator // Some flating point code is to exercise the VFP... float volatile x = 3.1415926F; x = x + 2.7182818F; vTaskSuspendAll(); // lock FreeRTOS scheduler // "Super-Duper" Linear Congruential Generator (LCG) // LCG(2^32, 3*7*11*13*23, 0, seed) // uint32_t rnd = l_rnd * (3U*7U*11U*13U*23U); l_rnd = rnd; // set for the next time xTaskResumeAll(); // unlock the FreeRTOS scheduler return (rnd >> 8); } //............................................................................ void BSP::randomSeed(uint32_t seed) { l_rnd = seed; } //............................................................................ void BSP::terminate(int16_t result) { (void)result; } } // namespace DPP // namespace QP ************************************************************** namespace QP { // QF callbacks ============================================================== void QF::onStartup(void) { // set up the SysTick timer to fire at BSP::TICKS_PER_SEC rate //SysTick_Config(SystemCoreClock / BSP_TICKS_PER_SEC); // done in FreeRTOS // assing all priority bits for preemption-prio. and none to sub-prio. NVIC_SetPriorityGrouping(0U); // assingn all priority bits for preemption-prio. and none to sub-prio. NVIC_SetPriorityGrouping(0U); // set priorities of ALL ISRs used in the system, see NOTE00 // // !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority(). // DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE! // NVIC_SetPriority(UART0_IRQn, DPP::UART0_PRIO); NVIC_SetPriority(SysTick_IRQn, DPP::SYSTICK_PRIO); NVIC_SetPriority(GPIOA_IRQn, DPP::GPIOA_PRIO); // ... // enable IRQs... NVIC_EnableIRQ(GPIOA_IRQn); #ifdef Q_SPY NVIC_EnableIRQ(UART0_IRQn); // UART interrupt used for QS-RX #endif } //............................................................................ void QF::onCleanup(void) { } //............................................................................ extern "C" void Q_onAssert(char const *module, int loc) { // // NOTE: add here your application-specific error handling // (void)module; (void)loc; QS_ASSERTION(module, loc, static_cast(10000U)); #ifndef NDEBUG // for debugging, hang on in an endless loop toggling the RED LED... while (GPIOF->DATA_Bits[BTN_SW1] != 0) { GPIOF->DATA = LED_RED; GPIOF->DATA = 0U; } #endif NVIC_SystemReset(); } // QS callbacks ============================================================== #ifdef Q_SPY //............................................................................ bool QS::onStartup(void const *arg) { static uint8_t qsTxBuf[2*1024]; // buffer for QS transmit channel static uint8_t qsRxBuf[100]; // buffer for QS receive channel uint32_t tmp; initBuf(qsTxBuf, sizeof(qsTxBuf)); rxInitBuf(qsRxBuf, sizeof(qsRxBuf)); // enable clock for UART0 and GPIOA (used by UART0 pins) SYSCTL->RCGCUART |= (1U << 0); // enable Run mode for UART0 SYSCTL->RCGCGPIO |= (1U << 0); // enable Run mode for GPIOA // configure UART0 pins for UART operation tmp = (1U << 0) | (1U << 1); GPIOA->DIR &= ~tmp; GPIOA->SLR &= ~tmp; GPIOA->ODR &= ~tmp; GPIOA->PUR &= ~tmp; GPIOA->PDR &= ~tmp; GPIOA->AMSEL &= ~tmp; // disable analog function on the pins GPIOA->AFSEL |= tmp; // enable ALT function on the pins GPIOA->DEN |= tmp; // enable digital I/O on the pins GPIOA->PCTL &= ~0x00U; GPIOA->PCTL |= 0x11U; // configure the UART for the desired baud rate, 8-N-1 operation tmp = (((SystemCoreClock * 8U) / UART_BAUD_RATE) + 1U) / 2U; UART0->IBRD = tmp / 64U; UART0->FBRD = tmp % 64U; UART0->LCRH = (0x3U << 5); // configure 8-N-1 operation UART0->LCRH |= (0x1U << 4); // enable FIFOs UART0->CTL = (1U << 0) // UART enable | (1U << 8) // UART TX enable | (1U << 9); // UART RX enable // configure UART interrupts (for the RX channel) UART0->IM |= (1U << 4) | (1U << 6); // enable RX and RX-TO interrupt UART0->IFLS |= (0x2U << 2); // interrupt on RX FIFO half-full // NOTE: do not enable the UART0 interrupt yet. Wait till QF_onStartup() DPP::QS_tickPeriod_ = SystemCoreClock / DPP::BSP::TICKS_PER_SEC; DPP::QS_tickTime_ = DPP::QS_tickPeriod_; // to start the timestamp at zero // setup the QS filters... */ QS_FILTER_ON(QS_SM_RECORDS); // state machine records */ QS_FILTER_ON(QS_UA_RECORDS); // all usedr records */ //QS_FILTER_ON(QS_MUTEX_LOCK); //QS_FILTER_ON(QS_MUTEX_UNLOCK); return true; // return success } //............................................................................ void QS::onCleanup(void) { } //............................................................................ QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // not set? return DPP::QS_tickTime_ - static_cast(SysTick->VAL); } else { // the rollover occured, but the SysTick_ISR did not run yet return DPP::QS_tickTime_ + DPP::QS_tickPeriod_ - static_cast(SysTick->VAL); } } //............................................................................ void QS::onFlush(void) { uint16_t fifo = UART_TXFIFO_DEPTH; // Tx FIFO depth uint8_t const *block; while ((block = getBlock(&fifo)) != static_cast(0)) { // busy-wait until TX FIFO empty while ((UART0->FR & UART_FR_TXFE) == 0U) { } while (fifo-- != 0U) { // any bytes in the block? UART0->DR = *block++; // put into the TX FIFO } fifo = UART_TXFIFO_DEPTH; // re-load the Tx FIFO depth } } //............................................................................ //! callback function to reset the target (to be implemented in the BSP) void QS::onReset(void) { NVIC_SystemReset(); } //............................................................................ //! callback function to execute a user command (to be implemented in BSP) extern "C" void assert_failed(char const *module, int loc); void QS::onCommand(uint8_t cmdId, uint32_t param1, uint32_t param2, uint32_t param3) { (void)cmdId; (void)param1; (void)param2; (void)param3; // application-specific record QS_BEGIN(DPP::COMMAND_STAT, reinterpret_cast(1)) QS_U8(2, cmdId); QS_U32(8, param1); QS_U32(8, param2); QS_U32(8, param3); QS_END() if (cmdId == 10U) { Q_ERROR(); // for testing of assertion failure } else if (cmdId == 11U) { assert_failed("QS_onCommand", 123); } } #endif // Q_SPY //---------------------------------------------------------------------------- } // namespace QP //**************************************************************************** // NOTE1: // The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest // ISR priority that is disabled by the QF framework. The value is suitable // for the NVIC_SetPriority() CMSIS function. // // Only ISRs prioritized at or below the // configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY level (i.e., // with the numerical values of priorities equal or higher than // configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY) are allowed to call any // QP/FreeRTOS services. These ISRs are "kernel-aware". // // Conversely, any ISRs prioritized above the // configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY priority level (i.e., with // the numerical values of priorities less than // configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY) are never disabled and are // not aware of the kernel. Such "kernel-unaware" ISRs cannot call any // QP/FreeRTOS services. The only mechanism by which a "kernel-unaware" ISR // can communicate with the QF framework is by triggering a "kernel-aware" // ISR, which can post/publish events. // // For more information, see article "Running the RTOS on a ARM Cortex-M Core" // http://www.freertos.org/RTOS-Cortex-M3-M4.html // // NOTE2: // The User LED is used to visualize the idle loop activity. The brightness // of the LED is proportional to the frequency of invcations of the idle loop. // Please note that the LED is toggled with interrupts locked, so no interrupt // execution time contributes to the brightness of the User LED. //