///*************************************************************************** // Product: DPP example, STM32746G-Discovery board, FreeRTOS kernel // Last Updated for Version: 6.1.0 // Date of the Last Update: 2018-02-03 // // Q u a n t u m L e a P s // --------------------------- // innovating embedded systems // // Copyright (C) Quantum Leaps, LLC. All rights reserved. // // This program is open source software: you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Alternatively, this program may be distributed and modified under the // terms of Quantum Leaps commercial licenses, which expressly supersede // the GNU General Public License and are specifically designed for // licensees interested in retaining the proprietary status of their code. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Contact information: // https://state-machine.com // mailto:info@state-machine.com //**************************************************************************** #include "qpcpp.h" #include "dpp.h" #include "bsp.h" // STM32CubeF7 include files #include "stm32f7xx_hal.h" #include "stm32746g_discovery.h" // add other drivers if necessary... Q_DEFINE_THIS_FILE // define the name of this file for assertions // namespace DPP ************************************************************* namespace DPP { // !!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority(). // DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE! // enum KernelUnawareISRs { // see NOTE1 USART1_PRIO, // ... MAX_KERNEL_UNAWARE_CMSIS_PRI // keep always last }; // "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts Q_ASSERT_COMPILE( MAX_KERNEL_UNAWARE_CMSIS_PRI <= (configMAX_SYSCALL_INTERRUPT_PRIORITY >> (8-__NVIC_PRIO_BITS))); enum KernelAwareISRs { SYSTICK_PRIO = (configMAX_SYSCALL_INTERRUPT_PRIORITY >> (8-__NVIC_PRIO_BITS)), EXTI0_PRIO, // ... MAX_KERNEL_AWARE_CMSIS_PRI // keep always last }; // "kernel-aware" interrupts should not overlap the PendSV priority Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS))); // Local-scope objects ------------------------------------------------------- static uint32_t l_rnd; // random seed #ifdef Q_SPY QP::QSTimeCtr QS_tickTime_; QP::QSTimeCtr QS_tickPeriod_; // QS source IDs static uint8_t const l_TickHook = static_cast(0); static uint8_t const l_EXTI0_IRQHandler = static_cast(0); static UART_HandleTypeDef l_uartHandle; enum AppRecords { // application-specific trace records PHILO_STAT = QP::QS_USER, PAUSED_STAT, COMMAND_STAT }; #endif extern "C" { // ISRs used in this project ================================================= // NOTE: only the "FromISR" API variants are allowed in the ISRs! void EXTI0_IRQHandler(void); // prototype void EXTI0_IRQHandler(void) { BaseType_t xHigherPriorityTaskWoken = pdFALSE; // for testing... AO_Table->POST_FROM_ISR( Q_NEW_FROM_ISR(QP::QEvt, DPP::MAX_PUB_SIG), &xHigherPriorityTaskWoken, &l_EXTI0_IRQHandler); // the usual end of FreeRTOS ISR... portEND_SWITCHING_ISR(xHigherPriorityTaskWoken); } //............................................................................ #ifdef Q_SPY // ISR for receiving bytes from the QSPY Back-End // NOTE: This ISR is "kernel-unaware" meaning that it does not interact with // the FreeRTOS or QP and is not disabled. Such ISRs don't need to call // portEND_SWITCHING_ISR(() at the end, but they also cannot call any // FreeRTOS or QP APIs. // void USART1_IRQHandler(void); // prototype void USART1_IRQHandler(void) { // is RX register NOT empty? if ((DPP::l_uartHandle.Instance->ISR & USART_ISR_RXNE) != 0) { uint32_t b = DPP::l_uartHandle.Instance->RDR; QP::QS::rxPut(b); DPP::l_uartHandle.Instance->ISR &= ~USART_ISR_RXNE; // clear interrupt } } #endif // Application hooks used in this project ==================================== // NOTE: only the "FromISR" API variants are allowed in vApplicationTickHook void vApplicationTickHook(void) { // state of the button debouncing, see below static struct ButtonsDebouncing { uint32_t depressed; uint32_t previous; } buttons = { ~0U, ~0U }; uint32_t current; uint32_t tmp; BaseType_t xHigherPriorityTaskWoken = pdFALSE; // process time events for rate 0 QP::QF::TICK_X_FROM_ISR(0U, &xHigherPriorityTaskWoken, &l_TickHook); #ifdef Q_SPY { tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover } #endif // Perform the debouncing of buttons. The algorithm for debouncing // adapted from the book "Embedded Systems Dictionary" by Jack Ganssle // and Michael Barr, page 71. // current = BSP_PB_GetState(BUTTON_KEY); // read the Key button tmp = buttons.depressed; // save the debounced depressed buttons buttons.depressed |= (buttons.previous & current); // set depressed buttons.depressed &= (buttons.previous | current); // clear released buttons.previous = current; // update the history tmp ^= buttons.depressed; // changed debounced depressed if (tmp != 0U) { // debounced user button state changed? if (buttons.depressed != 0U) { // user button depressed? // demonstrate the ISR APIs: PUBLISH_FROM_ISR and Q_NEW_FROM_ISR QP::QF::PUBLISH_FROM_ISR(Q_NEW_FROM_ISR(QP::QEvt, DPP::PAUSE_SIG), &xHigherPriorityTaskWoken, &l_TickHook); } else { // the button is released // demonstrate the ISR APIs: POST_FROM_ISR and Q_NEW_FROM_ISR AO_Table->POST_FROM_ISR(Q_NEW_FROM_ISR(QP::QEvt, DPP::SERVE_SIG), &xHigherPriorityTaskWoken, &l_TickHook); } } // notify FreeRTOS to perform context switch from ISR, if needed portEND_SWITCHING_ISR(xHigherPriorityTaskWoken); } //............................................................................ void vApplicationIdleHook(void) { // toggle the User LED on and then off, see NOTE01 QF_INT_DISABLE(); //BSP_LED_On(LED3); not enough LEDs //BSP_LED_On(LED3); not enough LEDs QF_INT_ENABLE(); // Some flating point code is to exercise the VFP... float x = 1.73205F; x = x * 1.73205F; #ifdef Q_SPY QP::QS::rxParse(); // parse all the received bytes if ((DPP::l_uartHandle.Instance->ISR & UART_FLAG_TXE) != 0U) {//TXE empty? uint16_t b; QF_INT_DISABLE(); b = QP::QS::getByte(); QF_INT_ENABLE(); if (b != QP::QS_EOD) { // not End-Of-Data? DPP::l_uartHandle.Instance->TDR = (b & 0xFFU); // put into TDR } } #elif defined NDEBUG // Put the CPU and peripherals to the low-power mode. // you might need to customize the clock management for your application, // see the datasheet for your particular Cortex-M MCU. // // !!!CAUTION!!! // The WFI instruction stops the CPU clock, which unfortunately disables // the JTAG port, so the ST-Link debugger can no longer connect to the // board. For that reason, the call to __WFI() has to be used with CAUTION. // // NOTE: If you find your board "frozen" like this, strap BOOT0 to VDD and // reset the board, then connect with ST-Link Utilities and erase the part. // The trick with BOOT(0) is it gets the part to run the System Loader // instead of your broken code. When done disconnect BOOT0, and start over. //__WFI(); // Wait-For-Interrupt #endif } //............................................................................ void vApplicationStackOverflowHook(TaskHandle_t xTask, char *pcTaskName) { (void)xTask; (void)pcTaskName; Q_ERROR(); } //............................................................................ // configSUPPORT_STATIC_ALLOCATION is set to 1, so the application must // provide an implementation of vApplicationGetIdleTaskMemory() to provide // the memory that is used by the Idle task. // void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize ) { // If the buffers to be provided to the Idle task are declared inside // this function then they must be declared static - otherwise they will // be allocated on the stack and so not exists after this function exits. // static StaticTask_t xIdleTaskTCB; static StackType_t uxIdleTaskStack[ configMINIMAL_STACK_SIZE ]; // Pass out a pointer to the StaticTask_t structure in which the // Idle task's state will be stored. // *ppxIdleTaskTCBBuffer = &xIdleTaskTCB; // Pass out the array that will be used as the Idle task's stack. */ *ppxIdleTaskStackBuffer = uxIdleTaskStack; // Pass out the size of the array pointed to by *ppxIdleTaskStackBuffer. // Note that, as the array is necessarily of type StackType_t, // configMINIMAL_STACK_SIZE is specified in words, not bytes. // *pulIdleTaskStackSize = Q_DIM(uxIdleTaskStack); } } // extern "C" // BSP functions ============================================================= void BSP::init(void) { // NOTE: SystemInit() has been already called from the startup code // but SystemCoreClock needs to be updated SystemCoreClockUpdate(); // NOTE: The VFP (hardware Floating Point) unit is configured by FreeRTOS */ SCB_EnableICache(); // Enable I-Cache SCB_EnableDCache(); // Enable D-Cache // Configure Flash prefetch and Instr. cache through ART accelerator #if (ART_ACCLERATOR_ENABLE != 0) __HAL_FLASH_ART_ENABLE(); #endif // ART_ACCLERATOR_ENABLE // Configure LED1 BSP_LED_Init(LED1); // Configure the User Button in GPIO Mode BSP_PB_Init(BUTTON_KEY, BUTTON_MODE_GPIO); //... BSP::randomSeed(1234U); // initialize the QS software tracing... if (!QS_INIT((void *)0)) { Q_ERROR(); } QS_OBJ_DICTIONARY(&l_TickHook); QS_USR_DICTIONARY(PHILO_STAT); QS_USR_DICTIONARY(PAUSED_STAT); QS_USR_DICTIONARY(COMMAND_STAT); } //............................................................................ void BSP::displayPhilStat(uint8_t n, char const *stat) { if (stat[0] == 'e') { BSP_LED_On(LED1); } else { BSP_LED_Off(LED1); } QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin QS_U8(1, n); // Philosopher number QS_STR(stat); // Philosopher status QS_END() // application-specific record end } //............................................................................ void BSP::displayPaused(uint8_t const paused) { if (paused != 0U) { //BSP_LED_On(LED2); not enough LEDs } else { //BSP_LED_Off(LED2); not enough LEDs } } //............................................................................ void BSP::ledOn(void) { BSP_LED_On(LED_GREEN); } //............................................................................ void BSP::ledOff(void) { BSP_LED_Off(LED_GREEN); } //............................................................................ uint32_t BSP::random(void) { // a very cheap pseudo-random-number generator // Some flating point code is to exercise the VFP... float volatile x = 3.1415926F; x = x + 2.7182818F; vTaskSuspendAll(); // lock FreeRTOS scheduler // "Super-Duper" Linear Congruential Generator (LCG) // LCG(2^32, 3*7*11*13*23, 0, seed) // uint32_t rnd = l_rnd * (3U*7U*11U*13U*23U); l_rnd = rnd; // set for the next time xTaskResumeAll(); // unlock the FreeRTOS scheduler return (rnd >> 8); } //............................................................................ void BSP::randomSeed(uint32_t seed) { l_rnd = seed; } //............................................................................ void BSP::terminate(int16_t result) { (void)result; } } // namespace DPP // namespace QP ************************************************************** namespace QP { // QF callbacks ============================================================== void QF::onStartup(void) { // set up the SysTick timer to fire at BSP::TICKS_PER_SEC rate //SysTick_Config(SystemCoreClock / BSP_TICKS_PER_SEC); // done in FreeRTOS // assing all priority bits for preemption-prio. and none to sub-prio. NVIC_SetPriorityGrouping(0U); // assingn all priority bits for preemption-prio. and none to sub-prio. NVIC_SetPriorityGrouping(0U); // set priorities of ALL ISRs used in the system, see NOTE00 // // !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority(). // DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE! // NVIC_SetPriority(USART1_IRQn, DPP::USART1_PRIO); NVIC_SetPriority(SysTick_IRQn, DPP::SYSTICK_PRIO); NVIC_SetPriority(EXTI0_IRQn, DPP::EXTI0_PRIO); // ... // enable IRQs... NVIC_EnableIRQ(EXTI0_IRQn); #ifdef Q_SPY NVIC_EnableIRQ(USART1_IRQn); // UART interrupt used for QS-RX #endif } //............................................................................ void QF::onCleanup(void) { } //............................................................................ extern "C" void Q_onAssert(char const *module, int loc) { // // NOTE: add here your application-specific error handling // (void)module; (void)loc; QS_ASSERTION(module, loc, static_cast(10000U)); #ifndef NDEBUG // light up the LED BSP_LED_On(LED1); // for debugging, hang on in an endless loop... for (;;) { } #endif NVIC_SystemReset(); } // QS callbacks ============================================================== #ifdef Q_SPY //............................................................................ bool QS::onStartup(void const *arg) { static uint8_t qsTxBuf[2*1024]; // buffer for QS transmit channel static uint8_t qsRxBuf[100]; // buffer for QS receive channel initBuf (qsTxBuf, sizeof(qsTxBuf)); rxInitBuf(qsRxBuf, sizeof(qsRxBuf)); DPP::l_uartHandle.Instance = USART1; DPP::l_uartHandle.Init.BaudRate = 115200; DPP::l_uartHandle.Init.WordLength = UART_WORDLENGTH_8B; DPP::l_uartHandle.Init.StopBits = UART_STOPBITS_1; DPP::l_uartHandle.Init.Parity = UART_PARITY_NONE; DPP::l_uartHandle.Init.HwFlowCtl = UART_HWCONTROL_NONE; DPP::l_uartHandle.Init.Mode = UART_MODE_TX_RX; DPP::l_uartHandle.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&DPP::l_uartHandle) != HAL_OK) { return false; // return failure } // Set UART to receive 1 byte at a time via interrupt HAL_UART_Receive_IT(&DPP::l_uartHandle, (uint8_t *)qsRxBuf, 1); // NOTE: wait till QF::onStartup() to enable UART interrupt in NVIC DPP::QS_tickPeriod_ = SystemCoreClock / DPP::BSP::TICKS_PER_SEC; DPP::QS_tickTime_ = DPP::QS_tickPeriod_; // to start the timestamp at zero // setup the QS filters... QS_FILTER_ON(QS_SM_RECORDS); QS_FILTER_ON(QS_UA_RECORDS); return true; // return success } //............................................................................ void QS::onCleanup(void) { } //............................................................................ QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // not set? return DPP::QS_tickTime_ - static_cast(SysTick->VAL); } else { // the rollover occured, but the SysTick_ISR did not run yet return DPP::QS_tickTime_ + DPP::QS_tickPeriod_ - static_cast(SysTick->VAL); } } //............................................................................ void QS::onFlush(void) { uint16_t b; while ((b = getByte()) != QS_EOD) { // while not End-Of-Data... // while TXE not empty while ((DPP::l_uartHandle.Instance->ISR & UART_FLAG_TXE) == 0U) { } DPP::l_uartHandle.Instance->TDR = (b & 0xFFU); // put into TDR } } //............................................................................ //! callback function to reset the target (to be implemented in the BSP) void QS::onReset(void) { NVIC_SystemReset(); } //............................................................................ //! callback function to execute a user command (to be implemented in BSP) extern "C" void assert_failed(char const *module, int loc); void QS::onCommand(uint8_t cmdId, uint32_t param1, uint32_t param2, uint32_t param3) { (void)cmdId; (void)param1; (void)param2; (void)param3; // application-specific record QS_BEGIN(DPP::COMMAND_STAT, reinterpret_cast(1)) QS_U8(2, cmdId); QS_U32(8, param1); QS_U32(8, param2); QS_U32(8, param3); QS_END() if (cmdId == 10U) { Q_ERROR(); // for testing of assertion failure } else if (cmdId == 11U) { assert_failed("QS_onCommand", 123); } } #endif // Q_SPY //---------------------------------------------------------------------------- } // namespace QP //**************************************************************************** // NOTE1: // The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest // ISR priority that is disabled by the QF framework. The value is suitable // for the NVIC_SetPriority() CMSIS function. // // Only ISRs prioritized at or below the // configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY level (i.e., // with the numerical values of priorities equal or higher than // configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY) are allowed to call any // QP/FreeRTOS services. These ISRs are "kernel-aware". // // Conversely, any ISRs prioritized above the // configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY priority level (i.e., with // the numerical values of priorities less than // configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY) are never disabled and are // not aware of the kernel. Such "kernel-unaware" ISRs cannot call any // QP/FreeRTOS services. The only mechanism by which a "kernel-unaware" ISR // can communicate with the QF framework is by triggering a "kernel-aware" // ISR, which can post/publish events. // // For more information, see article "Running the RTOS on a ARM Cortex-M Core" // http://www.freertos.org/RTOS-Cortex-M3-M4.html // // NOTE2: // The User LED is used to visualize the idle loop activity. The brightness // of the LED is proportional to the frequency of invcations of the idle loop. // Please note that the LED is toggled with interrupts locked, so no interrupt // execution time contributes to the brightness of the User LED. //