///*************************************************************************** // Product: DPP example, EFM32-SLSTK3401A board, preemptive QXK kernel // Last Updated for Version: 5.9.7 // Date of the Last Update: 2017-08-19 // // Q u a n t u m L e a P s // --------------------------- // innovating embedded systems // // Copyright (C) Quantum Leaps, LLC. All rights reserved. // // This program is open source software: you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Alternatively, this program may be distributed and modified under the // terms of Quantum Leaps commercial licenses, which expressly supersede // the GNU General Public License and are specifically designed for // licensees interested in retaining the proprietary status of their code. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Contact information: // https://state-machine.com // mailto:info@state-machine.com //**************************************************************************** #include "qpcpp.h" #include "dpp.h" #include "bsp.h" #include "em_device.h" // the device specific header (SiLabs) #include "em_cmu.h" // Clock Management Unit (SiLabs) #include "em_gpio.h" // GPIO (SiLabs) #include "em_usart.h" // USART (SiLabs) // add other drivers if necessary... Q_DEFINE_THIS_FILE // namespace DPP ************************************************************* namespace DPP { // !!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority(). // DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE! // enum KernelUnawareISRs { // see NOTE00 USART0_RX_PRIO, // ... MAX_KERNEL_UNAWARE_CMSIS_PRI // keep always last }; // "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI); enum KernelAwareISRs { GPIO_EVEN_PRIO = QF_AWARE_ISR_CMSIS_PRI, // see NOTE00 SYSTICK_PRIO, // ... MAX_KERNEL_AWARE_CMSIS_PRI // keep always last }; // "kernel-aware" interrupts should not overlap the PendSV priority Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS))); // Local-scope objects ------------------------------------------------------- #define LED_PORT gpioPortF #define LED0_PIN 4 #define LED1_PIN 5 #define PB_PORT gpioPortF #define PB0_PIN 6 #define PB1_PIN 7 static uint32_t l_rnd; // random seed #ifdef Q_SPY QP::QSTimeCtr QS_tickTime_; QP::QSTimeCtr QS_tickPeriod_; // QS source IDs static uint8_t const l_SysTick_Handler = (uint8_t)0; static uint8_t const l_GPIO_EVEN_IRQHandler = (uint8_t)0; static USART_TypeDef * const l_USART0 = ((USART_TypeDef *)(0x40010000UL)); enum AppRecords { // application-specific trace records PHILO_STAT = QP::QS_USER, PAUSED_STAT, COMMAND_STAT }; #endif // ISRs used in this project ================================================= extern "C" { //............................................................................ void SysTick_Handler(void); // prototype void SysTick_Handler(void) { // state of the button debouncing, see below static struct ButtonsDebouncing { uint32_t depressed; uint32_t previous; } buttons = { ~0U, ~0U }; uint32_t current; uint32_t tmp; QXK_ISR_ENTRY(); // inform QXK about entering an ISR #ifdef Q_SPY { tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover } #endif //QP::QF::TICK_X(0U, &l_SysTick_Handler); // process time events for rate 0 the_Ticker0->POST(0, &l_SysTick_Handler); // post to Ticker0 active object // Perform the debouncing of buttons. The algorithm for debouncing // adapted from the book "Embedded Systems Dictionary" by Jack Ganssle // and Michael Barr, page 71. // current = ~GPIO->P[PB_PORT].DIN; // read PB0 and BP1 tmp = buttons.depressed; // save the debounced depressed buttons buttons.depressed |= (buttons.previous & current); // set depressed buttons.depressed &= (buttons.previous | current); // clear released buttons.previous = current; // update the history tmp ^= buttons.depressed; // changed debounced depressed if ((tmp & (1U << PB0_PIN)) != 0U) { // debounced PB0 state changed? if ((buttons.depressed & (1U << PB0_PIN)) != 0U) { // PB0 depressed? static QP::QEvt const pauseEvt = { DPP::PAUSE_SIG, 0U, 0U}; QP::QF::PUBLISH(&pauseEvt, &l_SysTick_Handler); } else { // the button is released static QP::QEvt const serveEvt = { DPP::SERVE_SIG, 0U, 0U}; QP::QF::PUBLISH(&serveEvt, &l_SysTick_Handler); } } QXK_ISR_EXIT(); // inform QXK about exiting an ISR } //............................................................................ void GPIO_EVEN_IRQHandler(void); // prototype void GPIO_EVEN_IRQHandler(void) { QXK_ISR_ENTRY(); // inform QXK about entering an ISR // for testing... //DPP::AO_Table->POST(Q_NEW(QP::QEvt, DPP::MAX_PUB_SIG), // &l_GPIO_EVEN_IRQHandler); QP::QF::PUBLISH(Q_NEW(QP::QEvt, TEST_SIG), // for testing... &l_GPIO_EVEN_IRQHandler); QXK_ISR_EXIT(); // inform QXK about exiting an ISR } //............................................................................ void USART0_RX_IRQHandler(void); // prototype #ifdef Q_SPY // ISR for receiving bytes from the QSPY Back-End // NOTE: This ISR is "QF-unaware" meaning that it does not interact with // the QF/QXK and is not disabled. Such ISRs don't need to call // QXK_ISR_ENTRY/QXK_ISR_EXIT and they cannot post or publish events. // void USART0_RX_IRQHandler(void) { // while RX FIFO NOT empty while ((DPP::l_USART0->STATUS & USART_STATUS_RXDATAV) != 0) { uint32_t b = DPP::l_USART0->RXDATA; QP::QS::rxPut(b); } } #else void USART0_RX_IRQHandler(void) {} #endif // Q_SPY } // extern "C" // BSP functions ============================================================= void BSP::init(void) { // NOTE: SystemInit() already called from the startup code // but SystemCoreClock needs to be updated // SystemCoreClockUpdate(); /* NOTE: The VFP (hardware Floating Point) unit is configured by QXK */ //FPU->FPCCR |= (1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos); // enable clock for to the peripherals used by this application... CMU_ClockEnable(cmuClock_HFPER, true); CMU_ClockEnable(cmuClock_GPIO, true); CMU_ClockEnable(cmuClock_HFPER, true); CMU_ClockEnable(cmuClock_GPIO, true); // configure the LEDs GPIO_PinModeSet(LED_PORT, LED0_PIN, gpioModePushPull, 0); GPIO_PinModeSet(LED_PORT, LED1_PIN, gpioModePushPull, 0); GPIO_PinOutClear(LED_PORT, LED0_PIN); GPIO_PinOutClear(LED_PORT, LED1_PIN); // configure the Buttons GPIO_PinModeSet(PB_PORT, PB0_PIN, gpioModeInputPull, 1); GPIO_PinModeSet(PB_PORT, PB1_PIN, gpioModeInputPull, 1); //... BSP::randomSeed(1234U); if (!QS_INIT((void *)0)) { // initialize the QS software tracing Q_ERROR(); } QS_OBJ_DICTIONARY(&l_SysTick_Handler); QS_OBJ_DICTIONARY(&l_GPIO_EVEN_IRQHandler); QS_USR_DICTIONARY(PHILO_STAT); QS_USR_DICTIONARY(PAUSED_STAT); QS_USR_DICTIONARY(COMMAND_STAT); } //............................................................................ void BSP::displayPhilStat(uint8_t n, char const *stat) { if (stat[0] == 'e') { GPIO->P[LED_PORT].DOUT |= (1U << LED0_PIN); } else { GPIO->P[LED_PORT].DOUT &= ~(1U << LED0_PIN); } QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin QS_U8(1, n); // Philosopher number QS_STR(stat); // Philosopher status QS_END() } //............................................................................ void BSP::displayPaused(uint8_t paused) { if (paused != 0U) { GPIO->P[LED_PORT].DOUT |= (1U << LED0_PIN); // for testing the extended threads... static QP::QEvt const pauseEvt = { PAUSE_SIG, 0U, 0U}; XT_Test2->delayCancel(); // make sure Test2 is not delayed XT_Test2->POST_X(&pauseEvt, 1U, (void *)0); // post to Test2's queue } else { GPIO->P[LED_PORT].DOUT &= ~(1U << LED0_PIN); } QS_BEGIN(PAUSED_STAT, (void *)0) // application-specific record begin QS_U8(1, paused); // Paused status QS_END() } //............................................................................ uint32_t BSP::random(void) { // a very cheap pseudo-random-number generator // Some flating point code is to exercise the VFP... float volatile x = 3.1415926F; x = x + 2.7182818F; QP::QSchedStatus lockStat = QP::QXK::schedLock(N_PHILO); // protect l_rnd // "Super-Duper" Linear Congruential Generator (LCG) // LCG(2^32, 3*7*11*13*23, 0, seed) // uint32_t rnd = l_rnd * (3U*7U*11U*13U*23U); l_rnd = rnd; // set for the next time QP::QXK::schedUnlock(lockStat); // sched unlock around l_rnd return (rnd >> 8); } //............................................................................ void BSP::randomSeed(uint32_t seed) { l_rnd = seed; } //............................................................................ void BSP::ledOn(void) { GPIO->P[LED_PORT].DOUT |= (1U << LED1_PIN); } //............................................................................ void BSP::ledOff(void) { GPIO->P[LED_PORT].DOUT &= ~(1U << LED1_PIN); } //............................................................................ void BSP::terminate(int16_t result) { (void)result; } } // namespace DPP // namespace QP ************************************************************** namespace QP { // QF callbacks ============================================================== void QF::onStartup(void) { // set up the SysTick timer to fire at BSP::TICKS_PER_SEC rate SysTick_Config(SystemCoreClock / DPP::BSP::TICKS_PER_SEC); // assingn all priority bits for preemption-prio. and none to sub-prio. NVIC_SetPriorityGrouping(0U); // set priorities of ALL ISRs used in the system, see NOTE00 // // !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority(). // DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE! // NVIC_SetPriority(USART0_RX_IRQn, DPP::USART0_RX_PRIO); NVIC_SetPriority(SysTick_IRQn, DPP::SYSTICK_PRIO); NVIC_SetPriority(GPIO_EVEN_IRQn, DPP::GPIO_EVEN_PRIO); // ... // enable IRQs... NVIC_EnableIRQ(GPIO_EVEN_IRQn); #ifdef Q_SPY NVIC_EnableIRQ(USART0_RX_IRQn); // UART0 interrupt used for QS-RX #endif } //............................................................................ void QF::onCleanup(void) { } //............................................................................ void QXK::onIdle(void) { // toggle the User LED on and then off, see NOTE01 // QF_INT_DISABLE(); // GPIO->P[LED_PORT].DOUT |= (1U << LED1_PIN); // GPIO->P[LED_PORT].DOUT &= ~(1U << LED1_PIN); // QF_INT_ENABLE(); // Some flating point code is to exercise the VFP... float volatile x = 1.73205F; x = x * 1.73205F; #ifdef Q_SPY QS::rxParse(); // parse all the received bytes if ((DPP::l_USART0->STATUS & USART_STATUS_TXBL) != 0) { // is TXE empty? uint16_t b; QF_INT_DISABLE(); b = QS::getByte(); QF_INT_ENABLE(); if (b != QS_EOD) { // not End-Of-Data? DPP::l_USART0->TXDATA = (b & 0xFFU); // put into the DR register } } #elif defined NDEBUG // Put the CPU and peripherals to the low-power mode. // you might need to customize the clock management for your application, // see the datasheet for your particular Cortex-M3 MCU. // __WFI(); // Wait-For-Interrupt #endif } //............................................................................ extern "C" void Q_onAssert(char const *module, int loc) { // // NOTE: add here your application-specific error handling // (void)module; (void)loc; QS_ASSERTION(module, loc, static_cast(10000U)); #ifndef NDEBUG // light up both LEDs GPIO->P[LED_PORT].DOUT |= ((1U << LED0_PIN) | (1U << LED1_PIN)); // for debugging, hang on in an endless loop until PB1 is pressed... while ((GPIO->P[PB_PORT].DIN & (1U << PB1_PIN)) != 0) { } #endif NVIC_SystemReset(); } // QS callbacks ============================================================== #ifdef Q_SPY //............................................................................ bool QS::onStartup(void const *arg) { static uint8_t qsTxBuf[2*1024]; // buffer for QS transmit channel static uint8_t qsRxBuf[100]; // buffer for QS receive channel static USART_InitAsync_TypeDef init = { usartEnable, // Enable RX/TX when init completed 0, // Use current clock for configuring baudrate 115200, // 115200 bits/s usartOVS16, // 16x oversampling usartDatabits8, // 8 databits usartNoParity, // No parity usartStopbits1, // 1 stopbit 0, // Do not disable majority vote 0, // Not USART PRS input mode usartPrsRxCh0, // PRS channel 0 0, // Auto CS functionality enable/disable switch 0, // Auto CS Hold cycles 0 // Auto CS Setup cycles }; initBuf (qsTxBuf, sizeof(qsTxBuf)); rxInitBuf(qsRxBuf, sizeof(qsRxBuf)); // Enable peripheral clocks CMU_ClockEnable(cmuClock_HFPER, true); CMU_ClockEnable(cmuClock_GPIO, true); // To avoid false start, configure output as high GPIO_PinModeSet(gpioPortA, 0, gpioModePushPull, 1); // TX pin GPIO_PinModeSet(gpioPortA, 1, gpioModeInput, 0); // RX pin // Enable DK RS232/UART switch GPIO_PinModeSet(gpioPortA, 5, gpioModePushPull, 1); CMU_ClockEnable(cmuClock_USART0, true); // configure the UART for the desired baud rate, 8-N-1 operation init.enable = usartDisable; USART_InitAsync(DPP::l_USART0, &init); // enable pins at correct UART/USART location. DPP::l_USART0->ROUTEPEN = USART_ROUTEPEN_RXPEN | USART_ROUTEPEN_TXPEN; DPP::l_USART0->ROUTELOC0 = (DPP::l_USART0->ROUTELOC0 & ~(_USART_ROUTELOC0_TXLOC_MASK | _USART_ROUTELOC0_RXLOC_MASK)); // Clear previous RX interrupts USART_IntClear(DPP::l_USART0, USART_IF_RXDATAV); NVIC_ClearPendingIRQ(USART0_RX_IRQn); // Enable RX interrupts USART_IntEnable(DPP::l_USART0, USART_IF_RXDATAV); // NOTE: do not enable the UART0 interrupt in the NVIC yet. // Wait till QF::onStartup() // Finally enable the UART USART_Enable(DPP::l_USART0, usartEnable); DPP::QS_tickPeriod_ = SystemCoreClock / DPP::BSP::TICKS_PER_SEC; DPP::QS_tickTime_ = DPP::QS_tickPeriod_; // to start the timestamp at zero // setup the QS filters... QS_FILTER_ON(QS_QEP_STATE_ENTRY); QS_FILTER_ON(QS_QEP_STATE_EXIT); QS_FILTER_ON(QS_QEP_STATE_INIT); QS_FILTER_ON(QS_QEP_INIT_TRAN); QS_FILTER_ON(QS_QEP_INTERN_TRAN); QS_FILTER_ON(QS_QEP_TRAN); QS_FILTER_ON(QS_QEP_IGNORED); QS_FILTER_ON(QS_QEP_DISPATCH); QS_FILTER_ON(QS_QEP_UNHANDLED); QS_FILTER_ON(DPP::PHILO_STAT); QS_FILTER_ON(DPP::COMMAND_STAT); return true; // return success } //............................................................................ void QS::onCleanup(void) { } //............................................................................ QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // not set? return DPP::QS_tickTime_ - static_cast(SysTick->VAL); } else { // the rollover occured, but the SysTick_ISR did not run yet return DPP::QS_tickTime_ + DPP::QS_tickPeriod_ - static_cast(SysTick->VAL); } } //............................................................................ void QS::onFlush(void) { uint16_t b; QF_INT_DISABLE(); while ((b = getByte()) != QS_EOD) { // while not End-Of-Data... QF_INT_ENABLE(); // while TXE not empty while ((DPP::l_USART0->STATUS & USART_STATUS_TXBL) == 0U) { } DPP::l_USART0->TXDATA = (b & 0xFFU); // put into the DR register QF_INT_DISABLE(); } QF_INT_ENABLE(); } //............................................................................ //! callback function to reset the target (to be implemented in the BSP) void QS::onReset(void) { NVIC_SystemReset(); } //............................................................................ //! callback function to execute a user command (to be implemented in BSP) extern "C" void assert_failed(char const *module, int loc); void QS::onCommand(uint8_t cmdId, uint32_t param1, uint32_t param2, uint32_t param3) { (void)cmdId; (void)param1; (void)param2; (void)param3; // application-specific record QS_BEGIN(DPP::COMMAND_STAT, static_cast(0)) QS_U8(2, cmdId); QS_U32(8, param1); QS_END() if (cmdId == 10U) { assert_failed("QS_onCommand", 11); } } #endif // Q_SPY //---------------------------------------------------------------------------- } // namespace QP //**************************************************************************** // NOTE00: // The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest // ISR priority that is disabled by the QF framework. The value is suitable // for the NVIC_SetPriority() CMSIS function. // // Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e., // with the numerical values of priorities equal or higher than // QF_AWARE_ISR_CMSIS_PRI) are allowed to call the QK_ISR_ENTRY/QK_ISR_ENTRY // macros or any other QF/QK services. These ISRs are "QF-aware". // // Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority // level (i.e., with the numerical values of priorities less than // QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel. // Such "QF-unaware" ISRs cannot call any QF/QK services. In particular they // can NOT call the macros QK_ISR_ENTRY/QK_ISR_ENTRY. The only mechanism // by which a "QF-unaware" ISR can communicate with the QF framework is by // triggering a "QF-aware" ISR, which can post/publish events. // // NOTE01: // The User LED is used to visualize the idle loop activity. The brightness // of the LED is proportional to the frequency of invcations of the idle loop. // Please note that the LED is toggled with interrupts locked, so no interrupt // execution time contributes to the brightness of the User LED. //